
1/33

Introduction
Proving Theorems

Generating Theorems
Learning Theorems

Benchmarking Linear Logic Proofs

Valeria de Paiva
Topos Institute, Berkeley, CA

Visiting DI, PUC-RJ, RJ

November, 2020

Valeria de Paiva ProofTheoryOnline2020



2/33

Introduction
Proving Theorems

Generating Theorems
Learning Theorems

Thanks Tom and Anton for the invitation!

Valeria de Paiva ProofTheoryOnline2020



3/33

Introduction
Proving Theorems

Generating Theorems
Learning Theorems

Thank you friends for our continued collaboration!

Valeria de Paiva ProofTheoryOnline2020



4/33

Introduction
Proving Theorems

Generating Theorems
Learning Theorems

Based on

The ILLTP Library for Intuitionistic Linear Logic,
Linearity/TLLA 2018 (with Carlos Olarte, Elaine Pimentel and
Gisele Reis)

and

Deriving Theorems in Implicational Linear Logic,
Declaratively, ICLP 2020 and Training Neural Networks
as Theorem Provers via the Curry-Howard Isomorphism,
Computational Logic and Applications 2020 (with Paul Tarau)

Valeria de Paiva ProofTheoryOnline2020



5/33

Introduction
Proving Theorems

Generating Theorems
Learning Theorems

Motivations
benchmark: “To measure the performance of (an item)
relative to another similar item in an impartial scientific
manner.”

Benchmarks for theorem provers well-developed area of AI

Since Logic Theorist (LT) 1956 Newell and Simon

“the first artificial intelligence program”, proved 38 of the first 52 theorems of Principia Mathematica

Valeria de Paiva ProofTheoryOnline2020



6/33

Introduction
Proving Theorems

Generating Theorems
Learning Theorems

Motivation

Many theorem provers: interactive and automatic

Since 1993 TPTP: Thousands of Problems for Theorem
Provers (http://www.tptp.org/)

also CASC competition (CADE ATP System Competition)
http://www.tptp.org/CASC/

not much for non-classical logics

intuitionistic logic ILTP (http://www.iltp.de/) and some
collections of modal problems including QMLTP
(http://www.iltp.de/qmltp/)

where is Linear Logic?

Valeria de Paiva ProofTheoryOnline2020



7/33

Introduction
Proving Theorems

Generating Theorems
Learning Theorems

Goals

Collect problems/theorems in (a fragment of) Linear Logic

Investigate variants of the logic

Investigate variants of translations between logics

Use provers/benchmarks/ML as tools for experiments in logic

Logic as a Lab Science!

Valeria de Paiva ProofTheoryOnline2020



8/33

Introduction
Proving Theorems

Generating Theorems
Learning Theorems

Linear Logic: a tool for semantics

A proof theoretic logic described by Girard in 1986.

Basic idea: assumptions cannot be discarded or duplicated.
They must be used exactly once – just like dollar bills (except
when they’re marked by a modality “!”)

Other approaches to accounting for logical resources before.
Relevance Logic

Great win for Linear Logic:
Account for resources when you want to, otherwise fall back
to traditional logic via translation A→ B iff !A −◦ B

Valeria de Paiva ProofTheoryOnline2020



9/33

Introduction
Proving Theorems

Generating Theorems
Learning Theorems

Linear Logic

In Linear Logic formulas denote resources. Resources are premises,
assumptions and conclusions, as they are used in logical proofs.
For example:

$1 −◦ latte
If I have a dollar, I can get a Latte

$1 −◦ cappuccino
If I have a dollar, I can get a Cappuccino

$1 I have a dollar

Can conclude either latte or cappuccino
— But using my dollar and one of the premisses above, say

$1 −◦ latte gives me a latte but the dollar is gone
— Usual logic doesn’t pay attention to uses of premisses, A implies B

and A gives me B but I still have A...

Valeria de Paiva ProofTheoryOnline2020



10/33

Introduction
Proving Theorems

Generating Theorems
Learning Theorems

Linear Implication and (Multiplicative) Conjunction

Traditional implication: A,A→ B ` B
A,A→ B ` A ∧ B Re-use A

Linear implication: A,A −◦ B ` B
A,A −◦ B 6` A⊗ B Cannot re-use A

Traditional conjunction: A ∧ B ` A Discard B

Linear conjunction: A⊗ B 6` A Cannot discard B

Of course!: !A ` !A⊗!A Re-use

!(A)⊗ B ` B Discard

Valeria de Paiva ProofTheoryOnline2020



11/33

Introduction
Proving Theorems

Generating Theorems
Learning Theorems

Linear Logic Results

Soundness and Completeness for coherence spaces and many
other interesting models

”Have-your-cake-and-eat-it”theorem: Intuitionistic logic
proves A→ B iff Linear Logic proves !A −◦ B.

A new graphical Natural Deduction system: proof nets

A new style of proof systems: focused systems

Some 30 years of limelight, especially in CS

Valeria de Paiva ProofTheoryOnline2020



12/33

Introduction
Proving Theorems

Generating Theorems
Learning Theorems

Why Bother with Benchmarks?

Linear Logic has come of age

useful in programming languages, game semantics, quantum
physics, linguistics

Several Provers?
maybe should discuss adequacy or efficiency?

Nah!

Because it can help us understand the logic, where it differs or
not from traditional systems

Valeria de Paiva ProofTheoryOnline2020



13/33

Introduction
Proving Theorems

Generating Theorems
Learning Theorems

(some) Linear Logic Provers

LLTP (Maude)
https://github.com/carlosolarte/Linear-Logic-Prover-in-
Maude

LL prover (http://bach.istc.kobe-u.ac.jp/llprover/)

linTAP http://www.leancop.de/lintap/ Otten et al

LL prover explorer, Lolli, etc

YALLA (Coq) O. Laurent
https://perso.ens-lyon.fr/olivier.laurent/yalla/

Valeria de Paiva ProofTheoryOnline2020



14/33

Introduction
Proving Theorems

Generating Theorems
Learning Theorems

Choosing Logic Problems

To be used as a standard a collection of problems should satisfy
some criteria. at least the following:

Formulae should able to distinguish different characteristics of
the logical systems and provers (design choice points)

important theorems and paradigmatic formulae should be
present (how do we know?)

Should be large enough so that we can do comparisons
between different provers and systems

(Not taken in consideration here) automatic comparison
scripts and efficiency timings should be computed by third
parties

Valeria de Paiva ProofTheoryOnline2020



15/33

Introduction
Proving Theorems

Generating Theorems
Learning Theorems

Design choices

Classical or Intuitionistic Linear Logic? FILL?

differences in provability

is there a set of “principal”LL theorems?

Easy place to find LL theorems: Intuitionistic Logic

Use original theorem, everything provable in IL is provable in
LL using Girard’s translation

but hey, there are other (many) translations

which one to choose and why?

new use of computational provers and comparisons: to help to
clarify the theory

Valeria de Paiva ProofTheoryOnline2020



16/33

Introduction
Proving Theorems

Generating Theorems
Learning Theorems

Our choices

starting: Kleene “Introduction to Metamathematics”1952

a basic collection of intuitionistic theorems

minimal set of intuitionistic theorems that a sound prover
should be able to derive

helpful to uncover bugs and sources of unsoundness

(historical note: with Sara Kalvala “Linear Logic in Isabelle”,
1995. sequent calculus in Isabelle, deprecated now)

Valeria de Paiva ProofTheoryOnline2020



17/33

Introduction
Proving Theorems

Generating Theorems
Learning Theorems

Rudimentary Intuitionistic Logic

Rudimentary fragment of Intuitionistic Logic, ie
(→,∧,¬)-fragment of IL.

Why this fragment?

Intuitionistic disjunction poses some problems in LL.
Additive or multiplicative disjunction?

Each way leads to very different systems.
Concentrate on easy cases first, hence “rudimentary”IL.

This gives us some 61 theorems from Kleene’s book
(next slide)

problems in Giselle’s repo https://github.com/meta-logic/lltp

Valeria de Paiva ProofTheoryOnline2020



18/33

Introduction
Proving Theorems

Generating Theorems
Learning Theorems

Kleene Examples

Valeria de Paiva ProofTheoryOnline2020



19/33

Introduction
Proving Theorems

Generating Theorems
Learning Theorems

Translations?

IL theorems are not necessarily theorems in LL.
Need translations.

Which translations?

Four ‘translations’
1 Girard: (A→ B)G = !A −◦ B
2 “Lazy”(A→ B)K = !(A −◦ B)
3 Liang/Miller’s 0-1
4 Forgetful = read → as −◦

Last is not provability preserving!

First experiment: 61 theorems (IL) multiplied by 4 gives us
244 ’problems’ to check in Linear Logic

Give me an automated theorem prover, please!

Valeria de Paiva ProofTheoryOnline2020



20/33

Introduction
Proving Theorems

Generating Theorems
Learning Theorems

Results

Olarte implemented a basic prover for IL as well as for ILLF
and LLF (all focused systems)

specified in Rewriting Logic and implemented in Maude
(Meseguer)

proofs of the original IL sequent, together with the derivation
trees of the corresponding ILL sequents, when provable

22 sequents are not provable in ILL

Obtained a collection of basic tests for LL

Extended this basic collection using (translations of) problems
from ILTP and from reachability of Petri Nets

Ended up with 4,494 formulas in our ILLTP library

Some comparison of translations, but need more!

Valeria de Paiva ProofTheoryOnline2020



21/33

Introduction
Proving Theorems

Generating Theorems
Learning Theorems

Results

Valeria de Paiva ProofTheoryOnline2020



22/33

Introduction
Proving Theorems

Generating Theorems
Learning Theorems

What have we got?

proposed a set of Linear Logic sequent tests, and have
implemented provers for logics LJ, ILL and CLL.

All three provers are focused-based

As a first experiment we tried 4 translations and we can
empirically compare times for them

Can we see patterns on these timeouts and failures?

Does this help when comparing translations?

Would like to compare with other translations, e.g. LKtq

Would like to have parallel/ensemble provers, perhaps

how can we push this work forward?

Valeria de Paiva ProofTheoryOnline2020



23/33

Introduction
Proving Theorems

Generating Theorems
Learning Theorems

Changing Gears
Lukewarm reception at FLoC2018: not enough interest in the
benchmarks from theorem provers (mostly they’re interested
in specific applications, like automating proofs in logic itself –
several embeddings of LL into Coq)

Co-authors wanted to do different things

Tarau’s papers “Formula Transformers and Combinatorial Test
Generators for Propositional Intuitionistic Theorem
Provers”and ”Combinatorial Testing Framework for
Intuitionistic Propositional Theorem Provers”(2019)

Promised test generators and formula readers automatically
converting the ‘human-made’ tests of the ILTP library to
Prolog and Python form. Mentioned a testing framework
focusing on the implicational fragment of intuitionistic logic

I asked if we could do the same for Linear Logic

Valeria de Paiva ProofTheoryOnline2020



24/33

Introduction
Proving Theorems

Generating Theorems
Learning Theorems

Building theorems

This is the work presented on ICLP2020

Main insight of work: instead of building formulas of a logic
and trying to prove whether they are theorems or not, with
given rules, build only the provable linear ones

True by construction and provably so, using the Curry-Howard
isomorphism

how?

generate all theorems of a given size in LL

use a low polynomial type inference algorithm associating a
type (when it exists) to a lambda term

rely on the Curry-Howard isomorphism, to generate simply
typed lambda terms in normal form

Valeria de Paiva ProofTheoryOnline2020



25/33

Introduction
Proving Theorems

Generating Theorems
Learning Theorems

What do we get?

an implicational intuitionistic logic prover specialized for linear
formulas

a big dataset for training neural networks that prove
intuitionistic theorems

preliminary results: very high success rate with seq2seq
encoded LSTM neural networks (not in the paper
https://arxiv.org/pdf/2009.10241.pdf)

intuition: use combinatorial generation of lambda terms +
type inference (easy) to solve some type inhabitation problems
(hard).

Valeria de Paiva ProofTheoryOnline2020



26/33

Introduction
Proving Theorems

Generating Theorems
Learning Theorems

How do we go about it?
implicational linear formulas (Prolog code), built as:

binary trees of size N, counted by Catalan numbers Catalan(N)
labeled with variables derived from set partitions counted by
Bell(N + 1) (see A289679 in OEIS)

linear lambda terms (proof terms for the implicational
formulas)

linear skeleton Motzkin trees (binary-unary trees with
constraints enforcing one-to-one mapping from variables to
their lambda binders)

closed linear lambda terms

after a chain of refinements, we derive a compact and
efficient generator for pairs of linear lambda terms in normal
form and their types (which always exist as they are all
typable!)

Voilá! almost 8 billion theorems in a few hours
Valeria de Paiva ProofTheoryOnline2020



27/33

Introduction
Proving Theorems

Generating Theorems
Learning Theorems

Want to machine learn tautologies?
(Tarau’s Training Neural Networks as Theorem Provers via the
Curry-Howard Isomorphism at CLA 2020
https://www.youtube.com/channel/UCk0-_Hgr_o3KbRQWdeoYIHA)

Can we train neural networks to learn inference on an interesting
logic?

Yes! our logic is implicational intuitionistic linear logic.

We need to derive an efficient algorithm requiring a low polynomial
effort per generated theorem and its proof term.

Outcomes:

implicational intuitionistic linear logic prover
a dataset for training neural networks
high success rate seq2seq encoded LSTM neural nets
open: can techniques extend to harder (e.g.,
PSPACE-complete) logics?

Valeria de Paiva ProofTheoryOnline2020

https://www.youtube.com/channel/UCk0-_Hgr_o3KbRQWdeoYIHA


28/33

Introduction
Proving Theorems

Generating Theorems
Learning Theorems

Machine learning tautologies

Several versions for Boolean logic, e.g. Can Neural Networks
Understand Logical Entailment? Evans, Saxton, Amos, Kohli, and
Grefenstette, 2018. arXiv:1802.08535 (Automated proof synthesis
for propositional logic with deep neural networks, arxiv 1805.11799
for intuitionistic logic) not the same ML-problem

implicational fragment of LL is decidable

Curry-Howard holds: linear lambda-calculus corresponds to
implicational only linear logic

polynomial algorithms for generating its theorems are useful:

when turned into test sets, combining tautologies and their
proof terms can be useful for testing correctness and scalability
of linear logic theorem provers
when turned into datasets, they can be used for training deep
learning networks focusing on neuro-symbolic computations

Valeria de Paiva ProofTheoryOnline2020



29/33

Introduction
Proving Theorems

Generating Theorems
Learning Theorems

Machine learning tautologies
can use combinatorial generation of lambda terms + type
inference (easy) to solve some type inhabitation problems
(hard)
GOOD NEWS: there’s a size-preserving bijection between
linear lambda terms in normal form and their principal types!
a proof follows immediately from a paper by Noam Zeilberger
who attributes this observation to Grigori Mints
the bijection is proven by exhibiting a reversible
transformation of oriented edges in the tree describing the
linear lambda term in normal form, into corresponding
oriented edges in the tree describing the linear implicational
formula, acting as its principal type
obtained a generator for all theorems of implicational linear
intuitionistic logic of a given size, as measured by the number
of lollipops, without having to prove a single theorem!

Valeria de Paiva ProofTheoryOnline2020



30/33

Introduction
Proving Theorems

Generating Theorems
Learning Theorems

The datasets

the dataset containing generated theorems and their
proof-terms in prefix form (as well as their LaTeX tree
representations marked as Prolog “%” comments) is available
at http://www.cse.unt.edu/~tarau/datasets/lltaut/

it can be used for correctness, performance and scalability
testing of linear logic theorem provers

the <formula, proof-term> pairs in the dataset are usable
to test deep-learning systems on theorem proving tasks

also, formulas with non-theorems added for IPILL

Valeria de Paiva ProofTheoryOnline2020

http://www.cse.unt.edu/~tarau/datasets/lltaut/


31/33

Introduction
Proving Theorems

Generating Theorems
Learning Theorems

Can Neural Nets help Theorem Proving?

We search for good frameworks for neuro-symbolic computing

theorem provers are computation-intensive, sometimes
Turing-complete search algorithms

two ways neural networks can help:

fine-tuning the search, by helping with the right choice at
choice points
used via an interface to solve low-level ‘perception’-intensive
tasks

can we simply replace the symbolic theorem prover given a
large enough training dataset? do we want to?

Valeria de Paiva ProofTheoryOnline2020



32/33

Introduction
Proving Theorems

Generating Theorems
Learning Theorems

Evaluating the Performance of our Neural Nets as
Theorem Provers

in fact, our seq2seq LSTM recurrent neural network trained
on encodings of theorems and their proof-terms performs
unusually well

the experiments with training the neural networks using the
IPILL and IIPC theorem dataset are available at:
https://github.com/ptarau/neuralgs

the < formula, proof term > generators are available at:
https://github.com/ptarau/TypesAndProofs

the generated datasets are available at:
http://www.cse.unt.edu/~tarau/datasets/

Valeria de Paiva ProofTheoryOnline2020

https://github.com/ptarau/neuralgs
https://github.com/ptarau/TypesAndProofs
http://www.cse.unt.edu/~tarau/datasets/


33/33

Introduction
Proving Theorems

Generating Theorems
Learning Theorems

Conclusions

Yeah, this was too fast for me too!

But it works and it’s based on Mints’ and Zeiberger’ results for
Intuitionistic Logic, which are simplified in the Linear implicational
case.

Future work is to see if we can extend it to Linear-non-Linear
Logic. To see if we can learn many more theorems.

THANKS!

Valeria de Paiva ProofTheoryOnline2020


	Introduction
	Proving Theorems
	Generating Theorems
	Learning Theorems

