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A problem in formal epistemology

Can knowledge be defined?

Several attempts at defining knowledge, starting already with Plato’s Meno (∼ 400 BC)

Socrates: Now this is an illustration of the nature of true opinions: while they stay
with us they are beautiful and fruitful, but they run away out of the human soul, and do
not remain long, and therefore they are not of much value until they are fastened by
the tie of the cause; [...] But when they are bound, in the first place, they have
the nature of knowledge; and, in the second place, they are permanent. And this
is why knowledge is more honourable and excellent than true opinion, because
fastened by a chain.



... and Theaetetus (∼ 369 BC)

Socrates: When, therefore, any one forms the true opinion of anything without ratio-
nal explanation, you may say that his mind is truly exercised, but has no knowledge;
for he who cannot give and receive a reason for a thing, has no knowledge of that
thing; but when he adds rational explanation, then, he is perfected in knowledge.



Knowledge = justified true belief

Gettier (1963) counterexamples challenge the equation.
Counterexamples are of the form:
JBela(P), P implies Q, therefore JBela(Q).
However, P happens to be false, but Q is still true. Does a know Q?
I am justified in believing something that is only by chance true. Is this knowledge?

In Gettier counterexamples the relation of justification between premisses and conclusions is
hampered by additional information. this takes to the
defeasibility theory of knowledge: new evidence overrides, or defeats, the subject’s prima
facie justification for belief

Would we still believe in A if we were given some additional evidence?

New characterization: Knowledge as indefeasibly justified true belief

To talk about indefeasible belief we must first explain what it means to revise a belief on the
face of new information



Belief revision

One of the most popular logical approaches to belief revision is the theory AGM (Alchourròn,
Gärdenfors, and Makinson 1982)

Operation of belief revision takes an epistemic state K and a proposition A and gives a new,
revised, epistemic state K ∗ A; this defines a non-monotonic consequence relation

A |∼ B ≡ B ∈ K ∗ A

I |∼ is a nonmonotonic consequence relation

I |∼ depends of a background epistemic state, so family of consequence relations

I beliefs concern only the “facts” of the world and not higher-order beliefs (i.e., beliefs
about beliefs).

I conditional at the level of the consequence relation, not at the level of the object language
so cannot treat nested conditionals

I cannot treat iterated belief revision

Something more general is needed



The main goal

Fully formal epistemology.

Desiderata:

I Epistemic and doxastic modalities

I Conditionals in the object language, allowing for nesting

I Notion of justification

I Treatment of belief revision

I Valid inference, absolute and multi-agent

I Semantic and syntactic approach, completeness theorems

I Computation

In this talk we address most of these.

Assumption: familiarity with sequent calculi.



Plan of the talk

Dynamic epistemic logic

Neighbourhood semantics

Conditional doxastic logic CDL

Knowledge and simple belief

Sequent calculus G3SBK

Properties of knowledge

Proof theory and paradox control



Dynamic epistemic logic

https://plato.stanford.edu/entries/dynamic-epistemic/

“Dynamic Epistemic Logic is the study of a family of modal logics, each of which is obtained
from a given logical language by adding one or more modal operators that describe
model-transforming actions.”

Semantic tools (the preferred approach in the literature) are a generalization of possible world
semantics:

I Plausibility models;

I Grove models, Lewis’ sphere semantics;

We focus on a particular dynamic epistemic logic

https://plato.stanford.edu/entries/dynamic-epistemic/


Neighbourhood Models for CDL

Neighbourhood models

- These models associate to each world a set of sets of worlds, used to interpret modalities;
they were originally proposed to give an interpretation of non-normal modal logics:
Montague (1968), Scott (1970), Chellas (1980)...

- Semantics of counterfactuals: Sphere models (Lewis1973);

- Semantics of belief revision: Grove (1988);

- Studied recently also by Marti (2013); Negri (2016); recent monograph: Pacuit (2017).



Neighbourhood semantics

Definition 2.1 (Neighbourhood frame)
A neighbourhood frame has the form 〈W , I 〉 where W is a nonempty set and
I : W → P(P(W )) is a neighbourhood function.

We form the neighbourhood model M = 〈W , I , J K〉 by adding the propositional evaluation
function J K:

Definition 2.2 (Evaluation function J K)
J K : Atm→ P(W ) is the evaluation for atomic formulas. Truth conditions for formulas extend
J K inductively as:
J¬AK = W − JAK
JA&BK = JAK ∩ JBK
JA ∨ BK = JAK ∪ JBK
JA ⊃ BK = (W − JAK) ∪ JBK

A formulas A is valid in M if JAK = W . We write x ∈ JAK as M, x 
 A, and further omit M
if no ambiguity arises.



The link between neighbourhood and relational semantics

Given a relational frame (W ,R), one can define a neighbourhood frame by taking as
neighbourhoods of a world x the supersets of worlds accessible from x

IR(x) ≡ {a | R(x) ⊆ a}

Conversely, given a neighbourhood frame (W , I ) one can define a relational frame by

xR I y ≡ y ∈
⋂

I (x)



A neighbourhood frame (W , I ) is augmented if for all x ∈W

I
⋂
I (x) ∈ I (x)

I I (x) is closed under supersets.

Equivalently, neighbourhood frame is augmented iff

a ∈ I (x) ≡
⋂

I (x) ⊆ a

Relational frames correspond to augmented neighbourhood frames, in the sense that given a
relational frame there is an equivalent augmented neighbourhood frame, and viceversa.

Lemma 2.3
For every Kripke model M = 〈W ,R,V〉 there is an augmented neighbourhood model
MR = 〈W , IR , J K〉 such that for any w, if M,w 
 A, then MR ,w 
 A.



Neighbourhood and Kripke frames

Lemma 2.4
For every augmented neighbourhood model M = 〈W , I , J K〉 there is a Kripke model
MI = 〈W ,R I ,V〉 such that for any w, if M,w 
 A, then MI ,w 
 A.

Proof.
Essentially runs the previous proof in reverse, using instead of proving that the neighbourhood
frame is augmented. QED

Combined, these lemmas show that

Theorem 2.5 (Equivalence of Kripke and neighbourhood models)
For every Kripke model, there is an augmented neighbourhood model that validates the same
formulas, and vice versa.



Conditional doxastic logic CDL

CDL uses the primitive epistemic operator of conditional belief Beli (C |B) – “agent i believes
C, given B”.

Definition 3.1 (Formula of CDL)

A := P | ⊥ | ¬A | A ∧ A | A ∨ A | A ⊃ A | Bel i (A|A)

The axiomatization of CDL Board (2004) contains the rules:

Definition 3.2 (Inference rules)

(1) If ` B, then ` Bel i (B|A) (epistemization rule)
(2) If ` A ⊃⊂ B, then ` Bel i (C |A) ⊃⊂ Bel i (C |B)

(rule of logical equivalence)



Conditional doxastic logic CDL

CDL is then axiomatized as:

Definition 3.3 (Axioms of CDL)
Any axiomatization of the classical propositional calculus, plus:

(3) (Bel i (B|A) ∧ Bel i (B ⊃ C |A)) ⊃ Beli (C |A) (distribution axiom)

(4) Bel i (A|A) (success axiom)

(5) Bel i (B|A) ⊃ (Bel i (C |A ∧ B) ⊃⊂ Bel i (C |A)) (minimal change principle 1)

(6) ¬Bel i (¬B|A) ⊃ (Bel i (C |A ∧ B) ⊃⊂ Bel i (B ⊃ C |A))
(minimal change principle 2)

(7) Bel i (B|A) ⊃ Bel i (Bel i (B|A)|C ) (positive introspection)

(8) ¬Bel i (B|A) ⊃ Bel i (¬Bel i (B|A)|C ) (negative introspection)

(9) A ⊃ ¬Bel i (⊥|A) (consistency axiom)



Neighbourhood models of CDL

Definition 3.4 (Multi-agent neighbourhood models)
Let A be a set of agents; a multi-agent neighbourhood model (NM) has the form

M = 〈W , {I}i∈A, J K〉
where
W is a non empty set of elements called “worlds”,

J K : Atm→ P(W ) is the evaluation for atomic formulas,

for each i ∈ A, Ii : W → P(P(W )) is the neighbourhood function, satisfying the following
properties:

I Non-emptiness: ∀α ∈ Ii (x), α 6= ∅
I Nesting : ∀α, β ∈ Ii (x), α ⊆ β or β ⊆ α
I Total reflexivity : ∃α ∈ Ii (x) such that x ∈ α
I Local absoluteness: If α ∈ Ii (x) and y ∈ α then Ii (x) = Ii (y)

I Closure under intersection: If S ⊆ Ii (x) and S 6= ∅ then
⋂
S ∈ S (always holds in finite

models)



Conditional Belief

Truth condition
x 
 Bel i (B|A) iff ∀α ∈ Ii (x)(α ∩ JAK = ∅) or

∃β ∈ Ii (x)(β ∩ JAK 6= ∅ and β ∩ JAK ⊆ JBK)

y

z w
x

x

Ii (x)

Ii

B

A

β

α



Knowledge and simple belief

Due to Stalnaker (1998), knowledge and simple (non-conditional) belief can be defined as

Definition 4.1 (Knowledge and simple belief in CDL)
Knowledge: KiA ≡ Bel i (⊥|¬A)
Simple belief: Bel iA ≡ Bel i (A|>)

We unpack these definitions to obtain the truth conditions for each.



Simple belief

Truth condition
x 
 Bel iA iff ∃α ∈ Ii (x) (α ⊆ JAK)

y

z
x

x

Ii (x)

Ii
A

β
α



Knowledge

Truth condition
x 
 KiA iff ∀β ∈ Ii (x) (β ⊆ JAK)

y

z
x

x

Ii (x)

Ii

A

β
α



Sequent calculus G3SBK

We retain the rules of G3CDL, and extend them with rules for simple belief and knowledge,
which adhere to these definitions, to obtain the sequent calculus G3SBK:

Initial sequents x : P, Γ⇒ ∆, x : P

Propositional rules: rules of G3K Negri (2005)

Rules for local forcing

x ∈ a, Γ⇒ ∆, x : A

Γ⇒ ∆, a
∀A
R
∀ (x fresh)

x : A, x ∈ a, a
∀A, Γ⇒ ∆

x ∈ a, a
∀A, Γ⇒ ∆
L
∀

x ∈ a, Γ⇒ ∆, x : A, a
∃A

x ∈ a, Γ⇒ ∆, a
∃A
R
∃

x ∈ a, x : A, Γ⇒ ∆

a
∃A, Γ⇒ ∆
L
∃ (x fresh)



Sequent calculus G3SBK

Rules for inclusion

a ⊆ a, Γ⇒ ∆

Γ⇒ ∆
Ref

c ⊆ a, c ⊆ b, b ⊆ a, Γ⇒ ∆

c ⊆ b, b ⊆ a, Γ⇒ ∆
Tr

x ∈ a, a ⊆ b, x ∈ b, Γ⇒ ∆

x ∈ a, a ⊆ b, Γ⇒ ∆
L⊆



Sequent calculus G3SBK

Rules for semantic conditions

a ⊆ b, a ∈ Ii (x), b ∈ Ii (x), Γ⇒ ∆ b ⊆ a, a ∈ Ii (x), b ∈ Ii (x), Γ⇒ ∆

a ∈ Ii (x), b ∈ Ii (x), Γ⇒ ∆
S

y ∈ a, a ∈ Ii (x), Γ⇒ ∆

a ∈ Ii (x), Γ⇒ ∆
N (y fresh)

x ∈ a, a ∈ Ii (x), Γ⇒ ∆

Γ⇒ ∆
T (a fresh)

a ∈ Ii (x), y ∈ a, b ∈ Ii (x), b ∈ Ii (y), Γ⇒ ∆

a ∈ Ii (x), y ∈ a, b ∈ Ii (x), Γ⇒ ∆
A1

a ∈ Ii (x), y ∈ a, b ∈ Ii (x), b ∈ Ii (y), Γ⇒ ∆

a ∈ Ii (x), y ∈ a, b ∈ Ii (y), Γ⇒ ∆
A2

a ∈ Ii (x), y ∈ a, a ∈ Ii (y), Γ⇒ ∆

a ∈ Ii (x), y ∈ a, Γ⇒ ∆
A∗1



Sequent calculus G3SBK

Rules for knowledge and belief

a ∈ Ii (x), Γ⇒ ∆, a
∀A

Γ⇒ ∆, x : KiA
RK (a fresh)

a ∈ Ii (x), x : KiA, a
∀A, Γ⇒ ∆

a ∈ Ii (x), x : KiA, Γ⇒ ∆
LK

a ∈ Ii (x), Γ⇒ ∆, x : Bel iA, a
∀A

a ∈ Ii (x), Γ⇒ ∆, x : Bel iA
RSB

a ∈ Ii (x), a
∀A, Γ⇒ ∆

x : Bel iA, Γ⇒ ∆
LSB (a fresh)



Structural properties
Here we extend the proofs of structural properties from the Girlando et al. (2018) with added
rules. We start with the notion of the weight of the formula:

Definition 5.1 (Weight of a labelled formula)
The weight of the labelled formula F is the pair (w(p(F)), w(l(F))), where l(F) is the label of
F , and

w(x) = 0, w(a) = 1,

and p(F) is the part of F without the label and the forcing relation, and

w(P) = w(>) = 1,
w(A ◦ B) = w(A) + w(B) + 1, ◦ ∈ {∨, & ,⊃},
w(¬A) = w(A) + 2,
w(B|A) = w(A) + w(B) + 2
w(Bel i (B|A)) = w(B|A) + 1.

w(Bel iA) = w(A) + 4
w(KiA) = w(A) + 6

Weights of labelled formulas are ordered lexicographically.



Structural properties

Lemma 5.2 (Axiom generalization)
For any labelled formula F , the sequent F , Γ⇒ ∆,F is derivable.

Lemma 5.3 (Substitution)
If `n Γ⇒ ∆ then `n Γ(y/x)⇒ ∆(y/x); if `n Γ⇒ ∆ then `n Γ(a/b)⇒ ∆(a/b).

Lemma 5.4 (Weakening)
Weakening is height-preserving admissible.

Lemma 5.5 (Invertibility)
All the rules of G3SBK are height-preserving invertible.

Lemma 5.6 (Contraction)
The rules of left and right contraction are height-preserving admissible.



Structural properties

Theorem 5.7 (Cut)
Cut is admissible.

Proof is by primary induction on the weight of the formula and secondary induction on the sum
of the heights of the premises of cut. We illustrate for the case where the cut formula is
principal in both premises and of the form x : KiA.



Structural properties

Proof.

b ∈ Ii (x), Γ⇒ ∆, b
∀A

Γ⇒ ∆, x : KiA
RK

a ∈ Ii (x), x : KiA, a
∀A, Γ′ ⇒ ∆′

a ∈ Ii (x), x : KiA, Γ
′ ⇒ ∆′

LK

a ∈ Ii (x), Γ′, Γ⇒ ∆,∆′
Cut

This is transformed into:

b ∈ Ii (x), Γ⇒ ∆, b
∀A

a ∈ Ii (x), Γ⇒ ∆, a
∀A
Lm 5.3

b ∈ Ii (x), Γ⇒ ∆, b
∀A

Γ⇒ ∆, x : KiA
RK

a ∈ Ii (x), x : KiA, a
∀A, Γ′ ⇒ ∆′

a ∈ Ii (x), a
∀A, Γ′, Γ⇒ ∆,∆′
Cut1

a ∈ Ii (x), a ∈ Ii (x), Γ′, Γ, Γ⇒ ∆,∆,∆′
Cut2

a ∈ Ii (x), Γ′, Γ⇒ ∆,∆′
Lm 5.6

The application of the Cut rule labeled Cut1 is of lower height, and that labeled Cut2 is of
lower weight (recall again the lexicographical ordering). QED



Properties of knowledge

We can show that:

Theorem 6.1 (Ki is S5)
Ki is (at least) an S5 operator. Specifically, the following hold of it:

(i) KiA ⊃ A
(ii) KiA ⊃ KiKiA
(iii) ¬KiA ⊃ Ki¬KiA

In fact, we can be more fine-grained and relate semantic conditions to properties of Ki .



Factivity

Factivity (i) KiA ⊃ A of knowledge follows from total reflexivity:

(i)
x ∈ a, a ∈ Ii (x), x : KiA, a
∀A, x : A⇒ x : A

x ∈ a, a ∈ Ii (x), x : KiA, a
∀A⇒ x : A
L
∀

x ∈ a, a ∈ Ii (x), x : KiA⇒ x : A
LK

x : KiA⇒ x : A
T



Positive introspection

Positive introspection (ii) KiA ⊃ KiKiA for knowledge follows from one direction of local
absoluteness:

(ii)
z : A, b
∀A, b ∈ Ii (x), z ∈ b, b ∈ Ii (y), y ∈ a, a ∈ Ii (x), x : KiA⇒ z : A

b
∀A, b ∈ Ii (x), z ∈ b, b ∈ Ii (y), y ∈ a, a ∈ Ii (x), x : KiA⇒ z : A
L
∀

b ∈ Ii (x), z ∈ b, b ∈ Ii (y), y ∈ a, a ∈ Ii (x), x : KiA⇒ z : A
LK

z ∈ b, b ∈ Ii (y), y ∈ a, a ∈ Ii (x), x : KiA⇒ z : A
A2

b ∈ Ii (y), y ∈ a, a ∈ Ii (x), x : KiA⇒ b
∀A
R
∀

y ∈ a, a ∈ Ii (x), x : KiA⇒ y : KiA
RK

a ∈ Ii (x), x : KiA⇒ a
∀KiA
R
∀

x : KiA⇒ x : KiKiA
RK



Negative introspection

Negative introspection (iii) ¬KiA ⊃ Ki¬KiA for knowledge follows from the other direction of
local absoluteness:

(iii)
a ∈ Ii (z), z : KiA, a
∀A, y : A, z ∈ b, y ∈ a, b ∈ Ii (x), a ∈ Ii (x)⇒ y : A

a ∈ Ii (z), z : KiA, a
∀A, z ∈ b, y ∈ a, b ∈ Ii (x), a ∈ Ii (x)⇒ y : A
L
∀

a ∈ Ii (z), z : KiA, z ∈ b, y ∈ a, b ∈ Ii (x), a ∈ Ii (x)⇒ y : A
LK

z : KiA, z ∈ b, y ∈ a, b ∈ Ii (x), a ∈ Ii (x)⇒ y : A
A1

z ∈ b, y ∈ a, b ∈ Ii (x), a ∈ Ii (x)⇒ z : ¬KiA, y : A
R¬

y ∈ a, b ∈ Ii (x), a ∈ Ii (x)⇒ b
∀¬KiA, y : A
R
∀

b ∈ Ii (x), a ∈ Ii (x)⇒ b
∀¬KiA, a
∀A
R
∀

a ∈ Ii (x)⇒ x : Ki¬KiA, a
∀A
RK

⇒ x : Ki¬KiA, x : KiA
RK

x : ¬KiA⇒ x : Ki¬KiA
L¬



Formal formal epistemology

I Safe belief can be characterized as the doxastic attitude which is stable under revision with
arbitrary true information

I Knowledge has the stronger property of stability under revision with arbitrary (including
deceitful) information.

(1) Stability of safe belief

....
. . . x ∈ a, x : P ⇒ a
∃P

....
. . . x ∈ a, a
∀A, x : P, b
∃P ⇒ a
∀P ⊃ A

a ∈ Ii (x), b ∈ Ii (x), x ∈ a, a
∀A, x : P, b
∃P ⇒ x 
i A|P
RC

a ∈ Ii (x), x ∈ a, a
∀A, x : P ⇒ x : Bel(A|P)
RB

x : BelSfi A, x : P ⇒ x : Bel(A|P)
LSF



(2) stability of knowledge

....
. . . a
∃P, x : KA⇒ a
∃P

....
a ∈ Ii (x), a
∀A, a
∃P, x : KA⇒ a
∀P ⊃ A

a ∈ Ii (x), a
∀A, a
∃P, x : KA⇒ x 
i A|P
RC

a ∈ Ii (x), a
∃P, x : KA⇒ x 
i A|P
LK

x : KA⇒ x : Bel(A|P) RB



Stability under arbitrary revision gives knowledge

Graphic proof:

Rott (2004)

The picture “shows” that if we deny knowledge of A (here α), then it is possible to find a
proposition B (β) that destroys conditional belief in A. Hidden assumption for the graphic
proof to work: for all b such that b
∃B we have y ∈ b (y is the point indicated by the arrow)



Stability under arbitrary revision gives knowledge (cont.) Sequent calculus proof: Py

denotes a proposition which is true exactly at y and
∧

is an infinitary conjunction that ranges
over all the propositions

.

.

.

.

a ∈ I (x), y ∈ a, x : Bel(A|Py ) ⇒ y : A, a
∃ Py , y : Py

a ∈ I (x), y ∈ a, x : Bel(A|Py ) ⇒ y : A, a
∃ Py
R
∃

.

.

.

.

. . . b ∈ I (x), z ∈ b, y : Py , z = y, b
∀ Py ⊃ A, y : Py ⊃ A ⇒ y : A

. . . b ∈ I (x), z ∈ b, z : Py , z = y, b
∀ Py ⊃ A, z : Py ⊃ A ⇒ y : A
Subst

. . . b ∈ I (x), z ∈ b, z : Py , b
∀ Py ⊃ A, z : Py ⊃ A ⇒ y : A
Def

. . . b ∈ I (x), z ∈ b, z : Py , b
∀ Py ⊃ A ⇒ y : A
L
∀

. . . b ∈ I (x), b
∃ Py , b
∀ Py ⊃ A ⇒ y : A
L
∃

. . . x 
 A|Py ⇒ y : A
LC

a ∈ I (x), y ∈ a, x : Bel(A|Py ) ⇒ y : A
LBel

a ∈ I (x), y ∈ a, x :
∧

Bel(A|P) ⇒ y : A
L
∧

a ∈ I (x), x :
∧

Bel(A|P) ⇒ a
∀ A
R
∀

x :
∧

Bel(A|P) ⇒ x : KA
RK



Stability under true revision gives safe belief

{x} ∈ I (x), x : Bel(A|Px ) ⇒ x : BelSfi A, x : A, {x}
∃ P

.

.

.

.

. . . b ∈ I (x), y ∈ b, y : Px , b
∀ Px ⊃ A ⇒ x : A

. . . b ∈ I (x), b
∃ Px , b
∀ Px ⊃ A ⇒ x : A
L
∃

{x} ∈ I (x), x 
 A|Px , x : Bel(A|Px ) ⇒ x : BelSfi A, x : A

{x} ∈ I (x), x : Bel(A|Px ) ⇒ x : BelSfi A, x : A
LB

{x} ∈ I (x), x :
∧
x
P Bel(A|P) ⇒ x : BelSfi A, x : A

L∧

{x} ∈ I (x), x :
∧
x
P Bel(A|P) ⇒ x : BelSfi A

RSF

x :
∧
x
P Bel(A|P) ⇒ x : BelSfi A

I Enough to require stability under revision with propositions true exactly in the point of
evaluation to get safe belief

I An extra assumption, {x} ∈ I (x), is needed. Equivalent to validity of A ⊃ Bel(A) (in
general, belief in true statements is not a requirement).

I Indefeasible knowledge is a normal, S5 modality.



Argument against a perfect believer

The paradox of the perfect believer (Baltag and Smets (2008)) is a derivation of an implication
from belief of knowledge to knowledge using (apparently) reasonable assumption on the
classical epistemic/doxastic operators:

Infallibility, ¬Bel i ⊥,
Knowledge implies belief, KiA ⊃ Bel iA and
Introspection about belief, Bel iA ⊃ KiBel iA.

We take what is needed to have the same assumptions used in the puzzle.



Argument against a perfect believer

Infallibility, ¬Bel i ⊥, follows from N (non-emptiness):

y : ⊥, y ∈ a, a ∈ I (x), a
∀⊥ ⇒
L⊥

y ∈ a, a ∈ I (x), a
∀⊥ ⇒ L
∀

a ∈ I (x), a
∀⊥ ⇒
N

x : Bel i⊥ ⇒
LSB

Knowledge implies belief KiA ⊃ Bel iA is valid thanks to T (total reflexivity):

y ∈ a, x ∈ a, a ∈ I (x), x : KiA, a
∀A, y : A⇒ x : Bel iA, y : A

y ∈ a, x ∈ a, a ∈ I (x), x : KiA, a
∀A⇒ x : Bel iA, y : A
L
∀

x ∈ a, a ∈ I (x), x : KiA, a
∀A⇒ x : Bel iA, a
∀A
R
∀

x ∈ a, a ∈ I (x), x : KiA, a
∀A⇒ x : Bel iA
RSB

x ∈ a, a ∈ I (x), x : KiA⇒ x : Bel iA
LK

x : KiA⇒ x : Bel iA
T



Argument against a perfect believer

Introspection about belief Bel iA ⊃ KiBel iA is valid thanks to A rules (local absoluteness):

z ∈ a, a ∈ I (y), y ∈ b, b ∈ I (x), a ∈ I (x), a
∀A, z : A⇒ y : Bel iA, z : A

z ∈ a, a ∈ I (y), y ∈ b, b ∈ I (x), a ∈ I (x), a
∀A⇒ y : Bel iA, z : A
L
∀

a ∈ I (y), y ∈ b, b ∈ I (x), a ∈ I (x), a
∀A⇒ y : Bel iA, a
∀A
R
∀

a ∈ I (y), y ∈ b, b ∈ I (x), a ∈ I (x), a
∀A⇒ y : Bel iA
RSB

y ∈ b, b ∈ I (x), a ∈ I (x), a
∀A⇒ y : Bel iA
A1

b ∈ I (x), a ∈ I (x), a
∀A⇒ b
∀Bel iA
R
∀

a ∈ I (x), a
∀A⇒ x : KiBel iA
RK

x : Bel iA⇒ x : KiBel iA
LSB



Argument against a perfect believer

The derivation of the paradox proceeds as follows:

. . . , y : A⇒ y : A

. . . , y ∈ b, b ∈ Ii (y), b

∀A⇒ y : A

L
∀

. . . , b ∈ Ii (y), y : KiA⇒ y : A
LKi

. . . , y : KiA⇒ y : A
A1

y ∈ a, . . . a
∀KiA⇒ y : A
L
∀

b ⊆ a, . . . , y ∈ b, a
∀KiA⇒ y : A
L ⊆

. . . , y : A⇒ y : A

b ∈ Ii (z), z ∈ a, . . . , y ∈ b, b
∀A⇒ y : A
L
∀

b ∈ Ii (z), z ∈ a, . . . , y ∈ b, z : KiA⇒ y : A
LKi

z ∈ a, . . . , y ∈ b, z : KiA⇒ y : A
A1

a ⊆ b, a ∈ Ii (x), b ∈ Ii (x), y ∈ b, a
∀KiA⇒ y : A
N

a ∈ Ii (x), b ∈ Ii (x), y ∈ b, a
∀KiA⇒ y : A
S

a ∈ Ii (x), b ∈ I (x)i , a

∀KiA⇒ a
∀A

R
∀

a ∈ Ii (x), a

∀KiA⇒ x : KiA

RK

x : Bel iKiA⇒ x : KiA
LSB

Obviously, without N proof search stops on the right and we obtain the countermodel from the
failed proof search:

y

A

b

a



Thank you/Grazie/Hvala!
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