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In this talk,
@ mainly consider relational languages without equality,
@ use a fixed proof system (LK, NK or any other reasonable
system).
* We are not restricted in our context even if we only use
relational languages.

The major part of this talk is an overview of Avigad [1,2].
@ J. Avigad, Forcing in proof theory. Bull. Symbolic Logic 10 (2004), no. 3,
305-333.

© J. Avigad, Formalizing forcing arguments in subsystems of second-order
arithmetic. Ann. Pure Appl. Logic 82 (1996), no. 2, 165-191.

© L. A Kolodziejczyk, T. L. Wong and K. Yokoyama, Ramsey’s theorem for
pairs, collection, and proof size, submitted.

The precise definition of forcing interpretation (with function symbols) is
reorganized in [3].
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Relative translation

Definition

A (one-dimentional) relative translation t from a language £’ to
another language £ consists of the following:

@ L-formula ¢p(x): domain of an L’-structure
e L-formula ¢r(X) for each R € £L': interpretation of R

If M= (M,...)is an L-structure, then (D"; R",...) is an
L’-structure where D™ = {a e M: M E ¢p(a)},
R*={d e D" : Mk ¢gr(X)},. ..

In this sense, any £’-formula ¢ can be translated to an £-formula
YT by relativization, i.e., by formalizing Tarski’s truth definition for

(D% R",...) = .
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Relative interpretation

Let T be an L-theory and T’ be an £’-theory.

Definition

A relative translation 7 from £’ to L is said to be a relative
interpretation of T in Tif T + y" for each y € T'.

By formalizing the usual soundness proof (by induction on the
complexity of formulas), we have the following.

Theorem (Soundness theorem)
If T is a relative interpretation of T' in T and T’ + 6, then T + 67.

If T is a relative interpretation of T’ in T, then Con(T) implies
Con(T’).
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Reflection and conservation

Relative interpretation behaves well in the following sense.

Let T be an L-theory, T’ be an L’-theory and I be a class of
L N L'-formulas.

A relative interpretation 7 is said to be ['-reflecting if
Try™ > yforanyy el.

Theorem

If there exists a relative interpretation of T’ in T which is
I-reflecting, then T’ is -conservative over T.
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Polynomial reflection and proof size

Let T be an L-theory, T’ be an L’-theory and I be a class of
L N L'-formulas.

Definition

A relative translation 7 is said to be a polynomial interpretation of
T" in T if there is polynomial-time procedure which, given any

Y € T’, outputs a proof of T + y7.

A relative interpretation 7 is said to be polynomially I'-reflecting if
there is polynomial-time procedure which, given any 8 € I', outputs
aproofof T + 6" — 6.

Note that any relative interpretation of a finite theory T is a
polynomial interpretation.

If there exists a polynomial relative interpretation of T’ in T which
is polynomially T -reflecting, then T polynomially simulates T’ with
respect to I, i.e., there is polynomial-time procedure which, given
any proof of T' + 6 for 6 € I', outputs a proof of T + 6.




Example: RCAq vs 14

Let n > 1. A relative translation Trec from Lo to L4 consists of the

following:
® pu(x) =x=x,
@ ps(e) :=“eis anindex of a Ay-set”,
@ ¢c(x,e) :=“xis an element of the e-th A4-set”.

Proposition
@ TRec is an interpretation of RCAg + 1X2 in 1% ,.

@ TRec is polynomially Ly-reflecting in I¥.

IS, polynomially simulates RCAq + I1¥% w.r.t. £1-sentences.

Similarly, I=9 polynomially simulates RCAg + 19 w.r.t.
M}-sentences.

Forcing interpretation

Keita Yokoyama



Kripke semantics

A Kripke model is a quadraple K = (K, <k, D, "), where

@ (K, <k) is a pre-ordered set,

@ D = {Dy}kek is a family of nonempty sets such that Dx C Dy if
k <k K’,

@ I is a relation, called a valuation, from K to the set of atomic
formulae of the language extended by adding a constant
symbols a for each element a € | J{Dx | k € K} such that

e kI R(a,..., ap) = ajeDforie{l,..., n},
e ki R(ai,...,ap)and k <k’ = k’ +* R(ay,...,an)
foreach k, k’ € K.
@ The valuation -* is then extended to any formulas by the
following clauses
Q ky 1,
Q kr oAy o ki gand k I,
Q kropvyoe ki porkir y,
Q ki o>y ok i+ pimplies k' -y for each k’ > k.
Q ki Vxp © VK’ > kVa € D (k' I+ ¢[x/a]),
Q ki Ixp & Ja € Dx(k - ¢[x/a]).
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Kripke semantics for classical logic

It is well-known that the Kripke semantics is sound and complete
for intuitionistic predicate calculus.
Here, we focus on classical logic.

Define a new relation I by
kKiry < ki ——y.
Then, we have

Proposition (Soundness and completeness)

The following are equivalent.
@ T+ y (in classical logic).
Q K ¢ implies K for any Kripke model K.

We consider interpretation with this semantics.
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Translation by Kripke semantics/ forcing translation

A forcing translation 7 from £’ to L consists of the following:

o L-formula ¢k (k): domain of a pre-order,
o [-formula ¢<(k, k’): pre-order on K,
o L-formula ¢p(x, k): ¢p(-, k) defines the domain at k,

e L-formula ¢r(X, k) for each R € £L’: valuation of R at k.

If M= (M;...)is an L-structure, then K™ = (K7, <", Df, ") is a
Kripke model for £ if

- Dp ={aeM: M ¢p(a,k)},

- k" R(8) © d€ Dk AM = ¢gr(d, k),

- ¢<(k, k') defines a pre-order,

- Dk € Dy if p< (K, K").
a € Ukex- is often called a name, and we write k I a | if ¢p(a, k).

@ For any £’-formula y, the truth “k I 6” can be described by an
L-formula, which gives a translation.
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Interpretation by Kripke semantics/ forcing interpretation

Let T be an L-theory and T’ be an £’-theory.

Definition
A forcing translation = from £’ to L is said to be a forcing
interpretation of 7" in T if T proves

- @<(k, k’) defines a pre-order,

- D € D if p<(k, k'),

- kiralifandonlyif Yk’ > k3ak” > k’(k” I a |),

and

@ T t+i-yforeachy e T'.
(Here, I 6 means that Yk(¢k(k) — k I 6).

By formalizing the soundness proof, we have the following.

Theorem (Soundness theorem)
If T is a forcing interpretation of T" in T and T' + 6, then T rI- 6.
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Reflection and conservation

Forcing interpretation is well-behaved as relative interpretation.

Let T be an L-theory, T’ be an L’-theory and I be a class of
L N L'-formulas.

A forcing interpretation 7 is said to be I'-reflecting if
THE ¢ —> Y forany g el.

Theorem

If there exists a forcing interpretation of T in T which is
I-reflecting, then T’ is -conservative over T.
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Polynomial reflection and proof size

Let T be an L-theory, T’ be an £’-theory and I' be a class of
LN L -formulas.

Definition
A forcing translation 7 is said to be a polynomial interpretation of T’

in T if there is polynomial-time procedure which, given any ¢ € T’,
outputs a proof of T FIF* .

A forcing interpretation 7 is said to be polynomially I'-reflecting if
there is polynomial-time procedure which, given any 8 € I', outputs
a proof of T HF* 6 — 6.

Note that any forcing interpretation of a finite theory T is a
polynomial interpretation.

If there exists a polynomial forcing interpretation of T” in T which is
polynomially T -reflecting, then T polynomially simulates T’ with
respecttol.




Questions

@ T’ < T :& there exists a relative interpretation of T"in T
@ T’ <¢ T :& there exists a forcing interpretation of T in T

Is <¢ different from < ?

Is forcing interpretation strong enough to cover all conservation/
non-speedup proofs?

If a theory T’ is [-conservative over a theory T, then does there
always exist a forcing interpretation of T’ in T which is I'-reflecting?

If a theory T polynomially simulates T’ w.r.t. [-sentences, then
does there always exist a polynomial forcing interpretation of T’ in
T which is polynomially I'-reflecting?
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Example 1: forcing with low sets

In the study of second-order arithmetic, ﬂ] -conservation theorems
for I'I;-theories are often obtained by formalizing “low-basis
theorems” in computability theory.
@ low-basis theorem for WKL = I'I]—conservation of WKL over
RCAq + Bzg
@ low,-basis theorem for RT? = M]-conservation of RT? over
RCAq + 139
@ low-basis theorem for SADS, SCAC, ...
It is known (or believed?) that
if a low-basis theorem for a }-statement YX3YO(X, Y) is
provable within RCAg + I1X2 (or BZ%) “EFFECTIVELY”, its
iteration is also provable effectively, and ...,
then the standard I'I] -conservation proof by constructing
w-extension can be reformulated with relative interpretation,
and thus polynomial simulation w.r.t. I'I]—sentences is
available(??)
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In IZ?, Turing reduction is formalizable, and thus Turing jump,
low,-sets, ... are available. Write W"[e, X] for the e-th AX-set.

Let n > 1. A forcing translation 7(Low,_1 x) from £, to £» consists
of the following:

@ the set of conditions P = Low,_1 x consists of all pairs of the
form (e, X) such that e is an index of a Iowff_fset,

@ (e, X)>p (f,Y)if X =Y and W[e, X] =1 W[f, Y],

@ names for numbers are numbers v € N,

@ names for sets are conditions (e, X) € P,

@ (e, X)Irv | always, and (e, X) - {f,Y) L if (£, Y) <p (e, X},
@ (e, X)rvelf,Y)if(f,Y) | and v e W[f,Y].

Proposition

7(Lown_1.x) is polynomially I'I] -reflecting over RCA.




Example 1: forcing with low sets

Letn>1. Let® = YXAYH(X, Y) be a M}-sentence.

Q@ IfRCAy + IZ9 proves
YXoVX <7 Xode € LOWn_1’X00(X, W”[e, Xo]),
then 7(Lown_1.x) is a forcing interpretation of
RCAg + 129 + © in RCAg + IX0.
@ IfRCA} + BXY + exp proves
YXoVX <1 Xpde € LOWn_1’X09(X, W”[e, Xo]),
then t(Low,_1.x) is a forcing interpretation of
RCA; + BX% +©in RCA; + BYO.

Corollary

o Ifk > 2, 1%9 polynomially simulates WKL + 1= and
BX9 polynomially simulates WKLq + BX) w.r.t. 1].

e Ifk > 3,120 polynomially simulates WKLq + RT? + I and
BX polynomially simulates WKLg + RT? + BE? w.r.t. M].




Example 2: forcing for WKL revisited

Avigad used forcing interpretation to show that RCAq polynomially
simulates WKL, with respect to 1}-sentences.
Can we improve this?

Let Mgty = {(VX3A!'Ya(X, Y) : ais arithmetical}.

Theorem (Simpson/Tanaka/Yamazaki)
WKLy is sty -conservative over RCAy.

@ (Tanaka) Does RCAq polynomially simulate WKLq with
respect to ['sty-sentences.

@ (Wong) Is WKLj I'sty-conservative over RCA;?
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Proposition (RCA})

For any X, there exists a A -tree T such that any path W € [TX]
forms a countable coded w-model of WKL with Wy = X.

A forcing translation t consists of the following:

@ the set of conditions P is the set of all pairs of the form (X, T)
where T is (an index of) a Af-definable infinite subtree of 77X,

@ for given (X, T),(Y,U) e P, (X, T) 2p (Y, U) if X =Y and
TcU,

@ names for numbers are numbers v € N,
@ names for sets are numbers V € N,

@ (X, Y v [, (X, T)r" V | forany (X, T) e Pand names
v, V,

e (X, TYyr"veVifforanyoceT,v<|oyl - oy(v)=1.
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Example 2: forcing for WKL revisited

Q@ RCA{ HF" WKL,
@ RCAQ H-” WKLy.
© 7 is polynomially T sty-reflecting over RCA,.

Corollary

Q@ RCA; polynomially simulates WKL with respect to
['sTy-sentences.

© RCAy polynomially simulates WKL, with respect to
['sTy-sentences.
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Thank you!

@ J. Avigad, Forcing in proof theory. Bull. Symbolic Logic 10
(2004), no. 3, 305-333.

@ J. Avigad, Formalizing forcing arguments in subsystems of
second-order arithmetic. Ann. Pure Appl. Logic 82 (1996), no.
2,165-191.

@ L. A. Kolodziejczyk, T. L. Wong and K. Yokoyama, Ramsey’s
theorem for pairs, collection, and proof size, submitted.
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