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What is provability logic?

Idea: Given a formal theory T over a language L, we interpret
�φ as

“φ is provable in T ”.

In symbols we write T ` φ.

This interpretation of modal logic was first suggested by Kurt
Gödel.

It can be used to reason about Gödel’s famous incompleteness
theorems.



Some history: 1930s

Gödel suggests that provability may be seen as an
interpretation of modal logic: �φ ≡ “φ is provable”

I ` φ↔ ¬�φ: Liar paradox

I ♦> → ♦�⊥: Second incompleteness theorem
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Some history: 1950s

Henkin asks, “What can we say about formulas that assert their
own provability”?

Truth-teller paradox: ` φ↔ �φ

Löb answers Henkin’s question (they are themselves derivable)
and gives basic modal-like axioms for a provability predicate

Löb’s rule:
�φ→ φ

φ
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Some history: 1960s-1970s

1963 Smiley formulates the modal version of Löb’s
axiom �(�φ→ φ)→ �φ in a paper about ethics!

1971 Segerberg proves Kripke completeness.

1975 De Jongh and Sambin proved the fixpoint theorem:

∀ψ∃φGL ` φ↔ ψ(φ)
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Some history: The arithmetical completeness theorem

Kripke completeness is useful, but is provability logic complete
for its intended interpretation?

�φ 7→ “PA ` φ”

In 1976, Solovay proves completeness for the arithmetical
interpretation of provability logic.

GL ` φ⇔ ∀f
(
N |= f (φ)

)
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Some history: 1980s

1981 Esakia proposes the topological derived-set
semantics.

1985 Abashide shows that GL is complete for its
topological interpretation on any ordinal ≥ ωω

1986 Japaridze proposes a polymodal version of
provability logic.

No Kripke models!
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Some history: 1990s

1990 Blass shows that it is consistent with standard set
theory that GL2 has no non-trivial canonical
ordinal models.

More recently,
I Beklemishev showed that it is also consistent

that GL2 is complete for its canonical ordinal
models

I Bagaria has related existence of non-trivial
ordinal models of GLPn to a family of large
cardinal axioms.

1993 Ignatiev gives Kripke models for the closed
fragment.
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Some history: Ordinal analysis

Gödel’s provability logic does not distinguish well between
reasonably strong formal theories, but Japaridze’s extension
does.

In 2004, Lev Beklemishev showed how Japaridze’s system
GLPω can be used to give an ordinal analysis of Peano
Arithmetic.
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2012 Beklemishev and Dashkov propose the less
expressive but more efficient Reflection Calculus

2012-2017 DFD and Joosten extend the above results to
systems with transfinite modalities
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Basic ingredients

We will need:

1. A formal language L to speak about arithmetic.

2. A formal theory T that reasons about arithmetic

3. A provability predicate PrvT which talks about provability
within L

4. A modal logic where � ≈ PrvT



Arithmetical languages

An arithmetical interpretation of a first- or higher-order
language L is an L-model N = 〈N, I〉 such that:
I there is an L-term 0 such that I(0) = 0
I there is a unary function symbol S such that for all n ∈ N,

I(ṅ) = n, where
ṅ = SS . . .S︸ ︷︷ ︸

n

0

I there are binary function symbols plus, times, exp such
that, given n,m ∈ N,

I I
(
sum(ṅ, ṁ)

)
= n + m

I I
(
times(ṅ, ṁ)

)
= n ×m

I I
(
exp(ṅ, ṁ)

)
= nm

We will usually write N |= φ instead of N |= φ.



The arithmetical hierarchy

A bounded quantifier is one that appears in a context
∀x(x < t → φ) or ∃x(x < t ∧ φ).

A formula φ is elementary or ∆0 if all quantifiers appearing in φ
are bounded.

Then, define by induction:
I Π0 = Σ0 = ∆0

I if φ ∈ Σn then ∀x0∀x1 . . . ∀xmφ ∈ Πn+1

I if φ ∈ Πn then ∃x0∃x1 . . . ∃xmφ ∈ Σn+1

Fact: Every first-order formula is provably equivalent in FOL to
either a Πn-formula or a Σn-formula.



Gödel numbers

A Gödel numbering is an assignment φ 7→ pφq mapping an
L-formula to a natural number.

This allows us to reason about formal languages within
arithmetic.

There are many ways to do this:
I ASCII code
I products of prime powers
I using the Chinese remainder theorem



Substitution
Many standard syntactic operations are elementary and hence
can be represented by a ∆0 formula.

Proposition
In any arithmetical language L there is a ∆0 formula
subs(w,x,y,z) such that for all tuples of natural numbers
a,b,n,m,

N |= subs(ȧ, ḃ, ṅ, ṁ)

if and only if there is is a formula α, a term t and a variable v
with

a = pαq n = ptq m = pvq

and
b = pα[x/t ]q.

Formalized substitution is crucial to Gödel’s proof and Löb’s
fixpoint theorem which we will see later.



Formal theories

A formal theory T is usually presented as a family of rules and
axioms.

Definition
A derivation of φ is a sequence 〈φ0, . . . φN〉 such that φN = φ
and each φn is either an axiom or follows by the rules from
φ0, . . . , φn−1.

If φ is derivable in T we write T ` φ.

All theories will be assumed closed under generalization and
modus ponens:

φ

∀xφ
φ φ→ ψ

ψ



Arithmetical theories

L is an arithmetically interpreted language, T is a theory over L.

Definition
The theory T is arithmetically sound if whenever T ` φ, N |= φ
The theory T is arithmetically complete if, whenever N |= φ,
T ` φ.

There are also relative versions of these notions. For example,
if Γ is a set of formulas, T is Γ-sound if every theorem of T that
also belongs to Γ is true.

We will be mainly interested in arithmetically sound theories.



Robinson arithmetic Q

Axiomatized by FOL and:
I ∀x(x = x)

I ∀x∀y∀z(x = y ∧ y = z→ x = z)

I ∀x∀y(x = y↔ Sx = Sy)

I ¬∃x(0 = Sx)

I ∀xsum(x,0) = x

I ∀x∀y(sum(x,Sy) = S(sum(x + y)))

I ∀xtimes(x,0) = 0

I ∀x∀ytimes(x,Sy) = sum(times(x,y),x)

I ∀xexp(x,0) = S0

I ∀x∀yexp(x,Sy) = times(exp(x,y),x)



Theories with induction

Induction (Ind): φ(0) ∧ ∀x(φ→ φ(Sx))→ ∀xφ(x).

Peano arithmetic (PA): Q + Ind

IΓ: Q + Ind � Γ

Peano arithmetic (EA): Q + Ind(∆0)
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The fixpoint lemma

Proposition
Given an arithmetical formula ψ(n, x̃) an arithmetical formula,
there exists a formula G such that

EA ` ∀xG↔ ψ(pGq, x̃)



Elementarily presented theories

Reasonable requirement: The axioms and rules are recursively
enumerable.

Syntactically, they can be described by a Σ1-formula.

If all axioms and rules of T are ∆0 we say that T is elementarily
presented.

Craig’s trick: If the axioms and rules of T are Σ1-definable, then
there is an elementarily presented family of axioms and rules
which give the same theorems as T .



Provability predicates
Derivations can be assigned Gödel numbers just like formulas,
which allows us to study logic within any arithmetically
interpreted language.

Proposition (Gödel)
If T is elementarily presented there is a ∆0-formula prv(x,y)
such that for all n,m ∈ N, N |= prvT (ṅ, ṁ) if and only if there is
a derivation d of a formula φ with n = pφq and m = pdq.

With this we can define
I φ is provable in T :

Prv(x) := ∃yprv(x,y).

I T is consistent:

Cons(T ) := ¬Prv(p⊥q)



Gödel’s theorems

Theorem (First incompleteness theorem)
No elementarily presentable theory is arithmetically sound and
complete.

Theorem (Second incompleteness theorem)
If an elementarily presentable theory T extending EA is
arithmetically sound, then

T 6` Cons(T ).
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Tarskian truth predicates
Theorem
There is no formula True(x) in the language of PA such that for
all φ,

N |= φ↔ True(pφq)

Proof.
Apply the fixed point theorem to obtain

L↔ ¬True(L)

Theorem
For every n there is a formula TrueΠn (x) such that for all
φ(z) ∈ Πn,

EA ` ∀zφ(z)↔ TrueΠn (pφ(ż)q)

Note: We can define TrueΣn (x) = ¬TrueΠn (¬x)
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Arithmetical realizations

Definition
An arithmetical interpretation is a function f : LGL → LPA such
that:

I pf is any sentence;
I f commutes with Booleans;
I (�ϕ)f = �PAϕ

f .

Theorem
If GL ` ϕ then, for every arithmetical realization f , PA ` ϕf .

Note: PA can be replaced by a stronger theory such as ZFC, or
a weaker theory, such as Elementary arithmetic (EA).
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Relational semantics

Definition
A (strictly) partially ordered set is a pair 〈A,�〉 where � is a
transitive, irreflexive relation on A.
The relation � is well-founded if there is no infinite sequence
such that

a0 � a1 � a2 � . . .

GL-frame: 〈W ,�〉 where � is a well-founded partial order on
W .



Relational semantics

Definition
A (strictly) partially ordered set is a pair 〈A,�〉 where � is a
transitive, irreflexive relation on A.
The relation � is well-founded if there is no infinite sequence
such that

a0 � a1 � a2 � . . .

GL-frame: 〈W ,�〉 where � is a well-founded partial order on
W .



Relational models

GL-model: GL-frame 〈W ,�, J·K〉 equipped with a valuation
J·K : LGL → 2W such that

I JpK ⊆W arbitrary
I J¬ϕK = W \ JϕK
I Jϕ ∨ ψK = JϕK ∪ JψK
I w ∈ J�ϕK⇔ ∀v≺w (v ∈ JϕK)

Theorem (Segerberg)
The following are equivalent:

I GL ` ϕ
I for every (finite) GL-model 〈W ,≺, J·K〉, JϕK = W.
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Arithmetical completeness

GL is complete for its arithmetical interpretation.

Theorem (Solovay, 1976)
If φ is a GL formula such that PA ` f (φ) for every arithmetical
realization f , then GL ` φ.

Proof sketch.

1. Assume φ is a consistent GL formula.
2. Pick a GL-model M satisfying φ.
3. For each world w of M build a formula θ(w) ‘emulating’ M.

4. Define f (p) =
∨

w∈V (p)

θ(w).
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Chasing the jewell thief

A thief has stolen valuable jewels from London! Can we catch
her?

In order to not get caught

I she will never return to where she’s already been

I her next stop will be the most unexpected

I in fact, she will only move to a new country if we can prove
she will not go there!
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The train routes



The thief in a Kripke frame

We have a GL-model M = 〈W ,�,V 〉 such that

I W = {1,2, . . . ,m}

I � is a partial order

I 1 is the root (maximum element)

We add an “imaginary root” 0.



Chasing the thief

On day 0, we begin at the world 0, and will follow a path

w0,w1, . . .wn.

The formula θ(v) asserts “wn = v ”

The world v is the most unexpected possible world on day i + 1
if

1. wi � v

2. i codes a proof of ¬θ(v).

The thief will stop her journey at wn, from which there are no
unexpected worlds.



The Solovay function

ψ(k ,n,w) =∨
v�w

TrueΣ1(k(n,w)) ∧ demPA(n, ˙p¬∀x∃y > x .k(y ,w)q)

Fixpoint theorem: there is a formula H(n,w) such that for all
n,w

H(n,w)↔ ψ(pHq,n,w)

We define h(n) as the unique w such that N |= H(n,w)



Solovay fomulas

Define Lim(w) : limn→∞ h(n) = w .

Formally:
Lim(w) = ∃x∀y > x(H(y ,w))

Properties:
I PA proves that for all n,w , H(n,w)→ �PAH(ṅ, ẇ)

I if w 6= 0, PA + Lim(w) proves �PA
∨

v≺w Lim(v)

I if v ≺ w , PA + Lim(w) proves ♦PALim(v)

I N |= h(n) ≡ 0
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I if w 6= 0, PA + Lim(w) proves �PA
∨

v≺w Lim(v)

I if v ≺ w , PA + Lim(w) proves ♦PALim(v)

I N |= h(n) ≡ 0



Solovay fomulas

Define Lim(w) : limn→∞ h(n) = w .

Formally:
Lim(w) = ∃x∀y > x(H(y ,w))

Properties:
I PA proves that for all n,w , H(n,w)→ �PAH(ṅ, ẇ)
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Correctness

Proposition

I If w 6= 0, M,w |= ψ ⇔ PA + Lim(w) ` f (ψ)

I M,0 |= ♦ψ ⇒ PA + Lim(0) ` f (♦ψ)

Since N |= PA + Lim(0), we conclude that f (ϕ) is consistent.
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Polymodal Gödel-Löb (GLP)

Japaridze, 1988: Extend GL to have one modality [n] for each
n < ω.

Axioms: all tautologies, plus

[n](ϕ→ ψ)→ ([n]ϕ→ [n]ψ) (n < ω)

[n]([n]ϕ→ ϕ)→ [n]ϕ (n < ω)

[n]ϕ→ [m]ϕ (n < m < ω)

〈n〉ϕ→ [m]〈n〉ϕ (n < m < ω)

Rules: Modus ponens and necessitation for all modalities
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Arithmetical interpretations

Recall: Πn formulas are arithmetical formulas of the form

∀x1∃x2∀x3 . . .Qnxnϕ

If f : LGL → LPA, we extend f to all LGLP:

I f commutes with Booleans

I f ([0]ϕ) = �Tϕ := ProvT (pϕq)

I for n > 0, f ([n]ϕ) means
“Provable in T together with the set of all true Πn

sentences.”
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Interpretation of [n]

Recall: For all n < ω there is a formula Truen(x) such that
N |= Truen(k) if and only if k codes a true Πn-sentence.

With this, we can formalize n-provability:

[n]T (x) := ∃y
(
Truen(y) ∧�T (y → x)

)
.

Theorem (Japaridze, Ignatiev)
The following are equivalent:

I GLP ` ϕ
I for every arithmetical interpretation f , PA ` ϕf .
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Relational semantics

Frames:
〈W , 〈�n〉n<ω〉

[n]([n]ϕ→ ϕ)→ [n]ϕ:

Valid iff ≺n is well-founded and transitive

[n]ϕ→ [n + 1]ϕ:

Valid iff w ≺n+1 v ⇒ w ≺n v

〈n〉ϕ→ [n + 1]〈n〉ϕ:

Valid iff v ≺n w and u ≺n+1 w ⇒ v ≺n u.

Even GLP2 has no non-trivial Kripke models.
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Avoiding frame incompleteness

Possible strategies:

I work only with arithmetical interpretations

I use topological semantics

I restrict to positive fragments (Reflection Calculi)

〈1〉〈0〉〈2〉> ∧ 〈3〉> ` 〈3〉〈1〉>

I restrict to variable-free fragments
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Fragments of GLP

The closed fragment is written GLP0 and does not allow
propositional variables (only ⊥).

The (strictly) positive fragment is the reflection calculus (RC)
and uses the grammar

> | p | φ ∧ ψ | 〈n〉φ

Beklemishev: RC0 may be used to perform ordinal analysis of
PA, its natural subtheories and some extensions.
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Worms

Worms: Iterated consistency statements

〈n1〉〈n2〉 . . . 〈nk 〉>

Wrm : the class of all worms

Wrmn : the class of all worms with entries at least n
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Basic equivalences

Lemma

I If a > b and φ, ψ are formulas then

GLP ` 〈a〉(φ ∧ 〈b〉ψ)↔ (〈a〉φ ∧ 〈b〉ψ).

I If w ∈ Sa+1 then

GLP ` wav↔ w ∧ av.
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Worms recursively

I > is a worm

I if w, v are worms, w 0 v is a worm

I if w is a worm and a ∈ N then a ↑ w is a worm

Where

I (〈x1〉 . . . 〈xn〉>) 0(〈y1〉 . . . 〈ym〉>)
= 〈x1〉 . . . 〈xn〉〈0〉〈y1〉 . . . 〈ym〉>

I a ↑ 〈x1〉 . . . 〈xn〉> = 〈a + x1〉 . . . 〈a + xn〉>

Tomorrow: w 0 v ≈ w + v, 1 ↑ v ≈ ωv
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Summary
Today:

I introduced the provability logic GL

I discussed Kripke completeness of GL

I proof of arithmetical completeness

I introduced the polymodal GLP

I introduced worms

Tomorrow:

I relation between worms and the ordinal ε0

I GLP and fragments of Peano arithmetic

I topological models of GLP
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