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My Aim

To explore different rules for an identity predicate
in natural deduction and the sequent calculus.
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My Plan

Sequent Calculus & Natural Deduction

Defining Rules

Defining Rules for Identity

Identity Axioms
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sequent calculus
& natural
deduction



Intuitionistic Proofs & Derivations

A derivation ofX � A

builds a proof fromX toA.
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An Example

p � p

q � q
¬L

q,¬q �
K

q,¬q � r r � r
∨L

q∨ r,¬q � r →L

p→ (q∨ r), p,¬q � r
∧L

p→ (q∨ r), p∧ ¬q � r →R

p→ (q∨ r) � (p∧ ¬q) → r

p → (q∨ r)

[p∧ ¬q]2

∧E
p →E

q∨ r

[p∧ ¬q]2

∧E
¬q [q]1

¬E
]
K

r [r]1

∨E1

r →I
2

(p∧ ¬q) → r

Greg Restall Comparing Rules for Identity , in sequent systems & natural deduction 6 of 58

sequent calculus

natural deduction



The one proof can be built in different ways

p � p q∨ r � q∨ r →L

p→ (q∨ r), p � q∨ r

q � q
¬L

q,¬q �
K

q,¬q � r r � r
∨L

q∨ r,¬q � r
Cut

p→ (q∨ r), p,¬q � r
∧L

p→ (q∨ r), p∧ ¬q � r →R

p→ (q∨ r) � (p∧ ¬q) → r

p → (q∨ r)

[p∧ ¬q]2

∧E
p →E

q∨ r

[p∧ ¬q]2

∧E
¬q [q]1

¬E
]
K

r [r]1

∨E1

r →I
2

(p∧ ¬q) → r
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Classical derivations build . . .what?

p � p
¬R

� ¬p, p
∨R

� ¬p∨ p

p � p
p � p, q →R

� p, p → q →L

(p → q) → p � p, p
W

(p → q) → p � p
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Add focus

From P1, P2, P3 � C1, C2, C3 to P1, P2, P3 � C1;C2, C3

A focussed sequent has the shapeX � C; Y
whereC is either a formula or is empty,

andX and Y are finite multisets of formulas.

(�e empty case corresponds to a proof of a contradiction.)

A proof for P1, P2, P3 � C1;C2, C3 is a proof ofC1
from the context P1, P2, P3 (positive) andC−

2 ,C
−
3 (negative).
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Focus, Defocus; Retrieve and Store

[A−]

Π

]
Retrieve

A

X � ;A, Y
Focus

X � A; Y

Π

A A−

Store

]

X � A; Y
Defocus

X � ;A, Y
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Derivations with focus build proofs with alternatives

p � p;

p � p;
Defocus

p � ;p
Focus

p � q;p →R

� p → q;p →L

(p → q) → p � p;p
Defocus

(p → q) → p � ;p, p
Focus

(p → q) → p � p;

(p → q) → p

[p]1 [p−]2
Store

]
Retrieve

q →I
1

p → q →E

p [p−]2
Store

]
Retrieve

q
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That’s Classical logic

Adding the Store/Retrieve rules
to Gentzen–Prawitz Natural Deduction
gives you a well-behaved, normalising

natural deduction system for classical logic.

(It’s basically Michel Parigot’s λµ calculus.)
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Interpreting Sequents with Focus

X � A; Y —a proof ofA, from a context whereX is
asserted and Y is denied.

X � ; Y —a refutation of assertingX and denying Y.

Greg Restall Comparing Rules for Identity , in sequent systems & natural deduction 13 of 58



I’ll pass freely between sequent derivations
and natural deduction proofs with alternatives.
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defining rules



What makes rules well behaved?

A B
∧I

A∧ B

A∧ B
∧E

A

A∧ B
∧E

B

A
tonkI

A tonk B

A tonk B
tonkE

B
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Analytic Validity
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One option . . .

One way to be analytically valid is to be a definition . . .

. . . but∧I and∧E don’t look
much like definitions.
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Invertible rules look more like definitions.

X,A, B � Z
∧Df

X,A∧ B � Z

X,A � B; Y →Df

X � A → B; Y

X,A � ; Y
¬Df

X � ¬A; Y

�ey charaterise one aspect of the behaviour of the introduced concept
(positively or negatively). �e structural rules settle the rest.
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Defining rules define

�ey are conservative and uniquely defining.
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From Defining Rules to Left/Right Rules . . .

X,A, B � Z
∧Df↓

X,A∧ B � Z
X,A, B � Z

∧L

X,A∧ B � Z

∧L is one half of∧Df

X � A; Y

X ′ � B; Y ′

Id

A∧ B � A∧ B;
∧Df↑

A,B � A∧ B;
Cut

X ′, A � A∧ B; Y ′
Cut

X,X ′ � A∧ B; Y, Y ′

X � A; Y X ′ � B; Y ′
∧R

X,X ′ � A∧ B; Y, Y ′

∧R is formed from the other half, using Id and Cut.
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. . . and back

Id

A � A;
Id

B � B;
∧R

A,B � A∧ B; X,A∧ B � Z
Cut

X,A, B � Z

X,A∧ B � Z
∧Df↑

X,A, B � Z

We can recover∧Df↑ from∧R, given Id and Cut, and∧Df↓ is∧L.
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L/R rules given in this way admit elimination of principal Cuts

∆

X � A; Y

∆ ′

X ′ � B; Y ′
∧R

X,X ′ � A∧ B; Y, Y ′

∆ ′′

X ′′, A, B � Z ′′
∧L

X ′′, A∧ B � Z ′′
Cut

X,X ′, X ′′ � Z ′′, Y, Y ′

Unpacks into . . .

∆

X � A; Y

∆ ′

X ′ � B; Y ′

Id

A∧ B � A∧ B;
∧Df↑

A,B � A∧ B;
Cut

X ′, A � A∧ B; Y ′
Cut

X,X ′ � A∧ B; Y, Y ′

∆ ′′

X ′′, A, B � Z ′′
∧Df↓

X ′′, A∧ B � Z ′′
Cut

X,X ′, X ′′ � Z ′′, Y, Y ′
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L/R rules given in this way admit elimination of principal Cuts

Permuting the Cuts, this becomes . . .

∆

X � A; Y

∆ ′

X ′ � B; Y ′

Id

A∧ B � A∧ B;
∧Df↑

A,B � A∧ B;

∆ ′′

X ′′, A, B � Z ′′
∧Df↓

X ′′, A∧ B � Y ′′
Cut

X ′′, A, B � Z ′′
Cut

X ′, A � Z ′′, Y ′
Cut

X,X ′, X ′′ � Z ′′, Y, Y ′

. . .which (since the Id/Df↑/Df↓/Cut detour is redundant) simplifies to:
∆

X � A; Y

∆ ′

X ′ � B; Y ′
∆ ′′

X ′′, A, B � Z ′′
Cut

X ′, A � Z ′′, Y ′
Cut

X,X ′, X ′′ � Z ′′, Y, Y ′
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∧Df in Natural Deduction

X,A, B � Z
∧Df↓

X,A∧ B � Z
A∧ B

[A,B]

Π

C
∧E

C

X,A∧ B � Z
∧Df↑

X,A, B � Z

A B
∧I

A∧ B

Π
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Conservativity and Unique Definability

Cut Elimination and the Subformula Property
for rules other than Cut gives Conservative Extension.

�e shape of the defining rules gives Uniqueness.
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Defining Rules and Generality

X � A(n); Y
∀Df

X � ∀xA(x); Y

n is absent from the lower sequent,
and it must be inferentially general.
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Specification as a Rule

∀xFx � ∀xFx;
∀Df↑

∀xFx � Fn;
Spec

n
t

∀xFx � Ft;

X � Z
Spec

n
t

X[n/t] � Z[n/t]
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The Status of Spec

Spec, like Id and Cut, are primitive
rules in the systemwithDf rules.

Spec is admissible (height preserving admissible,
in fact) as are Id (for complex formulas) and Cut

in the systemwith L/R rules.
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defining rules
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Identity and Harmony

Identity and harmony
Stephen Read

1. Harmony

The inferentialist account of logic says that the meaning of a logical oper-
ator is given by the rules for its application. Prior (1960–61) showed that
a simple and straightforward interpretation of this account of logicality
reduces to absurdity. For if ‘tonk’ has the meaning given by the rules 
Prior proposed for it, contradiction follows. Accordingly, a more subtle 
interpretation of inferentialism is needed. Such a proposal was put forward
initially by Gentzen (1934) and elaborated by, e.g., Prawitz (1977). 
The meaning of a logical expression is given by the rules for the assertion
of statements containing that expression (as designated component); these
are its introduction-rules. The meaning so given justifies further rules 
for drawing inferences from such assertions; these are its elimination-
rules:

The introductions represent, as it were, the ‘definitions’ of the symbols
concerned, and the eliminations are no more, in the final analysis, than
the consequence of these definitions. (Gentzen 1934: 80)

For example, if the only ground for assertion of ‘p tonk q’ is given by Prior’s
rule:

then Prior mis-stated the elimination-rule. It should read

that is, given ‘p tonk q’, and a derivation of r from p (the ground for assert-
ing ‘p tonk q’), we can infer r, discharging the assumption p. We can state
the rule more simply as follows:

For if we may infer whatever, r, we can infer from p, we can infer p and
then proceed to infer r, that is, what we can infer from p. Prior’s mistake
was to give a rule

q q
p

 tonk 

p q
p
r

r
 tonk 

tonk-E

( )

p
p qtonk

tonk-I

Analysis 64.2, April 2004, pp. 113–19. © Stephen Read
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A Defining Rule for Identity

X, Fa � Fb; Y X, Fb � Fa; Y
=Df

X � a = b; Y

(Here, F is inferentially general, and
absent from the lower sequent.)

Denying a = b has the same significance as taking there
to be some feature F that holds of a but not b, or vice versa.

Or equivalently, to prove that a = b, prove Fb
from the assumption Fa (and vice versa),

where the predicate F is arbitrary.

Identity is a kind of indistinguishability.
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=Df↑ in Natural Deduction

X � a = b; Y
=Df↑1

X, Fa � Fb; Y
Spec

F
P

X, Pa � Pb; Y

X � a = b; Y
=Df↑2

X, Fb � Fa; Y
Spec

F
P

X, Pb � Pa; Y

Π

a = b FaPa
=E1

FbPb

Π

a = b FbPb
=E2

FaPa
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An Example Derivation

X, Fa � Fb; Y X, Fb � Fa; Y
=Df

X � a = b; Y

X � A[x/a]; Y
λDf

X � (λx.A)a; Y

X � Z
Spec

F
P

X[F/P] � Z[F/P]

Fa � Fa; Fa � Fa;
=Df↓

� a = a;
λDf↓

� (λx.x = a)a;

a = b � a = b;
=Df↑

a = b, Fa � Fb;
Spec

F
(λx.x=a)

a = b, (λx.x = a)a � (λx.x = a)b;
Cut

a = b � (λx.x = a)b;
λDf↑

a = b � b = a;
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From Defining Rules to L/R rules: =Df↓ is =R

X, Fa � Fb; Y X, Fb � Fa; Y
=Df↓

X � a = b; Y
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Deriving =L rules

X � PaPb; Y

a = b � a = b;
=Df↑

a = b, Fa � FbFb � Fa;
Spec

F
P

a = b, Pa � PbPb � Pa;
Cut

a = b, X � PbPa; Y X ′, PbPa � Z ′
Cut

a = b, X, X ′ � Z ′, Y

X � Pa; Y X ′, Pb � Z ′
=L1

a = b, X, X ′ � Z ′, Y
X � Pb; Y X ′, Pa � Z ′

=L2
a = b, X, X ′ � Z ′, Y
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Comparing L/R rules and I/E rules

X, Fa � Fb; Y X, Fb � Fa; Y
=L

X � a = b; Y

[Fa]

Π
Fb

[Fb]

Π ′

Fa
=I

a = b

X � Pa; Y X ′, Pb � Z ′
=L1

a = b, X, X ′ � Z ′, Y

a = b
Π
Pa

=E2
Pb
Π ′

X � Pb; Y X ′, Pa � Z ′
=L2

a = b, X, X ′ � Z ′, Y

a = b
Π
Pb

=E2
Pa
Π ′
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Our Symmetry Derivation in Natural Deduction

[Fa] [Fa]
=I

a = a
λI

(λx.x = a)a a = b
=E

(λx.x = a)b
λE

b = a
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With these Left/Right Rules . . .

Spec is height-preserving admissible.

We can eliminate Cut, as usual.
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But eliminating Cut hardly seems worth it!

X, Fa � Fb; Y X, Fb � Fa; Y
=R

X � a = b; Y

X � Pa; Y X ′, Pb � Z ′
=L1

a = b, X, X ′ � Z ′, Y

X � Pb; Y X ′, Pa � Z ′
=L2

a = b, X, X ′ � Z ′, Y

Each rule breaks the subformula property.
=Rmight be excusable (by analogy with ∀R/∃L),

but in=L, P can be any predicate,
primitive or complex.

For analytic rules, we must look elsewhere.
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The Power of Reflexivity

X, Fa � Fb; Y X, Fb � Fa; Y
=R

X � a = b; Y

=R says that we have a = b if we can transport
a-features to b (and vice versa).

So we are in a position to transport a-features to b,
and if we already knew that being identical toawas an

a-feature, then that’s enough show that a is identical to b.
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From Rules to Axioms: from =R to Refl

Refl

� a = a;

Fa � Fa; Fa � Fa;
=R

� a = a;
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And Refl is enough to recover =R

Replace this:

∆1

X, Fa � Fb; Y
∆2

X, Fb � Fa; Y
=R

X � a = b; Y

With this:

Refl

� a = a;
λR

� λx.(a = x)a;

∆1[F/λx.(a = x)]

X, λx.(a = x)a � λx.(a = x)b; Y
Cut

X � λx.(a = x)b; Y
λR

X � a = b; Y
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The Problem with =L

X � Pa; Y X ′, Pb � Z ′
=L1

a = b, X, X ′ � Z ′, Y

X � Pb; Y X ′, Pa � Z ′
=L2

a = b, X, X ′ � Z ′, Y

�is looks just like a Cut on Pa/Pb, at the cost of granting a = b.
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From =L to =L.ax and back.

=L.ax1
a = b, Pa � Pb;

=L.ax2
a = b, Pb � Pa;

Pa � Pa; Pb � Pb;
=L1

a = b, Pa � Pb;

Pb � Pb; Pa � Pa;
=L2

a = b, Pb � Pa;

X � Pa; Y
=L.ax1

a = b, Pa � Pb;
Cut

a = b, X � Pb; Y X ′, Pb � Z ′
Cut

a = b, X, X ′ � Z ′, Y

X � Pb; Y
=L.ax2

a = b, Pb � Pa;
Cut

a = b, X � Pa; Y X ′, Pa � Z ′
Cut

a = b, X, X ′ � Z ′, Y
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We can restrict =L.ax to primitive predicates

=L.ax1
a = b, Pa � Pb;

∧L

a = b, Pa∧Qa � Pb;

=L.ax1
a = b,Qa � Qb;

∧L

a = b, Pa∧Qa � Qb;
∧R

a = b, Pa∧Qa � Pa∧Qb;
λ

a = b, λx.(Px∧Qx)a � λx.(Px∧Qx)b;

Greg Restall Comparing Rules for Identity , in sequent systems & natural deduction 47 of 58



We can restrict =L.ax to primitive predicates

=L.ax2
a = b, Pb � Pa;

¬L

a = b, Pb,¬Pa � ;
¬R

a = b,¬Pa � ¬Pb;
λ

a = b, λx.(¬Px)a � λx.(¬Px)b;
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We can restrict =L.ax to primitive predicates

=L.ax2
a = b, Pac � Pbc;

¬L

a = b, ∀yPay � Pbc;
¬R

a = b, ∀yPay � ∀yPby;
λ

a = b, λx.(∀yPxy)a � λx.(∀yPxy)b;
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Identity axioms in Natural Deduction

Refl

� a = a; a = a

L.ax1

a = b, Pa � Pb;
a = b Pa

=E

Pb

L.ax2

a = b, Pb � Pa;

a = b Pb
=E

Pa
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Now eliminate Cut

Now that identity is given by axioms,
Cut elimination proceeds largely
like the system without identity.

=L.ax1
a = b, Pa � Pb;

=L.ax2
c = b, Pb � Pc;

Cut

a = b, c = b, Pa � Pc;

becomes
=L??

a = b, c = b, Pa � Pc;
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Now eliminate Cut

It suffices to close the axioms under Cut.

=L.ax∗

Iab, Pa � Pb;

Where Iab is any multiset
of identities linkinga tob,

and P is any primitive predicate.

(a) �e emptymultiset links a to a.

(b) a = b links a to b and b to a.

(c) IfX links a to b and Y links
b to c thenX, Y links a to c.

(We can leave ‘Pa’ out if it is a = a.)
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Different Sequent Systems

I =Df + Cut + Spec
— It’s easy to show that=Df is uniquely defining.

I =L/R + Cut + Spec
— Straightforward translation between=Df and=L/R.

I =L/R + Cut
— Since Spec is height-preserving admissible.

I =L/R

— =L/R rules don’t have the subformula property.
I =L.ax + Refl + Cut
— Easy translation between=L/R and=L.ax + Refl, using Cut.

I =L.ax∗ + Refl
— =L.ax∗ + Refl are analytic and conservatively extending.
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Kinds of Identity Rules

X, Fa � Fb; Y X, Fb � Fa; Y
=Df

X � a = b; Y

Refl

� a = a;
=L.ax∗

Iab, Pa � Pb;

I =Df defines identity by giving conditions under which a = bmay be
proved. We’re in a position to prove a = b iff we’re in a position to
transfer Fa to Fb (and back) for arbitrary F.

I Refl and=L.ax∗ are semantic constraints connecting primitive predicates.

I �ese two characterisations are equivalent as far as derivability goes.

Greg Restall Comparing Rules for Identity , in sequent systems & natural deduction 54 of 58



thank you!
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Thank you!

slides: https://consequently.org/presentation/2021/
comparing-identity-rules

feedback: @consequently on Twitter,
or email atrestall@unimelb.edu.au
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