How first order is first order logic?*

Juliette Kennedy
Department of Mathematics and Statistics
University of Helsinki, Finland

Jouko Vaananen
Department of Mathematics and Statistics
University of Helsinki, Finland
ILLC, University of Amsterdam
Amsterdam, Netherlands

June 14, 2023

Contents

(1 Introductionl 2

|2 Absoluteness and symbiosis| 5
2.1 Symbiosis| . . . . ... 8
22 Sort logic| . . . .. ... 11
R3 Tyypl- - - - o o 13
[2.4  Applications of symbiosis| . . . . .. ... ... L. 14

3 Other ways in which the first order/second order distinction |

(nearly) collapses| 14
[3.1  Strong logics coming close to being first order| . . . . . . . .. 15
[3.2  Second order logic and internal categoricity] . . . . . . . . .. 16
|3.3  The metatheory problem|. . . . . . ... .. ... ... .... 17

*The first author would like to thank the Academy of Finland, grant no: 322488.
The second author would like to thank the Academy of Finland, grant no: 322795. This
project has received funding from the European Research Council (ERC) under the Eu-
ropean Union’s Horizon 2020 research and innovation programme (grant agreement No
101020762).



4 Conclusion| 19

1 Introduction

Fundamental to the practice of logic is the dogma regarding the first or-
der/second order logic distinction, namely that it is ironclad. Was it always
so? The emergence of the set theoretic paradigm is an interesting test case.
Early workers in foundations generally used higher order systems in the form
of type theory; but then higher order systems were gradually abandoned in
favour of first order set theory—a transition that was completed, more or
less, by the 1930s][T]

Godel [*19330] describes the higher order “provenance” of (first order)
set theory—the fact that set theory lends itself to being viewed in a natural
way as a higher order system—as follows:

It may seem as if another solution were afforded by the system
of axioms for the theory of aggregates, as presented by Zermelo,
Fraenkel and von Neumann; but it turns out that this system of
axioms is nothing else but a natural generalization of the theory
of types, or rather, it is what becomes of the theory of types if
certain superfluous restrictions are removed

Set theory, then, has a double nature—logically speaking.

Thinking of logic in general, there is some tension in what the phrase
“first order,” as in “first order logic,” really means. It is clear what it means
for a model class K to be first order definablePl It means that there is a
first order formula ¢ such that for all models M

MeK — ME¢. (1)

! According to Hodges the transition in Tarski’s early work, at least, from simple type
theory to informal set theory, was in place by then. As Hodges puts it: “The deductive
theories in question (such as RCF) are formulated in simple type theory; by 1935 the
axioms for RCF is regarded as a definition within set theory.” [14], p. 118. See Ewald’s
[9] for the emergence of first order logic.

2|11, p. 45. A similar point is made in the second author’s [37]: “First-order set theory
is merely the result of extending second order logic to transfinitely high types.”

3By a model class we mean a class of models, closed under isomorphisms, of a fixed
vocabulary, see Section



On the other hand, K being merely a model class means, from the point of
view of set theoryﬂ that there is a first order formula ®(x), perhaps with
set parameters, such that for all models M

MeK < O(M). (2)

While holds for a very restricted collection of model classes only, (2)
holds for all model classes. Still both and seem to be based on first
order logic. Obviously first order logic is playing a different role in and
: in first order logic “views” the model M in some sense from the
inside, while in the perspective taken is from the outside, how M sits in
the universe of sets.

This simple observation suggests that the concept of a logic being first
order is not only about whether the variables range over the elements of
a given domain, or over sets of elements, or over sets of sets of elements,
and so on, it is also about the context. In the first order variables range
over elements of M, while in the first order variables range over the
universe of set theory V', which contains sets generated by unbounded, even
transfinite, iterations of the power set operation, i.e. objects of all orders.
This means that higher order quantification (over set-size domains) is in a
clear sense allowed in (first order) set theory.

Of course, set theory is a theory and second order logic is a logic, at
least that is the common understanding. We will argue in this paper that
if one cares to view set theory as a logic—and if we do think of set theory
as a logic, it is a logic with the cumulative hierarchy V as its standard
(class) model—then set theory turns out to be a stronger logic than second
order logic. This is perhaps as it should be, given that the latter restricts
the domain of quantifiable objects to those generated by (at most) a single
iteration of the power set operation, while set theory allows for arbitrary
iterations of the power set operation, as was mentioned.

It is useful at the beginning to recall an elementary observation about
the first order/second order distinction. Consider the structure

M= (R, +, x,N, <,0,1).

So here we have the all-important structure of the real numbers together
with the structure of natural numbers conceived of as a substructure of the
reals (as can be expected). First order quantification over this structure
involves quantification over the real numbers as we see. Via their binary

“See e.g. [15, Page 5.].



representation, definable in this structure, every real number corresponds
canonically to a subset of N. Thus when we quantify in a first order way
over the real numbers we are implicitly quantifying in a second order way
over natural numbers, because we can identify a real number with a subset
of N. Thus first order quantification over the reals can be viewed as second
order quantification over the naturals.

One may ask, does first order logic over the reals in M benefit—or
suffer?—from all the special properties of second order logic, it being (im-
plicitly) second order logic over the integers? It both benefits and suffers,
depending on what we are after. The first order theory of M is extraordinar-
ily complex from the point of view of computability theory as it encodes the
entire second order theory of (N, <,0,1), well-known to be non-computable
in the extreme. This should be contrasted with the fact that the arithmetic
of the reals alone is decidable [32]. The point is that the decidability con-
cerns the structure (R, +, x, <,0,1), in which N is not a part of the structure
(it is not even a definable subset). Thus the presence or non-presence of N
as part of the structure M decides whether first order quantification over
the model is truly first order or implicitly second order over an infinite sub-
structure. This phenomenon is an important aspect of second order logic,
namely that second orderness may be present in a hidden way. Quine made
a similar point in [29] when he suggested that using second order predicate
symbols as schematic letters masks the set theoretic content of second or-
der logic; one should rather include the membership relation in the given
signature.

Another ambiguity in the notion of “first order” is due to the fact that
there is a whole spectrum of logics which extend first order logic in the sense
of (1) but are sublogics of first order logic in the sense of E| In fact, every
(abstract) logic is first order from the point of view of set theory. This is
because an abstract logic is given by two predicates of set theory, namely
the set (or class) of formulas and the truth predicate, where the latter is
a predicate of set theory holding between structures and sentences of the
logic. Such predicates are given in set theory by a first order formula. Of
course the first order formula involves the epsilon relation. Hence in first
order logic together with the epsilon relation one can define every logic.

Let us look at a very simple example:

Example 1. A typical non-first order property of a model is its finiteness.
Let K be the class of finite models of some vocabulary L. It is a familiar

5See below Section for the definition of abstract logic and some examples.



consequence of the Compactness Theorewﬂ that there is no first order sen-
tence ¢ of any vocabulary L such that for all models M the equivalence
holds (for the class K). On the other hand, if ®(x) is the famz’limﬂ set-
theoretical formula which says that the set x is a finite model of vocabulary
L, then all models M of vocabulary L satisfy (@ First order logic tries to
express finiteness from inside the model and fails; first order set theory, just
like second order logic, by virtue of the power set operation, easily expresses
finiteness from the outside.

So what does “first order” mean, after all, if first order logic can appear
in such different roles as and ? In this paper we will look at first
order logic from various points of view, arguing that the distinction between
first order and higher order logics, such as second order logic, is somewhat
context dependent. From the philosophical or foundational point of view
this complicates the picture of first order logic as a canonical logic.

2 Absoluteness and symbiosis
Barwise [4] pinned the canonicity of a logic to its absoluteness:

When is it reasonable for us, as outsiders looking on, to call
[an abstract logic] L* a “first order” logic? If the words “first
order” have any intuitive content it is that the truth or falsity of
M E* ¢ should depend only on ¢ and M, not on what subsets
of M may or may not exist in [the logician| k¥’s model of his set
theory T'. In other words, the relation =* should be absolute for
models of T'.

First order logic is of course absolute, but there are many extensions
of first order logic that are absolute in Barwise’s sense, and therefore, in
Barwise’s sense, first order, or at least close to first order. Examples of
absolute logics include L(Qo) [28], L(Q§™) [24], Loow [16], and the logic
Looc 12 27] with the closed game-quantifier

V$03$1V$25|$3 N /\ ¢n<$0, N ,x2n+1). (3)

SEvery theory, which has no models, has a finite subtheory without models.

"There are many different definitions of finiteness in set theory, all equivalent if the
Axiom of Choice is assumed. The most common definition says that there is no one-one
function from x into a proper subset of x.



In order to talk about the absoluteness of a logic more exactly we first
define the concept of an abstract logic: A logic (a.k.a. abstract logic) in the
sense of [22] is a pair L* = (X,T), where ¥ is an arbitrary set (sometimes
also a class) and T is a binary relation between members of ¥ on the one
hand and structures on the other. Members of 3 are called L*-sentences.
Classes of the form

Mod(¢) = {M : T(¢, M)},

where ¢ is an L*-sentence, are called L*-characterizable, or L*-definable,
classes. Abstract logics are assumed to satisfy five axioms expressed in
terms of L*-characterizable classes, corresponding to being closed under
isomorphism, conjunction, negation, permutation of symbols, and “free”
expansionsﬁ A model class is the abstraction of a sentence. We conceive
of formulas with free variables by considering model classes in which the
vocabulary has (new) constant symbols that play the role of free variables.
This makes it possible to define what it means for an abstract logic to be
closed under first order quantification. A class K of models is said to be
definable in a logic L* if there is a sentence ¢ in L* such that

K = Mod(¢).

A logic L* is a sublogic of another logic L*, L* < L%, if every L*-
definable model class is also L*-definable. The logics are equivalent, L* =
Lt if L* < L™ and LT < L*.

Why consider model classes, if we are thinking about logics? Tarski [33]
introduced the concept of an elementary class. This refers to the class of all
models of a given first order sentence ¢ with vocabulary L. Thus elementary
classes K satisfy:

1. The elements of K are models (i.e. structures).
2. All models in K have the same vocabulary L.
3. K is closed under isomorphisms.

Generalizing from this, we call any class K a model class if it satisfies the
above three conditions. Elementary classes are examples of model classes
but there are many more. For example, the classes of all groups, all well-
orders, all equivalence relations, all algebraically closed fields, all models of
Peano arithmetic, all models of ZFC set theory, and the class of all models

8The free expansion to vocabulary L of a model class K of a smaller vocabulary is the
class of all expansions of elements of K to the vocabulary L.



isomorphic to some (V,, €), where « is an ordinal, are model classes. If ¢
is a sentence of any logic whatsoever, be it second order logic, logic with
generalized quantifiers, or infinitary logic, the class of models of ¢ is a model
class.

An interesting fact about model classes is that every model class is de-
finable in some logic, because we can take the model class as a generalized
quantifier in the sense of [2I]: Suppose K is a model class with vocabulary
L. For simplicity we assume L = { R} where R is a binary predicate symbol.
We can associate with I the generalized quantifier Qx in the sense of [21]
with the semantics

M E Qayd(z,y,d@) <= (M, {(bc) € M*: M = ¢(b,c,a)}) € K.

Now K is trivially definable in the extension Ly, (Qx) of first order logic by
the quantifier Qx by the sentence

QrryR(z,y).

Conversely, every class of models definable in Ly, (Qx), or indeed in any
abstract logic, is a model class i.e. is closed under isomorphisms.

To summarize the discussion of the previous paragraphs: talking about
model classes is tantamount to talking about sentences in arbitrary logics.

Returning to absoluteness, the absoluteness of a logic means that its set
theoretical definition is absolute in the usual set theoretical sense, i.e. per-
sisting upwards and downwards across transitive models of (of a finite part
of) ZFC. More precisely a logic is said to be absolute [4] if the satisfaction
predicate M = ¢ is A in the Levy hierarchy, and the property of being a
formula of the logic is 31 in the Levy hierarchyﬂ

Essentially a logic L is absolute if the truth of a sentence in an L-
structure depends only on the elements of the domain, not on what kind
of subsets it has.

In contrast to first order logic, second order logic is famously nonab-
solute, because of its entanglement with set theory. For example, one can
easily write a second order sentence ® which is true in the ordered field

9The Levy hierarchy is defined as follows: Zg-formulas of set theory are formulas in
which all quantifiers are bounded i.e. of the form Vx € y, 3x € y. Ilp-formulas are the
same as Yo-formulas. A formula is ¥, 41 if it is of the form Jx¢, where ¢ is II,,. A formula
is II,,4+1 if it is of the form Vxz¢, where ¢ is X,. A property of sets is A,, if it can be
defined both by a 3, -formula and a IL,,-formula. If the equivalence can be proved in the
theory T, typically Kripke-Platek set theory KP or ZFC, the property is called AZ. The
Kripke-Platek axioms K P consist of some elementary axioms plus the ¥o-separation and
Yo-collection schemas.



(R,+,-,0,1,<) of real numbers if and only if the Continuum Hypothesis
CH holdsm and this equivalence is provable in ZFC. Now the predicate
(R,+,-,0,1,<) = ® is non-absolute, for we can start with a model in which
CH is false and then collapse the continuum to N; without changing the
reals. First (R,+,-,0,1,<) = ¢ is false but after the collapse it is true.
Such a “change of heart” on the part of ® would not be allowed if ® were a
sentence of an absolute logic[M]|

2.1 Symbiosis

One may ask, what prevents second order logic, or indeed any logic, from
being absolute? The answer to this question must lie in the nature of the
connection of the logic to set theory, that is to say the answer to the question
must lie in the set-theoretical content of the logic—but what exactly is the
set-theoretical content of e.g. second order logic? Symbiosis, introduced
in [35], was designed exactly in order to bring the set theoretical content
of a logic to the fore; to “expose the nature of the logic, to uncover the
set-theoretical commitments of the logic, its content, its strength, even its
reference.”[Z]

Precisely, in symbiosis one finds a set-theoretical predicate or operation
P such that in any situation where P is absolute the logic £ is, and (roughly)
vice versa. This means that one is able to detect, on the one hand, whether
a logic “sees” the invariant content of a given set theoretic predicate; while
on the other hand the absoluteness of the logic is pinned to the absoluteness
of the predicate—whence the name “symbiosis.”

So why is second order logic nonabsolute? Or to put it another way, what
is the nature of this entanglement of second order logic with set theory, an
entanglement so decried by Quine?lE It is expressed in symbiosis this way:
second order logic is actually symbiotic with the power set operation of set
theory. That is to say, once we hold the power set operation fixed, second

10The CH says that every uncountable set of reals has the same cardinality as the set of
reals itself. This is expressible in second order logic because we can quantify over all subsets
of the domain, we can express countability and we can express being of the same cardinality
as the entire domain. Let ® be the second order sentence VP (¥ (P) — IFO(F, P)), where
U(P) says “P is uncountable” and ©(F, P) says “F' is a one-one function from elements
of the domain into P.” Then ® holds in (R,+,,0,1, <) iff CH is true.

1 Our example of non-absoluteness of second order logic is an overkill. A simpler ex-
ample is uncountability. No absolute logic can express uncountability, as shown in [4].

128ee [18].

13For Quine’s view of the entanglement of second order logic with set theory see the
section entitled “Set theory in sheep’s clothing,” [29], p. 66.



order logic becomes absolute. On the other hand, second order logic “sees”
the power set operation and can talk about it and everything else that is
“absolute relative to the power set operation,” (see Definition [2| below) via
its definable model classes.

The symbiosis between second order logic and the power set operation
is described in [19] p. 173] thus:

When we talk about mathematics based on the power set oper-
ation in some vague sense, it seems immaterial whether we use
second order logic or predicates that are absolute with respect
to the power set operation, P-absolute. For second order logic
we have the formal counterpart in the formal second order lan-
guage. Likewise, for P-absoluteness we have Aj(P)- formulas
which capture the P-absolute properties, if we want to use a
formal concept. Of course the predicate “x is the power set of
y” is absolute in this sense only with respect to a special class
of models of set theory. But the point here was not to study
this particular binary predicate on its own; the aim was to de-
termine whether a given logic could “see” the predicate through
its definable model classes.

Of course it is not surprising that the nonabsoluteness of second order
logic should be tied to the power set operation, somehow. Symbiosis makes
this exact and explicit. Moreover, from the symbiosis point of view, the
moral is clear: it is useless to try to separate second order logic from set
theory.

Before giving the technical definition of symbiosis, we require the auxil-
iary concept of R-absoluteness, mentioned above:

Definition 2. Suppose R is a predicate (i.e. a first order formula) in the
language {€}. A predicate P is absolute w.r.t. R, or R-absolute, if it is
absolute with respect to transitive extensions preserving the predicate R, i.e.
if the predicate is preserved by extensions of the universe as long as R itself
is preserved, and no new elements are added to old elements (technically:
extensions of transitive models); and the same is true of restrictions of the
UNIVETSE.

Technically this is the same as P being Aj(R) i.e. A; in the extended
language {€, R} [10].

Intuitively, a predicate P is R-absolute if whenever we add sets to the
universe or take sets away, without changing R, also P remains unchanged.
For example, if R(x) is the predicate “x is countable,” then the predicates



e “x is uncountable,”

e “x is a countable ordinal,”

e “r is a countable set of singletons,”

e “(A,<) is a linear order in which every initial segment is countable,”
e “(dis a graph in which every node has uncountably many neighbours,”

are all R-absolute.

Finally, we need the notion of A-operation. We refer to the Appendix
for the definition and properties of this operation on logics. In principle the
A-extension of a logic L, denoted A(L), uncovers the hidden power of a
logic. It preserves properties like compactness, axiomatizability, Hanf and
Lowenheim numbers; it “fills the gaps” left by explicit definability in the
sense that if a model class is “implicitly” definable in the logic then it is
explicitly definable in the A-extension. For example, L(Qg) cannot say that
an equivalence relation has infinitely many equivalence classesE although
“morally” it should be able to do so, whereas A(L(Qp)) can say it easily.
Essentially, when we consider A(L) rather than the logic L itself, we focus
on what the logic becomes when some accidental weaknesses are removed.
Maybe L(Qo) was defined as it was because the generalized quantifier Q) is
appealing in its simplicity. But it turns out that A(L(Qo)) is an infinitary
logic, viz. the logiclE Lyyp, the smallest admissible fragment of Ly, [5]. For
a proper treatment of L(Q)y) we have to consider the entire A(L(Qy)), oth-
erwise our investigation may be centred around some accidental properties
of L(Qo) with no general interest.

We now define the notion of symbiosis:

Definition 3. An n-ary predicate R and a logic L* are symbiotic if the
following conditions are satisfied:

1. Every L*-definable model class is absolute w.r.t. R.

2. Ewvery model class which is absolute w.r.t. R is A(L*)-definable.

Theorem 4. If L* and P are symbiotic, then an arbitrary model class is
A1(P) in set theory if and only if it is A(L*)-definable in model theory.

14The proof of this is an easy application of the method of Ehrenfeucht-Fraissé games.

15See Subsection
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In terms of the inside/outside metaphor, here the model theoretic defi-
nition of the class corresponds to the inside view, whereas the set theoretic
definition of the class corresponds to viewing the class from the outside[']

We suggested above that because set theory (expressed in a first order
language) provides a first order way to quantify in any given structure over
not only elements of the structure but also over subsets (second order logic!),
sets of subsets (third order logic!), etc., in this sense (first order) set theory
is a very strong, indeed the strongest logic. Symbiosis is an exact analysis
of this relationship between strong logics and predicates of set theory—an
analysis revealing, again, the set-theoretical content of the logic in question.
Such an analysis could arguably be done on the level of axioms. For most
abstract logics some natural axioms are known even if the axioms are not
complete, and even cannot be complete because the set of valid sentences of
the logic is not recursively enumerable (as in the case of second order logic).
But a more general approach is to work semantically and thereby avoid all
questions of axiomatizabilty.

The most blatant example of symbiosis is that already mentioned, be-
tween second order logic and the power set predicate “x is the power-set of
y”. Another is the symbiosis between the Hértig (or equicardinality) quanti-
fier and the predicate Cd(z) i.e. “z is a cardinal number”. Table [1| displays
various logics together with the predicates of set theory with which the logic
is symbiotic

2.2 Sort logic

Before commenting on the very important case of the symbiosis of sort logic
with full set theory, we need to define sort logic. Recall that a relational
structure, i.e. a model, has a domain and relations, functions and constants
on that domain. A modification is a many-sorted structure [13] in which
there are several domains and relations, functions and constants on those
domains or between the domains. A good example is a vector space, where
there is a domain for scalars and a domain for vectors. A vector multiplied by
a scalar is again a vector. To be able to talk about many-sorted structures
in logic one adopts variables of different sorts, one sort for each domain.
Thus in a language for vector spaces there is a sort for scalars and a sort for
vectors. In other words, every individual variable has a sort attached to it

161n the appendix we explain the meaning of symbiosis in the special case of second
order logic and the operation with which it is symbiotic, namely the power set operation.

"Tn the table the theory K PU™ is the theory KP with urelements and without the
Axiom of Infinity.

11



Inside: M = ¢ ‘ Outside: (M) ‘ Reference ‘
Sort logic First order logic [38]
A(Second order logic) A1 (Pw) in the Levy-hierarchy | [35]
A(First order logic with | A;(Cd) in the Levy-hierarchy | [35]
the Hartig-quantifier)

A(First order logic with | A; in the Levy-hierarchy [8]
the game quantifier)

Infinitary logic Lyyp AKP in the Levy-hierarchy [6]
First order logic AKPU™ in the Levy-hierarchy | [I]

Figure 1: Manifestations of symbiosis

and it is supposed to range over elements of the domain of that sort. Thus
in a language for vector spaces there are variables for scalars and variables
for vectors.

In second order many-sorted logic we have to declare for each second
order variable what are the sorts involved. Is it a relation symbol between
elements of sort s and sort s'? Is it a function from arguments of sort s to a
value of a sort s', etc. An example of a second order sentence in many sorted
logic could be a sentence saying that there is a bijection between elements
of sort s and elements of sort s'.

Sort logic [38] arises when we are allowed to quantify over a variable
of a mew sort i.e. a sort not present in our vocabulary. Semantically this
means that we claim there is a new domain that can be added as a new sort
into our model and the expanded model satisfies what we want to say. For
example, we may want to say of a group that it is the multiplicative group
of a field. We have to say that there is a zero-element outside the group
so that the group together with the new element and a new addition form
a field. This is particularly significant in many-sorted second order logic.
We may ask whether there is a new domain with relations making the new
domain essentially the power-set of the power-set of the union of the old
domains. This allows us to reduce third order logic to sort logic. In fact
sort logic contains higher order logics of all orders definable in second order
logic.

A particularly striking instance of symbiosis is that between sort logic
([38]) and first order set theory. In this case the symbiosis means that every

12



model class definable by a sentence of sort logic is (a fortiori) definable in
first order set theory, and, conversely, any model class definable in set theory
by a first order formula is definable in sort logic. This is means that sort logic
is the strongest logic; and thus, by symbiotic correspondence, set theory is
too.

2.3 LHYP

Another logic appearing in the table is the logic Lyyp. Barwise introduced
in [3] the concept of an “admissible” fragment of L, ,: If A is a countable
transitive set, the fragment L 4 is simply L,,»NA, that is, we take from L,
the sentences that are, as set-theoretical objectéﬂ7 elements of A, together
with their truth-definition as formulas of L. If A (or rather (A4,¢€)) is
not only transitive but also satisfies the so-called Kripke-Platek axiomﬁ of
set theory, making it an admissible set, then L4 is an interesting infinitary
logic with a completeness theorem, interpolation theorem, etc. It is called
an admissible fragment. The smallest non-trivial admissible fragment Lyyp
is obtained from the smallest non-trivial admissible set HYP. This set is
actually the fragment L _cx of Godel’s constructible hierarchy, where w{™
is the smallest non-recursive countable ordinal. Informally Lygyp can be
described as the closure of first order logic under recursive, rather than
countable, conjunctions and disjunctions. The extension L(Qq) of first order
logic by the generalized quantifier Qg (“there are infinitely many”) is, of
course, a sublogic of Liyp because

Qozp(z) = /\ dxo ... 3dTH_1 /\ (i # x5 N op(x4)).

n<w 1 <gj<n

Interestingly (]6])
A(L(Qo)) = Luvp.
Thus the recursive conjunctions and disjunctions of Lygyp “fill” all the

“definability-gaps” that are generated into L(Qo) when Q) is added to first
order logic.

18Ordinarily we think of sentences as finite strings of symbols. However, in infinitary
logic it is more natural to think of sentences as sets. For example, \/iE ; @i is the set
{V,{¢i : i € I}}, see e.g. [IT, Page 6.]

19Recall that the Kripke-Platek axioms K P consist of some elementary axioms plus the
Yo-separation and ¥-collection schemas.
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2.4 Applications of symbiosis

Symbiosis has applications also outside of philosophy, i.e. beyond is its
ability to calibrate the set-theoretic content of a logic. Symbiosis can be
used for:

1. The non-absoluteness of a logic can be delineated in terms of predicates
of set theory. This may be useful for a better understanding of, for
example, the behavior of the logic in forcing extensions. There are
many examples of this, e.g. [36], [25].

2. One can relate Lowenheim-Skolem type model theoretic properties of
logics with reflection or large cardinal properties of cardinals in set
theory [2]. An early example of this is the fact that the smallest s
for which second order logic satisfies the Lowenheim-Skolem-Tarski
Theorem at k (i.e. for every second order sentence ¢ every model
has an elementary submodel of cardinality < x in which ¢ is true) is
exactly the same as the smallest supercompact cardina][Z_U] [23].

3. On can relate the complexity of the decision problem of a logicE-] with
set-theoretic definability criteria. An example of this is the result that
the decision problem of second order logic is the complete IIs-definable
set of integers [34]. Another example is that the decision problem of
the extension of first order logic with the Hartig-quantifier can be Ils-
complete but also can be Al [36].

In conclusion, philosophically speaking, symbiosis lays down a bridge
between the interior and the exterior view of a logic. In both per-
spectives first order logic is in a central role. From the interior point of view
it is the weakest logic; from the exterior point of view it is the strongest.

3 Other ways in which the first order/second or-
der distinction (nearly) collapses

We discuss three ways, other than the above, how first order logic and second
order logic may resemble each other, sometimes in unexpected ways.

20A cardinal x is supercompact if for every X there is an elementary embedding i : V —
M, M transitive, with critical point & such that M> C M.

21The decision problem of a logic is the set of Gédel numbers of the valid sentences of
the logic. Obviously this only makes sense, and is used, for logics with finite formulas.
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3.1 Strong logics coming close to being first order

We mentioned the spectrum of logics which extend first order logic in the
sense of but are sublogics of first order logic in the sense of . This re-
veals another ambiguity in the notion of “first order,” in that from the point
of view of Lindstrom’s theorem, characterizing first order logic in terms of
certain canonical model theoretic properties@ some of these strong logics
come very close to being first order by virtue of these properties; the logic
satisfies a Compactness Theorem and a Downward Lowenheim-Skolem the-
orem in the same spirit as first order logic.

Example 5 (Cofinality logic). [31] Consider the generalized quantifier

M | Q/zyd(z,y,d@) <~
{(b,c) € M?: M |= ¢(b,c,a)} is a linear order of cofinality w.

The extension L(Q') of first order logic by the quantifier QY is fully com-
pact ([31)]), meaning that it satisfies the Compactness Theorem in vocabu-
laries of any cardinality. In this respect it is “close” to first order logic. It
satisfies also the following strong form of the Downward Lowenheim-Skolem
Theorem: Given any model M and a subset X of M of cardinality Ny, there
1s a submodel N of M containing X such that the cardinality of N is Nq
and N is an elementary submodel of M in the sense of the logic L(Q:).
First order logic satisfies the same Downward Lowenheim-Skolem Theorem
but with Ny replaced by Ro. On the surface, L(Q) looks very much like first
order logic, but of course it is a proper extension.

Example 6 (Stationary logic). [7/[31] Consider the second order generalized
quantifier

M = aas¢(s,d) <
{PCM:|M|<w,(M,P)E ¢(P,a)} contains a club.

Here a club means a closed unbounded set of countable subsets of M. The
extension L(aa) of first order logic by the quantifier aa is countably compact,
meaning that it satisfies the Compactness Theorem in countable vocabularies.
In this respect it is “close” to first order logic although perhaps not as “close”
as its sublogic L(QY). It satisfies also the following Downward Léwenheim-

Skolem Theorem: Given any model M, a subset X of M of cardinality Ny,

22Lindstrém’s theorem states that first order logic is, up to equivalence of logics, the only
logic closed under some elementary operations and satisfying the Compactness Theorem
as well as the Downward Léwenheim-Skolem theorem (every sentence which has a model
has a countable model).
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and a sentence ¢ from L(aa), there is a submodel N of M containing X such
that the cardinality of N is Ry and N is a model of ¢. This is a slightly weaker
property than what L(QT) has. Still, on the surface, L(aa) looks very much
like first order logic, albeit in a slightly different sense than L(QZ') (both
the Compactness and Downward Lowenheim-Skolem Theorems are slightly
weaker), but of course it is again a proper extension. It has L(QZ') as a

sublogic and deeper analysis shows that it is much stronger than L(QZ).

The two logics defined above are properly between first and second or-
der logics, however manifesting properties typical of first order logic rather
than second order logic. An interesting question is whether the isolation of
these logics helps us understand cofinality or stationarity better than simply
working in first order set theory, set theory being the usual home territory of
these concepts. Recent work in inner model theory suggests that these logics
really contribute something over and beyond their set-theoretical analogues
[20]. Interestingly, some other logics that otherwise seem non-first order,
behave like first order logic in this inner model context [20]. There is also
the question whether the existence of strong logics that resemble first order
logic in their model-theoretic properties, as in the above examples, may help
to shed light of the nature of first order logic.

3.2 Second order logic and internal categoricity

The prime example of a non-first order logic is second order logic L?. Can L?
be seen as a first order logic? It is, via symbiosis, a fragment of set theory and
in that sense it can be represented in first order logic if we are granted €. On
the other hand, we can treat L? as a two-sorted logic with an individual-sort
for elements and a set-sort for sets, relations and functions. This only makes
sense if the Comprehension Schema is assumed in order that L? has some
second order content@ For example, without the Comprehension Schema
we do not know whether Va3XVy(yEX < x = y) is valid, although it clearly
should be valid. In this two-sorted version second order logic is really just
two-sorted first order logic. However, it is not a completely general two-
sorted first order logic because the Comprehension Schema creates highly
non-trivial structure into the set-sort. Since the relation zFE X between a
set-sort variable X and an individual-sort variable x has affinity with the
e-relation of set theory, second order logic as a two-sorted first order logic

23The Comprehension Schema states that every definable (with parameters) set of sub-
sets (or relations or functions) is in the range of the second order variables. There is a
natural restriction to prevent circular definitions.
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still retains some of the strength of the original L?. We cannot characterise
finiteness, because first order logic satisfies the Compactness Theorem, also
in its many-sorted version. But there is enough of a remnant of full second
order logic in the two-valued first order version of L? that the Comprehension
Schema as a first order theory can be considered an unclassifiable first order
theory in the sense of stability theory [30]. If, to avoid unclassifiability, the
Comprehension Schema is abandoned, there is nothing left of second order
logi@ and we are solidly back in full-blooded first order logic.

Just as first order set theory is investigated by the method of transi-
tive models of first order ZFC, second order logic, in its original syntax or
alternatively as a two-sorted first order language, can be investigated by
the method of Henkin models i.e. sufficiently large collections of sets of
urelements, relations between urelements and functions between urelements
in order that the Comprehension Schema holds. In fact, it is difficult to
imagine how second order logic could be developed otherwise. There is no
miraculous oracle that can reveal to us properties of sets, relations and func-
tions. We have to study the axioms and their models and thereby come to
isolate new axioms. In set theory this has led to the introduction of Large
Cardinal Axioms, Forcing Axioms and the Inner Model Program.

But what happens to the cherished categoricity results of second order
logic, if second order logic is interpreted as first order many-sorted logic?
Recent (and in some cases not so recent) results show that categoricity
results hold also in the many-sorted version of second order logic, and can
be proved from the Comprehension Schemas [40]. They even hold for first
order Peano arithmetic and first order ZFC [39]. So the categoricity results
of second order logic, despite their smooth formulation in second order logic,
turn out to be results about first order logic. The “second-orderness” of
second order logic is hereby somewhat undermined.

3.3 The metatheory problem

The received wisdom is that second order logic is a powerful logic capable of
expressing finiteness, countability, well-foundedness, etc. In comparison, the
received wisdom regarding first order logic is that it is very weak in express-
ing exactly mathematical concepts such as the ones mentioned: finiteness,
countability, and well-foundedness. According to this wisdom there is a huge
difference between first and second order logic: first order logic very weak,
second order logic very strong.

#TFor example, IXV2 X () and IXVz—X (x) would not be valid.
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We argue that this difference is visible in its full strength only if we look
at it from the perspective of a background formal language F, in which we
can formalize both first and second order logic and compare these “object
languages” to each other. Then we can see the perceived huge difference
between the expressive powers of the two. But we should not forget to ask,
what is the metalanguage of F? An “infinite regress” problem arises. If
the metalanguage is first order set theory we are essentially using first order
logic to define the meaning of second order logic. Then which is stronger?
Is it not first order logic? This seems like a conundrum.

For example, if we say that second order logic can express wellfound-
edness, we are saying that there is a sentence ¢(F) € L? such that for all
models (M, E), EC M x M,

(M, E) is well-founded <= (M, FE) = ¢(E). (4)

Here the left-hand side is thought as being understood from the “outside”,
in the metatheory, whatever that means.

Let us analyse the situation. The equivalence informs us, or even
defines, the meaning of ¢(E). But what is the meaning of the equivalence
itself? In particular, what is the meaning of the left hand side of ?
What criterion are we using to judge whether (M, E) is wellfounded or not
on the left side of ‘.7 If ¢ is the usual second order sentence saying that
the binary relation E is wellfounded, we can use the same sentence in the
left side of , except that then becomes a tautology i.e. it says nothing.

Probably most people would say that we should use the set-theoretical
definition of wellfoundedness in the left side of . That is, we should
use first order set theory as the ultimate arbiter that decides the meaning of
second order sentences. But how is the meaning of set theory on the left hand
side of (), i.e. of “(M,E) is well-founded” defined? This is a set-theoretical
statement and, barring reference to metatheory, the best description of its
meaning is derived from the axioms of set theory.

Why not take “(M,E) is well-founded in V” as the criterion of truth of
“(MLE) is well-founded”? This is what we do intuitively, but to make the
intuition exact we resort to axioms. As to truth in V' we say that at least
what we can derive from the axioms we accept as true in V. What we cannot
yet derive from the axioms, remains unsettled so far, and will perhaps be
resolved in future research that yields new generally accepted axioms.

Curiously, it is the same with the right hand side of . We can derive
the meaning of “(M,E) = ¢(E)” from the axioms of second order logic.
Again, the axioms are incomplete but maybe the future will bring new ax-
ioms. It would be rather surprising if such new axioms arose from somewhere
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other than set theory but in principle it is possible. But if we use the ax-
ioms of second order logic to define the meaning of second order logic, we
are really talking about second order logic as a two-sorted first order logic
or, in other words, second order logic with Henkin semantics, rather than
second order logic with full semantics.

One often takes first order set theory as a foundation for mathematics.
To say that there is something more primitive begs the question of a foun-
dation. Since e.g. first order set theory, viewed as a foundation, does not
have its own metalanguage, we cannot have a truth definition in the usual
sense for this language, as truth definitions are given in the metalanguage.
Instead, we formalize the language, define in the language the concept of
a model, and then give an inductive truth definition for an arbitrary for-
malized sentence in a given model. This works perfectly and is very useful
even though these models for which we know what truth means are not the
“reality” that our logic (e.g. first order set theory) talks about. Fortunately
these models are able to capture large chunks of “reality”, as in the V,’s or
the H(k)’s. Of course, “truth in V” is not the same as truth in some V.
To reach truth in V' one would have to capture truth in V, for a club of
ordinals o but “for a club of @” is not an expression of first order set theory,
so it goes beyond our metatheory and calls for a metametatheory which we
have had reasons to abandon.

4 Conclusion

First order logic alone is expressively weak, but when it is combined with
€, yielding first order set theory, it is suddenly the strongest logic. Some-
thing magical happens when € appears! We argued in this paper that this
resembles the case of second order logic, which arises when “z € Z” for first
order variables x and second order set-variables Z are incorporated into first
order logic. One might ask, if second order logic is thought of as a “logic”
shouldn’t we think of first order set theory as a logic, too? If we do, then it
is a very high order logic—in fact it is the strongest logic. There is a way
to view second order logic as merely a two-sorted first order logic with the
so-called Henkin semantics. While this does not quite make second order
logic the same as first order logic, it comes close. We can similarly consider
the first order language of set theory to be a many sorted logic (“sort logic”
[38]) with a variant of Henkin semantics. The Henkin models of set theory
are simply the transitive models that are commonly studied in axiomatic set
theory. Thus the adoption of Henkin semantics, which is the modus operandi
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of set theory anyway, brings the a priori incredibly strong first order logic
with € into the same family as the received famously weak first order logic.
In our end is our beginning.

5 Appendix

In this appendix we will prove that second order logic is symbiotic with the
power set operation. The proof is adapted from [35], where the concept of
symbiosis is presented in full generality, for absolute as well as non-absolute
logics.

First we need the concept of relativised reduct. To this end, let M be a
model with vocabulary L and Ly U{P} C L, where P is unary. Then the
relativised reduct M¥ | L, of M to the vocabulary L; and to the predicate
P is the model M; with PM as the domain and the following structure:

e RMi = RM O (PM)"if R € Ly is of arity n.
o M= fMp(PMYNif f € L is of arity n.
o M =Mifce L.

The scalar field of a vector space F is an example of a relativised reduct,
as is the additive group of the vectors of E.

We now extend the above definition of relativised reduct of an individual
model to the relativised reduct of a class of models as follows: If K is a model
class with vocabulary L, and L; U {P} C L, then K* | L is the class of
relativised reducts M* | L; of models M € K.

Thus we can obtain from, e.g., a class of vector spaces, their relativised
reduct: a class of (scalar) fields, a class of (additive) groups, and a class of
multiplicative groups.

We can now define our principal auxiliary technical notion, that of a
A-extension:

Definition 7 ([5]). The A-extension A(L*) of a logic L* is the logic the
definable model classes of which are such K that both K and the complement
of K are relativised reducts of L*-definable model classes.

A(L*) is equivalent to £* for some logics, e.g. for first order logic, for
Lyvyp, and for L. However often there are properties of models that the
logic £* cannot express, but for trivial reasons, while they are expressible in
A(L*). This anomaly is repaired by taking the A-extension. As an example,
recall that the logic L(Qg) denotes first order logic with the generalized
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quantifier “there are infinitely many,” and L2, denotes weak second order
logic with second order quantifiers for second order variables that range
over finite subsets and relations. Then A(L(Qq)) = A(L2), i.e. the logics
A(L(Qo)) and A(L?) have the same definable model classes [5]. However
the two logics are not equivalent, as L(Qy) is strictly stronger than L?. See
[26] for properties of this A-operation.

The A-operation is a closure operation in the sense that for all logics £*
[26]:

1. £ < A(L*). (Increasing)
2. L* < L% implies A(L*) < A(L*"). (Monotone)
3. A(A(LY)) = A(L¥). (Idempotent)
Moreover, the A-operation preserves the essential properties of a logic [26]:

1. If every sentence of £* which has a model has also a countable model,
then the same is true of sentence of A(L*). (Léwenheim-Skolem Prop-
erty)

2. If every set of sentences of L*, every finite subset of which has a model,
itself has a model, then the same is true of A(L*). (Compactness
Property)

3. If there is a recursive complete axiomatization for (validity in the logic)
L*, then the same is true of A(L*). (Completeness Property)

This is the reason why A(L*) is considered a “minor” modification of
L*.
We shall now establish symbiosis in the important special case of second

order logic. Let Pw be the relation Pw(z,y) + y = P(z). Let £? be
second-order logic.

Theorem 8. The relation Pw and the logic £? are symbiotic.
Proof. We need to prove the following
1. Every £2-definable model class is Aj(Pw)-definable.

2. Every A;(Pw)-definable model class is A(£?)-definable.
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To statement 1, suppose K = Mod(yp), for some L2-sentence ¢. Then
A € K if and only if (V,,, €, A) = “A |= ¢, for some (any) « strictly greater
than the smallest 3 such that A € V3. Since the predicate x = V,, is A1 (Pw),
K is Aj(Pw)-definable.

To statement 2, suppose K is a A;(Pw)-definable model class that is
closed under isomorphisms. Suppose the vocabulary of K is Ly which we
assume for simplicity to have just one sort s; and one binary predicate P.
Let ®(x) be a ¥ (Pw)-formula of set theory such that A € K if and only if
®(A). Let sg be a new sort, E a new binary predicate symbol of sort sg, F’
a new function symbol from sort s; to sort sg, and ¢ a new constant symbol
of sort sg. Consider the class K1 of models

N = (N,B,EN, N, FN, pV),

where N is the universe of sort sy and B the universe of sort s1, that satisfy
the sentence ¢ given by the conjunction of the following sentences of second
order logic:

(i) The conjunction # of a finite part of the first-order axiom system
ZFC™ (ZFC axioms except the power-set axiom) written in the vo-
cabulary {E} (instead of €) in sort sg. This finite part of ZFC™ is
chosen so that everything that is needed is included.

(ii) The first-order sentence ®(c) written in the vocabulary {E'} in sort sg.
(iii) The second-order sentence which says that E is well-founded.

(iv) The following second-order sentence: VaVW (Vy(W(y) — yEz) —
F2Vy(W(y) < yE2)).

(v) A first-order sentence saying that c is a pair (a,b), where b C a X a,
all written in the vocabulary E in sort sg.

(vi) A first-order sentence saying that F' is an isomorphism between the s1-
part (B, PN) of the model and the structure ({z € N : zENa}, {(z,y) €
N2 (z,y)ENDY}).
Claim: A € K if and only if A =N | {s1, P}, for some N € K;.

Suppose first A € K. Note that Pw is Ys-definable. Let n be such
that 6 is a ¥,,-sentence. By the Reflection Principle ([15, Theorem 7.4]), let
Vo Znt2 V, with A € V,,. Then, A =N | {s1, P}, where

N = (Vy, A, €, A id, PA) € K.
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Conversely, suppose N := (N, B, EN N FN. PN) €Ky with A=N|
{s1, P}. Clearly, the structure (N, EV) is extensional and well-founded (by
condition (iii)). Moreover, (N, EV) = ®(cV). Since K is closed under
isomorphisms, we may assume, w.l.o.g., that IV is a transitive set and EN =
€| N (We are appealing here to the so-called Mostowski’s Collapsing Lemma
[15] page 65]). Now, Pw is absolute for N: for every a,b in N, we know that
Pw(a,b) iff N = Pw(a,b). Since (N, €) = ®(¢V) and N is transitive, and
since ® is X1 (Pw), we have that ®(¢V) is true, i.e., it holds in V. Thanks to
condition (vi), ¢V is a binary structure isomorphic to A. Since K is closed
under isomorphism, A € K. Thus K is a projection of the £2-definable
model class Ki. The Claim is proved.

We can do the same for the complement of K. Hence K is A(L?)-
definable. Statement 2 is proved. O
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