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Feferman’s G2

We fix an arithmetisation “proof(X , x , y)” for “x is a proof of y from
axioms in X ”. Here X is a unary predicate symbol. We write
provα(y) for ∃x proof(α, x , y).

Theorem (± Feferman 1960)
Consider any consistent RE theory T and an interpretation K of
EA + BΣ1 in T . Suppose σ is Σ1 and σK semi-numerates the
axioms of T in T . Then, we have T 0 (con(σ))K .

One can omit BΣ1, but then we need a modification of the proof.
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Limitations

I We have G2 for oracle provability, the provability notion
associated with ω-consistency, cut-free EA-provability over
EA, etcetera.

I EA + BΣ1 seems far too strong to be a convincing base
theory.

I The role of the very specific formula-class Σ1.

We provide a more general Feferman-style result that works for
certain predicates of the form provα that do not satisfy the Löb
conditions.
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The (non-)Role of the Löb Conditions

Feferman’s proof employs the Löb Conditions for provK .

There is a Σ0
1-numeration σ of the axioms of EA in EA such that:

I EA ` ∃x ∀y ∈ σ y < x .
I EA 0 σ σ > ↔ σ ⊥.
I EA ` G↔ σ σ ⊥, for any G with EA ` G↔ ¬ σ G.

So the Löb Conditions fail for EA. However, the result, G2 for
Σ1-semi-numerations, does hold —as follows from result below.
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Numerability is not Sufficient

An Example due to Feferman.

Let π be a standard predicate representing the axioms of PA. Let
πx (y) :↔ π(y) ∧ y ≤ x .

We define π?(y) :↔ π(y) ∧ con(πy ). Note that π? is Π0
1.

π? numerates the axioms of PA in PA, but we do have
PA ` con(π?).

To verify in PA that the first k axioms are indeed axioms we need
axioms enumerated after stage k .

Thus, the restriction to Σ1 is needed in Feferman’s Theorem.
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Uniform Semi-numerability

What goes wrong in Feferman’s Example is all that goes wrong.

We fix proof(X , x , y).

Consider a consistent theory U. Let X be the set of (Gödel
numbers of) axioms of U. There are no constraints on the
complexity of X . Let Uk be axiomatised by Xk , the elements of X
that are ≤ k .

Suppose N : S1
2 � U.

A U-formula ξ uniformely semi-numerates X (w.r.t. N) iff, for every
n, there is an m ≥ n, such that Um proves ξ(i), for each i ∈ Xm.
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A General Version of G2

Theorem
Suppose U is consistent and ξ uniformly semi-numerates the
axioms X of U (w.r.t. N). Then, U 0 conN [ξ].

The square brackets emphasise that ξ is not supposed to be
relativised to N. Let B be a single sentence that axiomatises S1

2.

Proof.
Suppose U ` conN [ξ]. Then, for some k , Uk ` BN ∧ conN [ξ] and ξ
semi-numerates Xk in Uk . Let β :=

∨
A∈Xk

(x = pAq). We find
Uk ` (B ∧ con(β))N . This contradicts a standard version of G2. q

provN
[ξ] need not to satisfy the Löb Conditions. Yet the Löb

Condtions are used in the proof.
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Löb’s Rule

Since, uniformity can be easily lifted to finite extensions, we have:

Theorem
Suppose ξ uniformly semi-numerates the axioms of U (w.r.t. N)
and U ` provN

[ξ](pAq)→ A. Then U ` A.
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The Henkin Calculus

We work in the language of modal logic extended with a fixed-point
operator zp. ϕ. HC has the following axioms and rules.

I The axioms and rules of K,
I Löb’ rule: if ` ϕ→ ϕ, then ` ϕ.
I If ψ results from ϕ by renaming bound variables, then
` ϕ↔ ψ.

I If zp. ϕ is substitutable for p in ϕ, then
` zp. ϕ↔ ϕ[p : zp. ϕ].
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Perspective

The Henkin Calculus has standard syntax here. The disadvantage
is that one has to get the details for variable-binding right —as is
witnessed by the presence of the α-equivalence axiom.

One gets a sense that this material is about circularity rather than
binding. A treatment using syntax on possibly cyclic graphs seems
to represent what is going on much better. Such a treatment
would be co-inductive. The disadvantage is discontinuity with
conventional treatments.

The disadvantage of the second approach can, hopefully, be
overcome by metatheorems linking the conventional treatment to
the co-inductive one.
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Circular Henkin Calculus

This is what the Henkin Calculus looks like on directed possibly
circular graphs. Note that z is not in the language here.

We demand that in a graph that represents a formula every cycle
contains a vertex labeled with a box. This is the guarding
condition.

I The Axioms and Rules of K.
I Löb’s rule: if ` ϕ→ ϕ, then ` ϕ.
I If ϕ and ψ are bisimilar then ` ϕ↔ ψ.
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The Grullet Modality

Back to the ordinary syntax.

We define:
I • ϕ := zp. (ϕ ∧ p), where p is not free in ϕ.

We have:
I HC ` • ϕ↔ (ϕ ∧ • ϕ).
I HC verifies Löb’s Logic for •.
I Suppose ϕ is modalised in p, then

HC ` (�•(p ↔ ϕ) ∧�•(q ↔ ϕ[p : q]))→ (p ↔ q).
A version of the De Jongh-Sambin-Bernardi Theorem

Gödel and Henkin sentences are unique.
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Multiple Fixed Points 1

Consider a system of equations E given by:

(p0 ↔ ϕ0), . . . , (pn−1 ↔ ϕn−1),

We assign a directed graph GE to E with as nodes the variables pi ,
for i < n. We have an arrow from pi to pj iff there is an unguarded
free occurrence of pj in ϕi .

E is guarded iff GE is acyclic.

If E is guarded, it has a unique solution. In this solution the free
variables are those of the ϕi minus the pj .
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Multiple Fixed Points 2

Figure: The associated graph
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Reduction

Suppose ϕ is modalised in p. We can find a ϕ̃ and fresh
q0, . . . ,qn−1, such that p does not occur in ϕ̃ and

HC ` ϕ↔ ϕ̃ [q0 : ψ0, . . . ,qn−1 : ψn−1].

By solving the equations

E : p ↔ ϕ̃, q0 ↔ ψ0, . . . , qn−1 ↔ ψn−1.

we see that ϕ has a unique fixed point.
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The Extended Henkin Calculus

Using the reduction result we can show that the Henkin Calculus
is synonymous with its extended variant where we have fixed
points for modalised formulas:

I we have zp.ϕ in case p only occurs in the scope of a box.

The axioms for the extended calculus are analogous.

On the circular syntax the difference between both versions
disappears.
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Arithmetical Interpretation

Suppose ξ uniformly semi-numerates the axioms of U w.r.t N.
Then, HC is arithmetically valid in U for provN

[ξ].

The precise interpretation of the fixed-point operator and the proof
of soundness take some doing.
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Completeness

HC and extended HC both have a Kripke model completeness
theorem in finite dags and in finite trees.

Is the provability logic of all uniformely semi-numerable axiom sets
precisely HC? If so, is there a pair U, α, where this logic is
assumed?

It is a win-win situation: how cool would it be to find an extra
principle.
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The µ-Calculus

Our version of the µ-calculus consists of K plus fixed points for
formulas in which the fixed-point-variable occurs positively. We
write µp for the fixed-point operator reflecting our intention to look
at minimal fixed points. We have the following axiom expressing
minimality:

I ` ϕ[p : α]→ α ⇒ ` µp.ϕ→ α.

The well-founded part of µ is µ+ H, where H := µp. p.

µ+ H is synonymous with HC.
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Well-Foundedness beats Negativity 1

Consider ϕ modalised in p. Let ϕ0 be the result of replacing all
negative occurrences of p in ϕ by a fresh q. Let ϕ1 be the result of
replacing all positive occurrences of p in ϕ by q.

A solution lemma tells us that the equations p ↔ ϕ0, q ↔ ϕ1 in µ
can be solved. Let the solutions be α0 and α1.
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Well-Foundedness beats Negativity 2

In µ+ H, we have uniqueness of modalised fixed points for
systems of equations and, hence µ+ H ` α0 ↔ α1.

Ergo µ+ H ` α0 ↔ ϕ0[p : α0,q : α0], so α0 is a fixed point of ϕ.
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Thank You
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