Fixed Points meet Löb's Rule

Albert Visser

Philosophy, Faculty of Humanities, Utrecht University

Proof Theory Virtual Seminar, November 18, 2020

Examples

Uniform Semi-numerability

The Henkin Calculus

The μ -Calculus

Feferman's G2 plus Examples

Uniform Semi-numerability

The Henkin Calculus

The μ -Calculus

Examples

Uniform Semi-numerability

The Henkin Calculus

The μ -Calculus

Feferman's G2 plus Examples

Uniform Semi-numerability

The Henkin Calculus

The μ -Calculus

Universiteit Utrecht

eterman's G2 plus Examples

Uniform Semi-numerability

The Henkin Calculus

Feferman's G2 plus Examples

Uniform Semi-numerability

The Henkin Calculus

The μ -Calculus

Universiteit Utrecht

eterman's G2 plus Examples

Uniform Semi-numerability

The Henkin Calculus

Feferman's G2 plus Examples

Uniform Semi-numerability

The Henkin Calculus

The $\mu\text{-}\text{Calculus}$

Universiteit Utrecht

eterman's G2 plus Examples

Uniform Semi-numerability

The Henkin Calculus

Feferman's G2 plus Examples

Uniform Semi-numerability

The Henkin Calculus

The μ -Calculus

Feferman's G2 plus Examples

Uniform Semi-numerability

The Henkin Calculus

The μ -Calculus

Feferman's G2

We fix an arithmetisation "proof(X, x, y)" for "x is a proof of y from axioms in X". Here X is a unary predicate symbol. We write prov_{α}(y) for $\exists x \operatorname{proof}(\alpha, x, y)$.

Theorem (\pm Feferman 1960)

▲□▶▲□▶▲□▶▲□▶ ▲□ シタの

Consider any consistent RE theory T and an interpretation K of $EA + B\Sigma_1$ in T. Suppose σ is Σ_1 and σ^K semi-numerates the axioms of T in T. Then, we have $T \nvDash (con(\sigma))^K$.

One can omit $B\Sigma_1$, but then we need a modification of the proof.

Feferman's G2 plus Examples

Uniform Semi-numerability

The Henkin Calculus

The μ -Calculus

Limitations

- We have G2 for oracle provability, the provability notion associated with ω-consistency, cut-free EA-provability over EA, etcetera.
- $EA + B\Sigma_1$ seems far too strong to be a convincing base theory.
- The role of the very specific formula-class Σ₁.

We provide a more general Feferman-style result that works for certain predicates of the form prov_{α} that do not satisfy the Löb conditions.

Feferman's G2 plus Examples

Uniform Semi-numerability

The Henkin Calculus

The μ -Calculus

The (non-)Role of the Löb Conditions

Feferman's *proof* employs the Löb Conditions for $prov^{K}$.

There is a Σ_1^0 -numeration σ of the axioms of EA in EA such that:

- $\models \mathsf{E}\mathsf{A} \vdash \exists x \, \forall y \in \sigma \, y < x.$
- $\blacktriangleright \mathsf{EA} \nvDash \Box_{\sigma} \diamondsuit_{\sigma} \top \leftrightarrow \Box_{\sigma} \bot.$
- $\mathsf{EA} \vdash G \leftrightarrow \diamondsuit_{\sigma} \square_{\sigma} \bot$, for any *G* with $\mathsf{EA} \vdash G \leftrightarrow \neg \square_{\sigma} G$.

So the Löb Conditions fail for EA. However, the *result*, G2 for Σ_1 -semi-numerations, does hold —as follows from result below.

Feferman's G2 plus Examples

Uniform Semi-numerability

The Henkin Calculus

The μ -Calculus

Numerability is not Sufficient

An Example due to Feferman.

Let π be a standard predicate representing the axioms of PA. Let $\pi_{\mathbf{x}}(\mathbf{y}) :\leftrightarrow \pi(\mathbf{y}) \land \mathbf{y} < \mathbf{x}.$

We define $\pi^*(y) :\leftrightarrow \pi(y) \wedge \operatorname{con}(\pi_y)$. Note that π^* is Π^0_1 .

 π^{\star} numerates the axioms of PA in PA, but we do have $\mathsf{PA} \vdash \mathsf{con}(\pi^*).$

To verify in PA that the first k axioms are indeed axioms we need axioms enumerated after stage k.

Thus, the restriction to Σ_1 is needed in Feferman's Theorem.

Feferman's G2 plus Examples

Feferman's G2 plus Examples

Uniform Semi-numerability

The Henkin Calculus

The μ -Calculus

Feferman's G2 plus Examples

Uniform Semi-numerability

The Henkin Calculus

The μ -Calculus

Uniform Semi-numerability

What goes wrong in Feferman's Example is *all* that goes wrong.

```
We fix proof(X, x, y).
```

Consider a consistent theory U. Let X be the set of (Gödel numbers of) axioms of U. There are no constraints on the complexity of X. Let U_k be axiomatised by X_k , the elements of X that are < k.

```
Suppose N : S_2^1 \triangleleft U.
```

A U-formula ξ uniformely semi-numerates X (w.r.t. N) iff, for every *n*, there is an $m \ge n$, such that U_m proves $\xi(i)$, for each $i \in X_m$.

Uniform Semi-numerability

A General Version of G2

Theorem

Suppose U is consistent and ξ uniformly semi-numerates the axioms X of U (w.r.t. N). Then, U $\nvdash \operatorname{con}^{N}[\xi]$.

The square brackets emphasise that ξ is not supposed to be relativised to *N*. Let B be a single sentence that axiomatises S₂¹.

Proof.

Suppose $U \vdash \operatorname{con}^{N}[\xi]$. Then, for some k, $U_{k} \vdash B^{N} \land \operatorname{con}^{N}[\xi]$ and ξ semi-numerates X_{k} in U_{k} . Let $\beta := \bigvee_{A \in X_{k}} (x = \lceil A \rceil)$. We find $U_{k} \vdash (B \land \operatorname{con}(\beta))^{N}$. This contradicts a standard version of G2. \Box

 $\text{prov}_{[\xi]}^N$ need not to satisfy the Löb Conditions. Yet the Löb Conditions are used in the proof.

Examples

Uniform Semi-numerability

"he Henkin Calculus

The μ -Calculus

Since, uniformity can be easily lifted to finite extensions, we have:

Theorem Suppose ξ uniformly semi-numerates the axioms of U (w.r.t. N) and $U \vdash \text{prov}_{[\xi]}^N(\ulcorner A \urcorner) \rightarrow A$. Then $U \vdash A$. Feferman's G2 plus Examples

Uniform Semi-numerability

The Henkin Calculus

Feferman's G2 plus Examples

Uniform Semi-numerability

The Henkin Calculus

The μ -Calculus

Feferman's G2 plus Examples

Uniform Semi-numerability

The Henkin Calculus

The μ -Calculus

The Henkin Calculus

We work in the language of modal logic extended with a fixed-point operator $Fp.\Box\varphi$. HC has the following axioms and rules.

The axioms and rules of K,

▲□▶▲□▶▲□▶▲□▶ ■ りへで

- Löb' rule: if $\vdash \Box \varphi \rightarrow \varphi$, then $\vdash \varphi$.
- ▶ If ψ results from φ by renaming bound variables, then $\vdash \varphi \leftrightarrow \psi$.
- ▶ If $Fp.\Box\varphi$ is substitutable for p in φ , then $\vdash Fp.\Box\varphi \leftrightarrow \Box\varphi[p:Fp.\Box\varphi].$

Feferman's G2 plus Examples

Uniform Semi-numerability

The Henkin Calculus

The μ -Calculus

13

Perspective

The Henkin Calculus has standard syntax here. The disadvantage is that one has to get the details for variable-binding right —as is witnessed by the presence of the α -equivalence axiom.

One gets a sense that this material is about circularity rather than binding. A treatment using syntax on possibly cyclic graphs seems to represent what is going on much better. Such a treatment would be co-inductive. The disadvantage is discontinuity with conventional treatments.

The disadvantage of the second approach can, hopefully, be overcome by metatheorems linking the conventional treatment to the co-inductive one. eferman's G2 plus Examples

Uniform Semi-numerability

The Henkin Calculus

The μ -Calculus

Circular Henkin Calculus

This is what the Henkin Calculus looks like on directed possibly circular graphs. Note that F is not in the language here.

We demand that in a graph that represents a formula every cycle contains a vertex labeled with a box. This is the guarding condition.

The Axioms and Rules of K.

▲□▶▲□▶▲□▶▲□▶ ▲□ シタの

- Löb's rule: if $\vdash \Box \varphi \rightarrow \varphi$, then $\vdash \varphi$.
- If φ and ψ are bisimilar then $\vdash \varphi \leftrightarrow \psi$.

Feferman's G2 plus Examples

Uniform Semi-numerability

The Henkin Calculus

The μ -Calculus

15

The Grullet Modality

Back to the ordinary syntax.

We define:

• $\Box^{\bullet} \varphi := F p. \Box(\varphi \land p)$, where p is not free in φ .

We have:

- $\blacktriangleright \mathsf{HC} \vdash \Box^{\bullet} \varphi \leftrightarrow \Box(\varphi \land \Box^{\bullet} \varphi).$
- ► HC verifies Löb's Logic for □[•].
- ► Suppose φ is modalised in p, then HC \vdash ($\bigcirc^{\bullet}(p \leftrightarrow \varphi) \land \bigcirc^{\bullet}(q \leftrightarrow \varphi[p:q])) \rightarrow (p \leftrightarrow q)$. A version of the De Jongh-Sambin-Bernardi Theorem

Gödel and Henkin sentences are unique.

Feferman's G2 plus Examples

Uniform Semi-numerability

The Henkin Calculus

The μ -Calculus

Multiple Fixed Points 1

Consider a system of equations $\ensuremath{\mathcal{E}}$ given by:

$$(p_0 \leftrightarrow \varphi_0), \ldots, (p_{n-1} \leftrightarrow \varphi_{n-1}),$$

We assign a directed graph $G_{\mathcal{E}}$ to \mathcal{E} with as nodes the variables p_i , for i < n. We have an arrow from p_i to p_j iff there is an unguarded free occurrence of p_j in φ_i .

 ${\mathcal E}$ is guarded iff $G_{{\mathcal E}}$ is acyclic.

If \mathcal{E} is guarded, it has a unique solution. In this solution the free variables are those of the φ_i minus the p_i .

Feferman's G2 plus Examples

Uniform Semi-numerability

The Henkin Calculus

The μ -Calculus

Multiple Fixed Points 2

$$p \leftrightarrow (\tau q \wedge t)$$

$$q \leftrightarrow (\tau q \wedge t)$$

$$q \leftrightarrow (\tau r \wedge t)$$

$$t \leftrightarrow q \wedge 5$$

$$r \leftrightarrow q \wedge 5$$

$$r \leftrightarrow q \wedge 5$$

$$r \leftrightarrow q \wedge 5$$

Figure: The associated graph

Feferman's G2 plus Examples

Uniform Semi-numerability

The Henkin Calculus

The μ -Calculus

Reduction

Suppose φ is modalised in *p*. We can find a $\tilde{\varphi}$ and fresh q_0, \ldots, q_{n-1} , such that *p* does not occur in $\tilde{\varphi}$ and

 $\mathsf{HC} \vdash \varphi \leftrightarrow \widetilde{\varphi} \, [q_0 : \Box \, \psi_0, \ldots, q_{n-1} : \Box \, \psi_{n-1}].$

By solving the equations

$$\mathcal{E}: \boldsymbol{p} \leftrightarrow \widetilde{\varphi}, \boldsymbol{q}_0 \leftrightarrow \Box \psi_0, \ldots, \boldsymbol{q}_{n-1} \leftrightarrow \Box \psi_{n-1}.$$

we see that φ has a unique fixed point.

Feferman's G2 plus Examples

Uniform Semi-numerability

The Henkin Calculus

The μ -Calculus

The Extended Henkin Calculus

Using the reduction result we can show that the Henkin Calculus is synonymous with its extended variant where we have fixed points for modalised formulas:

• we have $Fp.\varphi$ in case p only occurs in the scope of a box.

The axioms for the extended calculus are analogous.

On the circular syntax the difference between both versions disappears.

Feferman's G2 plus Examples

Uniform Semi-numerability

The Henkin Calculus

The μ -Calculus

Arithmetical Interpretation

Suppose ξ uniformly semi-numerates the axioms of *U* w.r.t *N*. Then, HC is arithmetically valid in *U* for prov^{*N*}_{*IE*1}.

The precise interpretation of the fixed-point operator and the proof of soundness take some doing.

Feferman's G2 plus Examples

Uniform Semi-numerability

The Henkin Calculus

The μ -Calculus

Completeness

HC and extended HC both have a Kripke model completeness theorem in finite dags and in finite trees.

Is the provability logic of all uniformely semi-numerable axiom sets precisely HC? If so, is there a pair U, α , where this logic is assumed?

It is a win-win situation: how cool would it be to find an extra principle.

Feferman's G2 plus Examples

Uniform Semi-numerability

The Henkin Calculus

Feferman's G2 plus Examples

Uniform Semi-numerability

The Henkin Calculus

The $\mu\text{-}\text{Calculus}$

Universiteit Utrecht

eferman's G2 plus Examples

Uniform Semi-numerability

The Henkin Calculus

The $\mu\text{-Calculus}$

The μ -Calculus

Our version of the μ -calculus consists of K plus fixed points for formulas in which the fixed-point-variable occurs positively. We write μp for the fixed-point operator reflecting our intention to look at minimal fixed points. We have the following axiom expressing minimality:

$$\blacktriangleright \vdash \varphi[\boldsymbol{p} : \alpha] \to \alpha \quad \Rightarrow \vdash \mu \boldsymbol{p} . \varphi \to \alpha.$$

The well-founded part of μ is μ + H, where H := $\mu p. \Box p$.

 $\mu + H$ is synonymous with HC.

Feferman's G2 plus Examples

Uniform Semi-numerability

The Henkin Calculus

The $\mu\text{-Calculus}$

Well-Foundedness beats Negativity 1

Feferman's G2 plus Examples

Uniform Semi-numerability

The Henkin Calculus

The μ -Calculus

Consider φ modalised in *p*. Let φ_0 be the result of replacing all *negative* occurrences of *p* in φ by a fresh *q*. Let φ_1 be the result of replacing all *positive* occurrences of *p* in φ by *q*.

A solution lemma tells us that the equations $p \leftrightarrow \varphi_0$, $q \leftrightarrow \varphi_1$ in μ can be solved. Let the solutions be α_0 and α_1 .

Well-Foundedness beats Negativity 2

In μ + H, we have uniqueness of modalised fixed points for systems of equations and, hence μ + H $\vdash \alpha_0 \leftrightarrow \alpha_1$.

▲□▶▲御▶▲臣▶▲臣▶ 臣 のへで

Ergo $\mu + \mathsf{H} \vdash \alpha_0 \leftrightarrow \varphi_0[p : \alpha_0, q : \alpha_0]$, so α_0 is a fixed point of φ .

Feferman's G2 plus Examples

Uniform Semi-numerability

The Henkin Calculus

The μ -Calculus

26

Thank You

Feferman's G2 plus Examples

Uniform Semi-numerability

The Henkin Calculus

The μ -Calculus

