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Herbrand Complexity

The optimal calculation of Herbrand disjunctions from unformalized or formal-
ized mathematical proofs is one of the most prominent problems in proof the-
ory of first-order logic.1

Theorem

if ∃~xE(~x) is a purely existential formula containing only the bound variables ~x, and
PC `π ∃~xE(~x) then there are terms ti

j such that
n∨

i=1

E(ti
1, . . . , t

i
m) Herbrand disjunction

is a tautology

the Herbrand complexity is the length n of the shortest Herbrand disjunction

1A Sequent-Calculus Based Formulation of the Extended First Epsilon Theorem. Baaz et al. LFCS 2018
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Epsilon Calculus

Definition

• the ε-calculus is a formalisation of logic without quantifiers; instead one uses the
ε-operator

• if A(x) is a formula, then εxA(x) is an ε-term

• εxA(x) is an indefinite description: εxA(x) is some x for which A(x) is true

(someI in Isabelle/HOL)

• ε can replace ∃: ∃x A(x)⇔ A(εxA(x))

• axioms of ε-calculus:
1 propositional tautologies
2 equality axioms
3 A(t)→ A(εxA(x)) critical axioms

an ε-proof is a tautology (
∧n

i=1 Ai(ti)→ A(εxAi(x)))→ [∃ ~xE(~x)]ε
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Outline

Why Bother?

Epsilon Calculus with Equality

Epsilon Calculus with Epsilon Equality
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Why Bother?



Where Does the Epsilon Calculus Come From?

Rough Timeline

1922 introduced by Hilbert in 1921, as the basis for a formulation of
mathematics for which his program was supposed to be carried out

1930s original work in proof theory (pre-Gentzen) concentrated on the ε-calculus
and ε-substitution method (Ackermann, von Neumann, Bernays)

1950s ε-substitution method used by Kreisel for no-counterexample
interpretation leading to work on proof analysis by Kreisel, Luckhardt,
Kohlenbach

1990s use of the ε-substitution method for ordinal analysis by Arai, Avigad,
Mints, Tait

recent renewed interest in connection to structural proof theory, update
procedures and learning: Avigad, Aschieri, Baaz, Leitsch, Lolic, Powell . . .
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Why Have You Never Heard of It, Though?

perhaps an ε-proof should be conceived as an internal representation, rather than
something one writes down explicitely
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Example

consider the embedding of ∃x∃y∃z A(x, y, z), which yields

A(εxA(x, εyA(x, y, εzA(x, y, z)), εzA(x, εyA(x, y, εzA(x, y, z)), z)),
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εzA(εxA(x, εyA(x, y, εzA(x, y, z)), εzA(x, εyA(x, y, εzA(x, y, z)), z)), y, z)),
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Why Have You Never Heard of It, Though?

28: ; preds = %25, %0
% 29 = load i32, i32* %2, align 4
% 30 = trunc i32 %29 to i8
% 31 = load i8*, i8** %7, align 8
store i8 %30, i8* %31, align 1
% 32 = load i8*, i8** %6, align 8
% 33 = load i64, i64* %4, align 8
% 34 = getelementptr inbounds i8 , i8* %32, i64 %33
% 35 = getelementptr inbounds i8 , i8* %34, i64 −1
% 36 = load i8*, i8** %7, align 8
% 37 = icmp ule i8* %35, %36
br i1 %37, label %38, label %121

LLVM bytecode

perhaps an ε-proof should be conceived as an internal representation, rather than
something one writes down explicitely

Herbrand Complexity and, January 20, 2021 5



Why Have You Never Heard of It, Though?

Example

consider the embedding of ∃x∃y∃z A(x, y, z), which yields

A(εxA(x, εyA(x, y, εzA(x, y, z)), εzA(x, εyA(x, y, εzA(x, y, z)), z)),

εyA(εxA(x, εyA(x, y, εzA(x, y, z)), εzA(x, εyA(x, y, εzA(x, y, z)), z)), y,

εzA(εxA(x, εyA(x, y, εzA(x, y, z)), εzA(x, εyA(x, y, εzA(x, y, z)), z)), y, z)),

εzA(εxA(x, εyA(x, y, εzA(x, y, z)), εzA(x, εyA(x, y, εzA(x, y, z)),

εyA(εxA(x, εyA(x, y, εzA(x, y, z)), εzA(x, εyA(x, y, εzA(x, y, z)), y,

εzA(εxA(x, εyA(x, y, εzA(x, y, z)), εzA(x, εyA(x, y, εzA(x, y, z)), z))))))))))

perhaps an ε-proof should be conceived as an internal representation, rather than
something one writes down explicitely

Herbrand Complexity and, January 20, 2021 5



Axioms of the Epsilon Calculus

Definitions

• AxEC: all propositional tautologies + substitution instances of equality axioms:

s = s s = t → f(~u, s,~v) = f(~u, t,~v) s = t → (P(~u, s,~v)→ P(~u, t,~v))

• AxECε: AxEC + all substitution instances of

A(t)→ A(εxA(x)) (critical axiom)

• AxEC=
ε : AxECε + all substitution instances of

s = t → εxA(x, ~u, s,~v) = εxA(x, ~u, t,~v) (ε-equality axiom)

• AxPC: AxEC + all substitution instances of

A(a)→ ∃x A(x) ∀x A(x)→ A(a)

• AxPC
(=)
ε : AxPC + all substitution instances of critical formulas (and ε-equality ax.)

Herbrand Complexity and, January 20, 2021 6



Definitions

• a proof in EC (EC=
ε ) is a sequence A1, . . . , An of formulas such that each Ai is either

in AxEC (AxEC=
ε ) or it follows from formulas preceding it by modus ponens

• a proof in PC (PC=
ε ) is a sequence A1, . . . , An of formulas such that each Ai is either

in AxPC (AxPC=
ε ) or follows from formulas preceding it by modus ponens or

generalisation

• if A is provable in say ECε we write ECε `π A

• the size sz(π) of a proof π is the number of steps in π

• the critical count cc(π) of π is the number of distinct critical formulas, ε-equality
axioms and quantifier axioms in π (plus 1)

Herbrand Complexity and, January 20, 2021 7
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quantifiers in a quantifier-free system:

∃x A(x)⇔ A(εxA(x)) ∀x A(x)⇔ A(εx¬A(x))

Definition

define a mapping ε:

f(t1, . . . , tn)
ε = f(tε1, . . . , t

ε
n) P(t1, . . . , tn)

ε = P(tε1, . . . , t
ε
n)

xε= x (A→ B)ε=Aε → Bε [εxA(x)]ε= εxAε(x)

aε= a (A ∨ B)ε=Aε ∨ Bε (∃x A(x))ε=Aε(εxAε(x))

(¬A)ε=¬Aε (A ∧ B)ε=Aε ∧ Bε (∀x A(x))ε=Aε(εx¬Aε(x))

Embedding Lemma

(with equality)

if π is a

regular

PC-proof of A then there is an ECε-proof πε of Aε with cc(πε) 6 cc(π)

Herbrand Complexity and, January 20, 2021 8
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Example: Epsilon Mapping

Example

[∃x(P(x) ∨ ∀yQ(y))]ε =

= [P(x) ∨ ∀yQ(y)]ε {x← εx[P(x) ∨ ∀yQ(y)]ε}
[P(x) ∨ ∀yQ(y)]ε = P(x) ∨ Q(εy¬Q(y)︸ ︷︷ ︸

e1

)

= P(x) ∨ Q(εy¬Q(y)︸ ︷︷ ︸
e1

) {x← εx[P(x) ∨ Q(εy¬Q(y)︸ ︷︷ ︸
e1

)]

︸ ︷︷ ︸
e2

}

= P(εx[P(x) ∨ Q(εy¬Q(y)︸ ︷︷ ︸
e1

)]

︸ ︷︷ ︸
e2

) ∨ Q(εy¬Q(y)︸ ︷︷ ︸
e1

)
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Example (Drinker’s Paradox)

P(a)⇒ P(a)

P(a)⇒ P(a),∀yP(y)

⇒ P(a)→ ∀yP(y), P(a)

⇒ ∃x(P(x)→ ∀yP(y)), P(a)

⇒ ∃x(P(x)→ ∀yP(y)), ∀yP(y)

P(b)⇒ ∃x(P(x)→ ∀yP(y)),∀yP(y)

⇒ ∃x(P(x)→ ∀yP(y)), P(b)→ ∀yP(y)

⇒ ∃x(P(x)→ ∀yP(y)),∃x(P(x)→ ∀yP(y))

⇒ ∃x(P(x)→ ∀yP(y))

where we employ
[∀yP(y)]ε = P(εy¬P(y))

[∃x(P(x)→ ∀yP(y)]ε = P(εx(P(x)→ P(εy¬P(y)))︸ ︷︷ ︸
ε

)→ P(εy¬P(y))
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Drinker’s Paradox (cont’d)

Example (cont’d)

1 P(εy¬P(y))→ P(εy¬P(y)) TAUT

2 (P(εy¬P(y))→ P(εy¬P(y)))→
→ (P(εx(P(x)→ P(εy¬P(y)))))→ P(εy¬P(y))) critical axiom

3 P(εx(P(x)→ P(εy¬P(y)))))→ P(εy¬P(y)) 1,2,MP

Remarks

• ε-calculus allows proof compression, eg. due to quantifier-shifts

(see eg. Aguilera, Baaz, Unsound Inferences Make Proofs Shorter, JSL 2019)

• propositional inferences and structural rules become irrelevant

• focus on quantifier inferences
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Epsilon Calculus with Equality



The Extended First Epsilon Theorem
(w/o ε-Equality Axioms)

Theorem

Suppose E(a1, . . . , am) is quantifier-free and s1, . . . , sm are ε-terms such that

ECε `π E(s1, . . . , sm)

Then there are ε-free terms ti
j such that

EC `
n∨

i=1

E(ti
1, . . . , t

i
m)

where n 6 2
3·cc(π)
2·cc(π)

number of instances independent of # of propositional inferences
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Herbrand’s Theorem
(w/o ε-Equality Axioms)

Theorem

If ∃x1 . . . ∃xmE(x1, . . . , xm) is a purely existential formula containing only the bound
variables x1, . . . , xm, and

PC `π ∃x1 . . . ∃xmE(x1, . . . , xm)

Then there are

ε-free

terms ti
j such that

EC `
n∨

i=1

E(ti
1, . . . , t

i
m)

where n 6 2
3·cc(π)
2·cc(π)

upper bound on Herbrand complexity independent of # of propositional inferences
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Term Complexity of Herbrand Disjunction

Corollary

If ∃~xE(~x) is a purely existential formula containing only the bound variables x1, . . . , xm,
and

PC `π ∃x1 . . . ∃xmE(x1, . . . , xm) ,

then there exists a primitive recursive function g and ε-free terms ti
j such that

EC `
n∨

i=1

E(ti
1, . . . , t

i
m)

where n,dp(ti
j) 6 g(cc(π), ld(E(~x)))

Proof.

employ unification
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Proof of the First Epsilon Theorem (w/o =)

Simplifications

• suppose ECε `π E and E contains no ε-terms

• we show that EC ` E by induction on a term measure of π

• w.l.o.g. π doesn’t contain any free variables (replace free variables by new
constants—may be resubstituted later)

Lemma

Let π ` A, let e be a critical ε-term in π of “maximal” term measure. Then πe ` A,
where πe is of “smaller” term measure
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Proof of Lemma.

Construct πe as follows:

1 Suppose A(t1)→ A(e), . . . , A(tn)→ A(e) are all the critical formulas belonging
to e. For each critical axiom (i = 1, . . . ,n)

A(ti)→ A(e)

we obtain a derivation

πi ` A(ti)→ E

as follows:

• Replace e everywhere it occurs by ti. Every critical formula A(t)→ A(e) belonging to
e turns into a formula of the form B→ A(ti)

• Add A(ti) to the axioms. Now every such formula is derivable using the propositional
tautology A(ti)→ (B→ A(ti)) and modus ponens

• Apply the deduction theorem for the propositional calculus to obtain πi
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Proof (cont’d).

2 Obtain a derivation π′ of ∧
¬A(ti)→ E

by:

• Add
∧
¬A(ti) to the axioms. Now every critical formula A(ti)→ A(e) belonging to e is

derivable using the propositional tautology ¬A(ti)→ (A(ti)→ A(e)).
• Apply the deduction theorem to obtain π′

3 Combine the proofs
πi ` A(ti)→ E

and
π′ `

∧
¬A(ti)→ E

to get πe ` E (case distinction)
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Proof of the Extended First Epsilon Theorem

Theorem (Extended First Epsilon Theorem)

Suppose E(a1, . . . , am) is quantifier-free and s1, . . . , sm are ε-terms such that
ECε `π E(s1, . . . , sm). Then there are ε-free terms ti

j such that

EC `
n∨

i=1

E(ti
1, . . . , t

i
m)

where n 6 2
3·cc(π)
2·cc(π)

Proof.

• suppose now the endformula E does contain ε-term

• ε-elimination method produces Herbrand disjunction of E by construction
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Theorem (Herbrand’s Theorem)

If ∃x1 . . . ∃xkE(x1, . . . , xk) is a purely existential formula containing only the bound
variables x1, . . . , xk, and PC ` ∃x1 . . . ∃xkE(x1, . . . , xk). Then there are terms tij such
that

EC `
n∨

i=1

E(ti
1, . . . , t

i
m)

where n 6 2
3·cc(π)
2·cc(π)

Proof.

• consider PC `π ∃x1 . . . ∃xkE(x1, . . . , xk)

• employing embedding we obtain ECε ` E(s1, . . . , sk), where s1, . . . , sk are terms
(containing ε’s)

• employ the Extended First Epsilon Theorem
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Epsilon Calculus with Epsilon Equality

Definition (“Grundtyp”)

An ε-term εxA(x) is an ε-matrix if the only terms that occur in εxA(x) are free variables,
each of which occurs exactly once.

Definition (revisited)

AxEC=
ε : AxEC + all substitution instances of critical formulas + all substitution

instances of

s = t → εxA(x, ~u, s,~v) = εxA(x, ~u, t,~v)

where εxA(x, ~b, a,~c) is an ε-matrix

Remark

the restriction to ε-matrices for ε-equality axioms is crucial
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Digression: Unrestricted Epsilon Equality Axioms

let EC′=ε denote the extension of the ε-calculus ECε with the following axioms to cover
ε-equality:

s = t → εxA(x, ~u, s,~v) = εxA(x, ~u, t,~v)

Theorem

There exists an existential formulas ∃~xE(~x) such that

EC′
=
ε `π [∃~xE(~x)]ε

but we cannot show existence of ε-free terms~t0,~t1, . . . ,~tn such that EC `
∨n

i=0 E(~ti)
and n is bounded in the size π

Proof.

apply Yukami’s trick
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The Extended First Epsilon Theorem
(with ε-Equality Axioms)

Theorem (First Epsilon Theorem with Epsilon Equality)

Suppose E(a1, . . . , am) is quantifier-free and s1, . . . , sm are ε-terms such that

EC=
ε `π E(s1, . . . , sm)

Then there are ε-free terms ti
j such that

EC `
n∨

i=1

E(ti
1, . . . , t

i
k)

where n 6 2
cc(π)+mpd(π)
3·cc(π)+2
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Proof Sketch.

• remove critical axioms belonging to “maximal” ε-terms

• let the following ε-equality axioms belong to ε-term e

l1 = r1 → εxA(x, l1, ~t1) =

=e︷ ︸︸ ︷
εxA(x, r1, ~t1)

...
lq = rq → εxA(x, lq, ~tq) = εxA(x, rq, ~tq)

• we obtain a derivation πi ` li = ri → E by replacing e by εxA(x,~ti, li)

; the ε-equality
axioms become tautologies or derivable from the assumed li = ri

• this step may require to “repair” critical axioms by derived identity schemas:

s = t → A(s)→ A(t)

• similarly define π′ `
∧

li 6= ri → E

• use case distinction as in the case w/o equality
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Term Complexities Revisited

Corollary

Suppose E(a1, . . . , am) is a quantifier-free and s1, . . . , sm are ε-terms, such that
EC=

ε `π E(s1, . . . , sm). Then there exists a primitive recursive function g and ε-free
terms ti

j such that

EC `
n∨

i=1

E(ti
1, . . . , t

i
m)

where n,dp(ti
j) 6 g(cc(π),mpd(π), ld(E(~x)))

Remark

• the presence of ε-equality axioms makes the ε-elimination (much) more involved

• again a bound on the Herbrand complexity can be read off, however depending
not only on the cc(π), but also on properties (mpd(π)) of ε-matrices in π
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Conclusion and Open Questions

Final Remarks

1 two results on Herbrand complexity
• Herbrand complexity depends on the critical count of the initial proof (w/o ε-equality

formulas)
• Herbrand complexity depends on the critical count of the initial proof and term

complexity of ε-equality formulas

2 Statman’s lower bound example can be employed to show the need for a
non-elementary bound

Open Questions

1 significant gap between lower/upper bound

2 sequent calculus representation, like the Mints-Yasuhara system, that admits
syntactic cut-elimination
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Thank You for Your Attention!
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