Forcing interpretation, conservation and proof size

Keita Yokoyama (JAIST)

joint work with Leszek Kołodziejczyk and Tin Lok Wong

Proof theory virtual seminar February 17, 2021 In this talk,

- mainly consider relational languages without equality,
- use a fixed proof system (LK, NK or any other reasonable system).
- * We are not restricted in our context even if we only use relational languages.

The major part of this talk is an overview of Avigad [1,2].

- J. Avigad, Forcing in proof theory. Bull. Symbolic Logic 10 (2004), no. 3, 305-333.
- J. Avigad, Formalizing forcing arguments in subsystems of second-order arithmetic. Ann. Pure Appl. Logic 82 (1996), no. 2, 165-191.
- L. A. Kolodziejczyk, T. L. Wong and K. Yokoyama, Ramsey's theorem for pairs, collection, and proof size, submitted.

The precise definition of forcing interpretation (with function symbols) is reorganized in [3].

Definition

A (one-dimentional) relative translation τ from a language \mathcal{L}' to another language \mathcal{L} consists of the following:

- \mathcal{L} -formula $\varphi_D(x)$: domain of an \mathcal{L}' -structure
- \mathcal{L} -formula $\varphi_R(\vec{x})$ for each $R \in \mathcal{L}'$: interpretation of R

If
$$\mathcal{M} = (M; ...)$$
 is an \mathcal{L} -structure, then $(D^{\tau}; R^{\tau}, ...)$ is an \mathcal{L}' -structure where $D^{\tau} = \{a \in M : \mathcal{M} \models \varphi_D(a)\},\ R^{\tau} = \{\vec{a} \in D^{\tau} : \mathcal{M} \models \varphi_R(\vec{x})\},...$

In this sense, any \mathcal{L}' -formula ψ can be translated to an \mathcal{L} -formula ψ^{τ} by relativization, i.e., by formalizing Tarski's truth definition for $(D^{\tau}; R^{\tau}, ...) \models \psi$.

Relative interpretation

Let *T* be an \mathcal{L} -theory and *T'* be an \mathcal{L}' -theory.

Definition

A relative translation τ from \mathcal{L}' to \mathcal{L} is said to be a relative interpretation of T' in T if $T \vdash \psi^{\tau}$ for each $\psi \in T'$.

By formalizing the usual soundness proof (by induction on the complexity of formulas), we have the following.

Theorem (Soundness theorem)

If τ is a relative interpretation of T' in T and T' $\vdash \theta$, then T $\vdash \theta^{\tau}$.

Corollary

If τ is a relative interpretation of T' in T, then Con(T) implies Con(T').

Relative interpretation behaves well in the following sense.

Let T be an \mathcal{L} -theory, T' be an \mathcal{L}' -theory and Γ be a class of $\mathcal{L} \cap \mathcal{L}'$ -formulas.

Definition

A relative interpretation τ is said to be Γ -reflecting if

 $T \vdash \psi^{\tau} \rightarrow \psi$ for any $\psi \in \Gamma$.

Theorem

If there exists a relative interpretation of T' in T which is Γ -reflecting, then T' is Γ -conservative over T.

Polynomial reflection and proof size

Let T be an \mathcal{L} -theory, T' be an \mathcal{L}' -theory and Γ be a class of $\mathcal{L} \cap \mathcal{L}'$ -formulas.

Definition

A relative translation τ is said to be a polynomial interpretation of T' in T if there is polynomial-time procedure which, given any $\psi \in T'$, outputs a proof of $T \vdash \psi^{\tau}$.

A relative interpretation τ is said to be polynomially Γ -reflecting if there is polynomial-time procedure which, given any $\theta \in \Gamma$, outputs a proof of $T \vdash \theta^{\tau} \rightarrow \theta$.

Note that any relative interpretation of a finite theory T is a polynomial interpretation.

Theorem

If there exists a polynomial relative interpretation of T' in T which is polynomially Γ -reflecting, then T polynomially simulates T' with respect to Γ , i.e., there is polynomial-time procedure which, given any proof of T' $\vdash \theta$ for $\theta \in \Gamma$, outputs a proof of T $\vdash \theta$.

Example: RCA_0 vs $I\Sigma_1$

Let $n \ge 1$. A relative translation τ_{REC} from \mathcal{L}_2 to \mathcal{L}_1 consists of the following:

•
$$\varphi_M(x) :\equiv x = x$$
,

• $\varphi_{\in}(x, e) :\equiv "x$ is an element of the *e*-th Δ_1 -set".

Proposition

- τ_{REC} is an interpretation of $\text{RCA}_0 + I\Sigma_n^0$ in $I\Sigma_n$.
- τ_{REC} is polynomially \mathcal{L}_1 -reflecting in I Σ_1 .

Corollary

 $I\Sigma_n$ polynomially simulates $RCA_0 + I\Sigma_n^0$ w.r.t. \mathcal{L}_1 -sentences.

Similarly, $I\Sigma_n^0$ polynomially simulates $RCA_0 + I\Sigma_n^0$ w.r.t. Π_1^1 -sentences.

Kripke semantics

A Kripke model is a quadraple $\mathcal{K} = (\mathcal{K}, \leq_{\mathcal{K}}, D, \mathbb{H}^+)$, where

- (K, \leq_K) is a pre-ordered set,
- D = {D_k}_{k∈K} is a family of nonempty sets such that D_k ⊆ D_{k'} if k ≤_K k',
- I⁺ is a relation, called a valuation, from K to the set of atomic formulae of the language extended by adding a constant symbols a for each element a ∈ ∪{D_k | k ∈ K} such that

•
$$k \Vdash^+ R(a_1,\ldots,a_n) \Rightarrow a_i \in D_k \text{ for } i \in \{1,\ldots,n\},$$

•
$$k \Vdash^+ R(a_1, \ldots, a_n)$$
 and $k \leq k' \Rightarrow k' \Vdash^+ R(a_1, \ldots, a_n)$

for each $k, k' \in K$.

1
$$k \not \Vdash^+ \bot$$
,
2 $k \not \Vdash^+ \varphi \land \psi \Leftrightarrow k \not \Vdash^+ \varphi \text{ and } k \not \Vdash^+ \psi$,
3 $k \not \Vdash^+ \varphi \lor \psi \Leftrightarrow k \not \Vdash^+ \varphi \text{ or } k \not \Vdash^+ \psi$,
4 $k \not \Vdash^+ \varphi \to \psi \Leftrightarrow k' \not \Vdash^+ \varphi \text{ implies } k' \not \Vdash^+ \psi \text{ for each } k' \ge k$.
5 $k \not \Vdash^+ \forall x \varphi \Leftrightarrow \forall k' \ge k \forall a \in D_{k'}(k' \not \Vdash^+ \varphi[x/a])$,
6 $k \not \Vdash^+ \exists x \varphi \Leftrightarrow \exists a \in D_k(k \not \Vdash^+ \varphi[x/a])$.

It is well-known that the Kripke semantics is sound and complete for intuitionistic predicate calculus.

Here, we focus on classical logic.

Define a new relation ⊩ by

 $k \Vdash \psi \iff k \Vdash^+ \neg \neg \psi.$

Then, we have

Proposition (Soundness and completeness)

The following are equivalent.

1 $F \vdash \psi$ (in classical logic).

2 $\mathcal{K} \Vdash \psi$ implies $\mathcal{K} \Vdash \psi$ for any Kripke model \mathcal{K} .

We consider interpretation with this semantics.

Translation by Kripke semantics/ forcing translation

Definition

A forcing translation τ from \mathcal{L}' to \mathcal{L} consists of the following:

- \mathcal{L} -formula $\varphi_{\mathcal{K}}(k)$: domain of a pre-order,
- \mathcal{L} -formula $\varphi_{\leq}(k, k')$: pre-order on K,
- \mathcal{L} -formula $\varphi_D(x, k)$: $\varphi_D(\cdot, k)$ defines the domain at k,
- \mathcal{L} -formula $\varphi_R(\vec{x}, k)$ for each $R \in \mathcal{L}'$: valuation of R at k.

If $\mathcal{M} = (M; ...)$ is an \mathcal{L} -structure, then $\mathcal{K}^{\tau} = (K^{\tau}, \leq^{\tau}, D_k^{\tau}, \mathbb{H}^+)$ is a Kripke model for \mathcal{L}' if

- $D_k^{\tau} = \{ a \in M : \mathcal{M} \models \varphi_D(a, k) \},$
- $k \Vdash^+ R(\vec{a}) \Leftrightarrow \vec{a} \in D_k \land M \models \varphi_R(\vec{a}, k),$
- $\varphi_{\leq}(k,k')$ defines a pre-order,
- $D_k \subseteq D_{k'}$ if $\varphi_{\leq}(k, k')$.

 $a \in \bigcup_{k \in K^{\tau}}$ is often called a name, and we write $k \Vdash a \downarrow$ if $\varphi_D(a, k)$.

For any *L*'-formula ψ, the truth "k ⊨ θ" can be described by an *L*-formula, which gives a translation.

Interpretation by Kripke semantics/ forcing interpretation

Let T be an \mathcal{L} -theory and T' be an \mathcal{L}' -theory.

Definition

A forcing translation τ from \mathcal{L}' to \mathcal{L} is said to be a forcing interpretation of \mathcal{T}' in \mathcal{T} if \mathcal{T} proves

- $\varphi_{\leq}(k,k')$ defines a pre-order,
- $D_k \subseteq D_{k'}$ if $\varphi_{\leq}(k, k')$,
- $k \Vdash a \downarrow$ if and only if $\forall k' \ge k \exists k'' \ge k'(k'' \Vdash a \downarrow)$,

and

```
• T \vdash \Vdash \psi for each \psi \in T'.
(Here, \Vdash \theta means that \forall k(\varphi_{K}(k) \rightarrow k \Vdash \theta).
```

By formalizing the soundness proof, we have the following.

Theorem (Soundness theorem)

If τ is a forcing interpretation of T' in T and T' $\vdash \theta$, then T $\vdash \Vdash \theta$.

Forcing interpretation is well-behaved as relative interpretation.

Let T be an L-theory, T' be an L'-theory and Γ be a class of $\mathcal{L}\cap\mathcal{L}'$ -formulas.

Definition

A forcing interpretation τ is said to be Γ -reflecting if

 $T \vdash \Vdash^{\tau} \psi \rightarrow \psi$ for any $\psi \in \Gamma$.

Theorem

If there exists a forcing interpretation of T' in T which is Γ -reflecting, then T' is Γ -conservative over T.

Polynomial reflection and proof size

Let T be an L-theory, T' be an L'-theory and Γ be a class of $\mathcal{L}\cap\mathcal{L}'$ -formulas.

Definition

A forcing translation τ is said to be a polynomial interpretation of T'in T if there is polynomial-time procedure which, given any $\psi \in T'$, outputs a proof of $T \vdash \mathbb{H}^{\tau} \psi$.

A forcing interpretation τ is said to be polynomially Γ -reflecting if there is polynomial-time procedure which, given any $\theta \in \Gamma$, outputs a proof of $T \vdash \mathbb{H}^{\tau} \theta \rightarrow \theta$.

Note that any forcing interpretation of a finite theory T is a polynomial interpretation.

Theorem

If there exists a polynomial forcing interpretation of T' in T which is polynomially Γ -reflecting, then T polynomially simulates T' with respect to Γ .

Questions

T' ≤_{rel} T :⇔ there exists a relative interpretation of T' in T
 T' ≤_f T :⇔ there exists a forcing interpretation of T' in T

Question

Is \leq_f different from \leq_{rel} ?

Is forcing interpretation strong enough to cover all conservation/ non-speedup proofs?

Question

If a theory T' is Γ -conservative over a theory T, then does there always exist a forcing interpretation of T' in T which is Γ -reflecting?

Question

If a theory *T* polynomially simulates *T'* w.r.t. Γ -sentences, then does there always exist a polynomial forcing interpretation of *T'* in *T* which is polynomially Γ -reflecting?

Example 1: forcing with low sets

In the study of second-order arithmetic, Π_1^1 -conservation theorems for Π_2^1 -theories are often obtained by formalizing "low-basis theorems" in computability theory.

- low-basis theorem for $WKL \Rightarrow \Pi_1^1\mbox{-}conservation of <math display="inline">WKL$ over $RCA_0 + B\Sigma_2^0$
- low_2-basis theorem for $RT^2 \Rightarrow \Pi^1_1\mbox{-}conservation of <math display="inline">RT^2$ over $RCA_0 + I\Sigma^0_2$
- low-basis theorem for SADS, SCAC, ...

It is known (or believed?) that

if a low-basis theorem for a Π_2^1 -statement $\forall X \exists Y \theta(X, Y)$ is provable within RCA₀ + I Σ_n^0 (or B Σ_n^0) "EFFECTIVELY", its iteration is also provable effectively, and ..., then the standard Π_1^1 -conservation proof by constructing ω -extension can be reformulated with relative interpretation, and thus polynomial simulation w.r.t. Π_1^1 -sentences is available(??) In $I\Sigma_1^0$, Turing reduction is formalizable, and thus Turing jump, low_n-sets, ... are available. Write $W^n[e, X]$ for the *e*-th Δ_n^X -set.

Let $n \ge 1$. A forcing translation $\tau(\text{Low}_{n-1,X})$ from \mathcal{L}_2 to \mathcal{L}_2 consists of the following:

- the set of conditions P = Low_{n-1,X} consists of all pairs of the form ⟨e, X⟩ such that e is an index of a low^X_{n-1}-set,
- $\langle e, X \rangle \geq_{\mathbb{P}} \langle f, Y \rangle$ if X = Y and $W[e, X] \geq_T W[f, Y]$,
- names for numbers are numbers $v \in \mathbb{N}$,
- names for sets are conditions $\langle e, X \rangle \in \mathbb{P}$,
- $\langle e, X \rangle \Vdash v \downarrow$ always, and $\langle e, X \rangle \Vdash \langle f, Y \rangle \downarrow$ if $\langle f, Y \rangle \leq_{\mathbb{P}} \langle e, X \rangle$,
- $\langle e, X \rangle \Vdash v \in \langle f, Y \rangle$ if $\langle f, Y \rangle \downarrow$ and $v \in W[f, Y]$.

Proposition

 $\tau(\text{Low}_{n-1,X})$ is polynomially Π_1^1 -reflecting over RCA₀.

Example 1: forcing with low sets

Theorem

Let $n \ge 1$. Let $\Theta \equiv \forall X \exists Y \theta(X, Y)$ be a Π_2^1 -sentence.

• If $\operatorname{RCA}_0 + \operatorname{I}\Sigma_n^0$ proves $\forall X_0 \forall X \leq_T X_0 \exists e \in \operatorname{Low}_{n-1,X_0} \theta(X, W^n[e, X_0]),$ then $\tau(\operatorname{Low}_{n-1,X})$ is a forcing interpretation of $\operatorname{RCA}_0 + \operatorname{I}\Sigma_n^0 + \Theta$ in $\operatorname{RCA}_0 + \operatorname{I}\Sigma_n^0.$

If RCA^{*}₀ + BΣ⁰_n + exp proves ∀X₀∀X ≤_T X₀∃e ∈ Low_{n-1,X0}θ(X, Wⁿ[e, X₀]), then τ(Low_{n-1,X}) is a forcing interpretation of RCA^{*}₀ + BΣ⁰_n + Θ in RCA^{*}₀ + BΣ⁰_n.

Corollary

- If $k \ge 2$, $|\Sigma_k^0$ polynomially simulates $WKL_0 + |\Sigma_k^0$ and $B\Sigma_k^0$ polynomially simulates $WKL_0 + B\Sigma_k^0$ w.r.t. Π_1^1 .
- If $k \ge 3$, $|\Sigma_k^0$ polynomially simulates $WKL_0 + RT^2 + |\Sigma_k^0$ and $B\Sigma_k^0$ polynomially simulates $WKL_0 + RT^2 + B\Sigma_k^0$ w.r.t. Π_1^1 .

Avigad used forcing interpretation to show that RCA_0 polynomially simulates WKL_0 with respect to Π_1^1 -sentences. Can we improve this?

Let $\Gamma_{\text{STY}} = \{ \forall X \exists ! Y \alpha(X, Y) : \alpha \text{ is arithmetical} \}.$

Theorem (Simpson/Tanaka/Yamazaki)

WKL₀ is Γ_{STY} -conservative over RCA₀.

Question

- (Tanaka) Does RCA₀ polynomially simulate WKL₀ with respect to Γ_{STY}-sentences.
- (Wong) Is WKL^{*}₀ Γ_{STY} -conservative over RCA^{*}₀?

Proposition (RCA_0^*)

For any X, there exists a Δ_1^X -tree \mathcal{T}^X such that any path $\mathcal{W} \in [\mathcal{T}^X]$ forms a countable coded ω -model of WKL with $\mathcal{W}_0 = X$.

A forcing translation τ consists of the following:

- the set of conditions ℙ is the set of all pairs of the form ⟨X, T⟩ where T is (an index of) a Δ^X₁-definable infinite subtree of T^X,
- for given $\langle X, T \rangle, \langle Y, U \rangle \in \mathbb{P}, \langle X, T \rangle \ge_{\mathbb{P}} \langle Y, U \rangle$ if X = Y and $T \subseteq U$,
- names for numbers are numbers $v \in \mathbb{N}$,
- names for sets are numbers $V \in \mathbb{N}$,
- $\langle X, T \rangle \Vdash^{\tau} v \downarrow, \langle X, T \rangle \Vdash^{\tau} V \downarrow$ for any $\langle X, T \rangle \in \mathbb{P}$ and names v, V,
- $\langle X, T \rangle \Vdash^{\tau} v \in V$ if for any $\sigma \in T$, $v < |\sigma_V| \to \sigma_V(v) = 1$.

Example 2: forcing for WKL revisited

Proposition

- RCA₀^{*} $\vdash \mathbb{H}^{\tau}$ WKL₀^{*}.
- **2** $\operatorname{RCA}_0 \vdash \mathbb{H}^{\tau} \operatorname{WKL}_0.$
- **3** τ is polynomially Γ_{STY} -reflecting over RCA₀^{*}.

Corollary

- RCA^{*}₀ polynomially simulates WKL^{*}₀ with respect to Γ_{STY}-sentences.
- RCA₀ polynomially simulates WKL₀ with respect to Γ_{STY}-sentences.

Thank you!

- J. Avigad, Forcing in proof theory. Bull. Symbolic Logic 10 (2004), no. 3, 305-333.
- J. Avigad, Formalizing forcing arguments in subsystems of second-order arithmetic. Ann. Pure Appl. Logic 82 (1996), no. 2, 165-191.
- L. A. Kolodziejczyk, T. L. Wong and K. Yokoyama, Ramsey's theorem for pairs, collection, and proof size, submitted.

This work is partially supported by JSPS KAKENHI grant numbers 19K03601.