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Herbrand Complexity

The optimal calculation of Herbrand disjunctions from unformalized or formal-
ized mathematical proofs is one of the most prominent problems in proof the-
ory of first-order logic.*

1A Sequent-Calculus Based Formulation of the Extended First Epsilon Theorem. Baaz et al. LFCS 2018
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Herbrand Complexity

The optimal calculation of Herbrand disjunctions from unformalized or formal-

ized mathematical proofs is one of the most prominent problems in proof the-
ory of first-order logic.t

if IXE(X) is a purely existential formula containing only the bound variables X, and
PC I, IXE(X) then there are terms tj’f such that

n
\/ E(t,,...,t.)  Herbrand disjunction
i=1

is a tautology
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Herbrand Complexity

The optimal calculation of Herbrand disjunctions from unformalized or formal-

ized mathematical proofs is one of the most prominent problems in proof the-
ory of first-order logic.t

if IXE(X) is a purely existential formula containing only the bound variables X, and
PC I, IXE(X) then there are terms tj’f such that

n
\/ E(t,,...,t.)  Herbrand disjunction
i=1

is a tautology

the Herbrand complexity is the length n of the shortest Herbrand disjunction

! A Sequent-Calculus Based Formulation of the Extended First Epsilon Theorem. Baaz et al. LFCS 2018
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Epsilon Calculus

® the e-calculus is a formalisation of logic without quantifiers; instead one uses the
e-operator
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® the e-calculus is a formalisation of logic without quantifiers; instead one uses the
e-operator

e if A(x) is a formula, then £,A(x) is an e-term
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Epsilon Calculus

® the e-calculus is a formalisation of logic without quantifiers; instead one uses the
e-operator

e if A(x) is a formula, then £,A(x) is an e-term

* £,A(x) is an indefinite description: £4A(x) is some x for which A(x) is true
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Epsilon Calculus

® the e-calculus is a formalisation of logic without quantifiers; instead one uses the
e-operator

e if A(x) is a formula, then £,A(x) is an e-term

* £,A(x) is an indefinite description: £4A(x) is some x for which A(x) is true

® ccanreplace 3: 3IxA(x) & A(exA(x))
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Epsilon Calculus

® the e-calculus is a formalisation of logic without quantifiers; instead one uses the
e-operator

e if A(x) is a formula, then £,A(x) is an e-term

* £,A(x) is an indefinite description: £4A(x) is some x for which A(x) is true

® ccanreplace 3: 3IxA(x) & A(exA(x))

® axioms of e-calculus:
E1 propositional tautologies
E equality axioms
E A(t) = A(exA(x)) critical axioms
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Epsilon Calculus

® the e-calculus is a formalisation of logic without quantifiers; instead one uses the
e-operator

e if A(x) is a formula, then £,A(x) is an e-term

* £,A(x) is an indefinite description: £4A(x) is some x for which A(x) is true

® ccanreplace 3: 3IxA(x) & A(exA(x))

® axioms of e-calculus:

E1 propositional tautologies
E equality axioms
E A(t) = A(exA(x)) critical axioms

an e-proof is a tautology (A7_; Ai(ti) — A(exAi(x))) — [3 XE(X)]°
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Epsilon Calculus

® the e-calculus is a formalisation of logic without quantifiers; instead one uses the
e-operator

e if A(x) is a formula, then £,A(x) is an e-term
* £,A(x) is an indefinite description: £4A(x) is some x for which A(x) is true
(somel in Isabelle/HOL)
® ccanreplace 3: 3IxA(x) & A(exA(x))
® axioms of e-calculus:

E1 propositional tautologies
E equality axioms
E A(t) = A(exA(x)) critical axioms

an e-proof is a tautology (A7_; Ai(ti) — A(exAi(x))) — [3 XE(X)]°
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Outline

@ Why Bother?

@ Epsilon Calculus with Equality

@ Epsilon Calculus with Epsilon Equality

= m}:;’gﬁa‘éﬁt Herbrand Complexity and, January 20, 2021
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Where Does the Epsilon Calculus Come From?

Rough Timeline

1922 introduced by Hilbert in 1921, as the basis for a formulation of
mathematics for which his program was supposed to be carried out

1930s original work in proof theory (pre-Gentzen) concentrated on the e-calculus
and e-substitution method (Ackermann, von Neumann, Bernays)

1950s e-substitution method used by Kreisel for no-counterexample
interpretation leading to work on proof analysis by Kreisel, Luckhardt,
Kohlenbach

1990s use of the e-substitution method for ordinal analysis by Arai, Avigad,
Mints, Tait

recent renewed interest in connection to structural proof theory, update
procedures and learning: Avigad, Aschieri, Baaz, Leitsch, Lolic, Powell ...
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Why Have You Never Heard of It, Though?
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Why Have You Never Heard of It, Though?

consider the embedding of Ix3y3z A(x, y, z), which yields
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Why Have You Never Heard of It, Though?

consider the embedding of Ix3y3z A(x, y, z), which yields

A(exA(X, eyA(X, Y, e,A(X, Y, 2)), e A(X, e A(X, Y, e,A(X, Y, 2)), 2)),
eyA(exA(X, eyA(X, Y, e-A(X, Y, 2)), e A(X, e A(X, Y, e,A(X, ¥, 2)), 2)), ¥,
A(EXAX, g A(X, Y, e,A(X, Y, 2)), e2A(X, e A(X, ¥, e,A(X, Y, 2)), 2)), Y. 2)),
eA(exA(X, e A(X, Y, A(X, Y, 2)), e2A(X, e A(X, ¥, A(X, Y, Z)),
eyA(exA(X, eyA(X, Y, e,A(X, Y, 2)), e A(X, e A(X, Y, E,A(X, Y, 2)), Y,
eA(exAX, 8y A(X, ¥, €2A(X, ¥, 2)), e2A(X, £y A(X, ¥, €2A(X, ¥, 2)), 2))))))))))
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Why Have You Never Heard of It, Though?

28: ; preds = %25, %0
% 29 = load 32, i32* %2, align 4

% 30 = trunc i32 %29 to i8

% 31 = load i8x*, i8x+ %7, align 8

store i8 %30, i8* %31, align 1

% 32 = load 8%, i8+*x %6, align 8

% 33 = load 64, i64* %4, align 8

% 34 = getelementptr inbounds i8, 8% %32, 164 %33
% 35 = getelementptr inbounds i8, i8x %34, i64 —1
% 36 = load 8%, i8+x %7, align 8

% 37 = icmp ule 8% %35, %36

br il %37, label %38 label %121

LLVM bytecode

M universitat

¥ innsbruck Herbrand Complexity and, January 20, 2021 5



Why Have You Never Heard of It, Though?

consider the embedding of Ix3y3z A(x, y, z), which yields

A(exA(X, eyA(X, Y, e,A(X, Y, 2)), e A(X, e A(X, Y, e,A(X, Y, 2)), 2)),
eyA(exA(X, eyA(X, Y, e-A(X, Y, 2)), e A(X, e A(X, Y, e,A(X, ¥, 2)), 2)), ¥,
A(EXAX, g A(X, Y, e,A(X, Y, 2)), e2A(X, e A(X, ¥, e,A(X, Y, 2)), 2)), Y. 2)),
eA(exA(X, e A(X, Y, A(X, Y, 2)), e2A(X, e A(X, ¥, A(X, Y, Z)),
eyA(exA(X, eyA(X, Y, e,A(X, Y, 2)), e A(X, e A(X, Y, E,A(X, Y, 2)), Y,
eA(exAX, 8y A(X, ¥, €2A(X, ¥, 2)), e2A(X, £y A(X, ¥, €2A(X, ¥, 2)), 2))))))))))

perhaps an e-proof should be conceived as an internal representation, rather than
something one writes down explicitely
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Axioms of the Epsilon Calculus

e AXEC: all propositional tautologies + substitution instances of equality axioms:
s=s s=t— f(d,s,v)="f(u,t,v) s=t— (P(d,s,vV)— P(U,t,V))

AXEC.: AXEC + all substitution instances of
A(t) = A(exA(X)) (critical axiom)

AXECZ: AXEC, + all substitution instances of
S=1t— exA(x,U,s,V) = exA(x, U, t, V) (e-equality axiom)

AXPC: AXEC + all substitution instances of
A(a) — IxA(x)  VxA(x) — A(a)

AxPCf): AXPC + all substitution instances of critical formulas (and e-equality ax.)
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® a proof in EC (ECT) is a sequence Ay, ..., A, of formulas such that each A; is either
in AXEC (AXECT) or it follows from formulas preceding it by modus ponens

® a proof in PC (PCY) is a sequence Ay, ..., A, of formulas such that each A; is either
in AXPC (AxPCZ) or follows from formulas preceding it by modus ponens or
generalisation

® if Ais provable in say EC. we write EC. -, A
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® a proof in EC (ECT) is a sequence Ay, ..., A, of formulas such that each A; is either
in AXEC (AXECT) or it follows from formulas preceding it by modus ponens

® a proof in PC (PCY) is a sequence Ay, ..., A, of formulas such that each A; is either
in AXPC (AxPCZ) or follows from formulas preceding it by modus ponens or
generalisation

® if A is provable in say EC. we write EC. -, A

¢ the size sz(m) of a proof 7 is the number of steps in 7
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® a proof in EC (ECT) is a sequence Ay, ..., A, of formulas such that each A; is either
in AXEC (AXECT) or it follows from formulas preceding it by modus ponens

® a proof in PC (PCY) is a sequence Ay, ..., A, of formulas such that each A; is either
in AXPC (AxPCZ) or follows from formulas preceding it by modus ponens or
generalisation

e if Ais provable in say EC. we write EC. -, A

¢ the size sz(m) of a proof 7 is the number of steps in 7

e the critical count cc(7) of 7 is the number of distinct critical formulas, s-equality
axioms and quantifier axioms in 7 (plus 1)
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|
quantifiers in a quantifier-free system:

IxA(x) & A(exA(X))  VXxA(x) & A(ex—A(x))
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|
quantifiers in a quantifier-free system:

IxA(x) & A(exA(X))  VXxA(x) & A(ex—A(x))

define a mapping ©:
f(t1,...,th)° =f(t5,...,t5)

X° =X [exA(X)]F = exA%(X)
a‘=a
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define a mapping ©:
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|
quantifiers in a quantifier-free system:

IxA(x) & A(exA(X))  VXxA(x) & A(ex—A(x))

define a mapping ©:
f(t1,...,th)° =f(t5,...,t5) P(t1,...,th)° =P(t5,...,t5)

X° =X (A= B)f =A% = B° [exA(X)]° =exA%(X)
a“=a (AVB)=A°VB®

(FA)F=-A° (AAB) =A°AB°
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|
quantifiers in a quantifier-free system:

IxA(x) & A(exA(X))  VXxA(x) & A(ex—A(x))

define a mapping ©:

f(te,...,th) s =f(t5,...,t5)  P(tz,...,tn)° =P(t5,...,t)
X° =X (A= B)f =A% = B° [exA(X)]° =exA%(X)
a“=a (AVB)*=A° VB (IxA(x))* =A%(exA%(X))
(FA)F=-A° (AAB)=A°AB° (VXxA(x))=A%(ex—A%(X))
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quantifiers in a quantifier-free system:
IxA(x) & A(exA(X))  VXxA(x) & A(ex—A(x))

define a mapping ©:

f(te,...,th) s =f(t5,...,t5)  P(tz,...,tn)° =P(t5,...,t)
X° =X (A= B)f =A% = B° [exA(X)]° =exA%(X)
a“=a (AVB)*=A° VB (IxA(x))* =A%(exA%(X))
(FA)F=-A° (AAB)=A°AB° (VXxA(x))=A%(ex—A%(X))

Embedding Lemma

if Tisa PC-proof of A then there is an EC.-proof 7¢ of A with cc(7®) < cc(n)
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quantifiers in a quantifier-free system:
IxA(x) & A(exA(X))  VXxA(x) & A(ex—A(x))

define a mapping ©:

f(te,...,th) s =f(t5,...,t5)  P(tz,...,tn)° =P(t5,...,t)
X° =X (A= B)f =A% = B° [exA(X)]° =exA%(X)
a“=a (AVB)*=A° VB (IxA(x))* =A%(exA%(X))
(FA)F=-A° (AAB)=A°AB° (VXxA(x))=A%(ex—A%(X))

Embedding Lemma

if 7 is a regular PC-proof of A then there is an EC.-proof 7¢ of A® with cc(7®) < cc()
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|
quantifiers in a quantifier-free system:

IxA(x) & A(exA(X))  VXxA(x) & A(ex—A(x))

define a mapping ©:

f(te,...,th) s =f(t5,...,t5)  P(tz,...,tn)° =P(t5,...,t)
X° =X (A= B)f =A% = B° [exA(X)]° =exA%(X)
a“=a (AVB)*=A° VB (IxA(x))* =A%(exA%(X))
(FA)F=-A° (AAB)=A°AB° (VXxA(x))=A%(ex—A%(X))

Embedding Lemma (with equality)

if 7 is a regular PC-proof of A then there is an EC.-proof 7€ of A® with cc(7®) < cc()
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Example: Epsilon Mapping

Bx(P(x) vV Q)" =
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Example: Epsilon Mapping

[F3x(P(x) vV YyQ))" =
= [P(x) VVyOQ(y)]° {x < ex[P(x) vV VyQ(y)]*}
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Example: Epsilon Mapping

[F3x(P(x) vV YyQ))" =
= [P(x) VVyOQ(y)]° {x < ex[P(x) vV VyQ(y)]*}
[P(x) V VyQ(y)]* = P(x) Vv Q(sy~0Q(y))
~—

ex
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Example: Epsilon Mapping
Example

[F3x(P(x) vV YyQ))" =
= [P(x) VVyOQ(y)]° {x < ex[P(x) vV VyQ(y)]*}
[P(x) V VyQ(y)]* = P(x) Vv Q(sy~0Q(y))
~—

= P(X)VO(ey—Q(y)) {x ¢ ex[P(x) vV Q(gy—Q(y))]}
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Example: Epsilon Mapping
Example

[F3x(P(x) vV YyQ))" =
= [P(x) VVyOQ(y)]° {x < ex[P(x) vV VyQ(y)]*}
[P(x) V VyQ(y)]* = P(x) vV Q(g,=0Q(y))
ex
= P(x)VOQ(ey—0Q(y)) {x <+ ex[P(x)V Q(ey~Q(y))]}
N—— N——

e €1

J

= P(ex[P(x) V Q(ey=Q(¥))]) V Q(g,~Q(y))

e e

o~

(=2
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Example (Drinker’s Paradox)

P(a) = P(a)
P(a) = P(a), VyP(y)
= P(a) — VyP(y),P(a)
= Ix(P(x) — VyP(y)),P(a)
= 3Ix(P(x) — VyP(y)),VyP(y)
P(b) = 3Ix(P(x) — VyP(y)), VyP(y)
= Ax(P(x) — VyP(y)), P(b) — VyP(y)
= 3Ix(P(x) — VyP(y)), Ix(P(x) — VyP(y))
= Ax(P(x) — VyP(y))
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Example (Drinker’s Paradox)

P(a) = P(a)
P(a) = P(a), VyP(y)
= P(a) — VyP(y),P(a)
= Ix(P(x) — VyP(y)),P(a)
= 3Ix(P(x) — VyP(y)),VyP(y)
P(b) = 3Ix(P(x) — VyP(y)), VyP(y)
= Ax(P(x) — VyP(y)), P(b) — VyP(y)
= 3Ix(P(x) — VyP(y)), Ix(P(x) — VyP(y))
= P(¢) = P(g,—P(y))

where we employ
[VyP(y)]* = P(ey=P(y))
[Ix(P(x) = VyP(y)]® = P(ex(P(x) = P(ey=P(y)))) — P(ey=P(y))

€
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Example (Drinker’s Paradox)

P(a) = P(a)
P(a) = P(a), VyP(y)
= P(a) — VyP(y),P(a)
= P(e) — P(ey—P(y)), P(a)
= P(e) = P(ey=P(y)), VyP(y)
P(b) = P() — P(ey=P(y)), VyP(y)
= P(c) — P(ey=P(y)), P(b) — VyP(y)
= P(e) = P(ey=P(y)), P(¢) — P(ey=P(y))
= P(e) — P(ey—P(y))

where we employ
[VyP(y)I" = P(ey=P(y))
[3x(P(x) = VyP(y)]" = P(ex(P(x) = P(ey=P(y)))) — P(y=P(y))

&
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Example (Drinker’s Paradox)

P(a) = P(a)
P(a) = P(a),P(cy—P(y))
= P(a) — P(ey,—P(y)),P(a)
= P(e) — P(ey,—P(y)),P(a)
= P(e) — P(ey—P(y)), P(ey—P(y))
P(b) = P(g) — P(ey—P(y)), P(cy—P(y))
= P(e) = P(ey—P(y)), P(b) = P(ey—P(y))
= P(e) — P(ey—P(y)), P() — P(ey—P(y))
= P(e) — P(ey—P(y))

where we employ
[VyP(y)]l® = P(ey=P(y))
[3x(P(x) = VyP(y)]" = P(ex(P(x) = P(ey=P(y)))) — P(ey=P(y))

&
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Example (Drinker’s Paradox)

P(ey—=P(y)) = P(ey—P(y))
P(ey—P(y)) = P(ey=P(y)), P(ey—=P(y))
= P(ey=P(y)) = P(ey=P(y)), P(ey~P(y))
= P(e) = P(ey=P(y)), P(ey=P(y))
= P(e) = P(ey=P(y)), P(ey=P(y))
P(e) = P(e) = P(ey=P(y)), P(ey=P(y))
= P(g) — P(ey—P(y)),P(e) — P(ey—P(y))
= P(g) = P(gy,=P(y)), P(e) — P(ey,—P(y))

= P(g) = P(gy,=P(y))

where we employ
[VyP(y)]® = P(ey=P(y))
[Ix(P(x) = VyP(y)]® = P(ex(P(x) = P(ey=P(y)))) — P(ey=P(y))
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Example (Drinker’s Paradox)

P(ey—=P(y)) = P(ey—P(y))
P(ey—P(y)) = P(ey=P(y)), P(ey—=P(y))
= P(ey=P(y)) = P(ey=P(y)), P(ey~P(y))
= P(e) = P(ey=P(y)), P(ey=P(y))
= P(e) = P(ey=P(y)), P(ey=P(y))
P(e) = P(e) = P(ey=P(y)), P(ey=P(y))
= P(g) — P(ey—P(y)),P(e) — P(ey—P(y))
= P(g) = P(gy,=P(y)), P(e) — P(ey,—P(y))

= P(g) = P(gy,=P(y))

where we employ
[VyP(y)]® = P(ey=P(y))
[Ix(P(x) = VyP(y)]® = P(ex(P(x) = P(ey=P(y)))) — P(ey=P(y))
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Example (Drinker’s Paradox)

P(ey—P(y)) = P(ey~P(y))
P(ey—P(y)) = P(ey=P(y)), P(ey=P(y))
= P(ey=P(y)) — P(ey=P(y)), P(ey=P(y))
= P(e) — P(ey—P(y)), P(e,—~P(y))
= P(e) — P(ey—P(y)), P(ey,—P(y))
P(e) = P(e) = P(ey=P(y)), P(ey=P(y))
= P(e) = P(ey=P(y)), P(¢) = P(ey~P(y))
= P(e) = P(ey=P(y)), P(¢) = P(ey=P(y))

= P(e) — P(ey—P(y))

where we employ
[P(ey=P(y)) = P(ey=P(y))] = [P(x(P(x) — P(gy=P(y)))) — P(ey=P(y))]

£
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Drinker’s Paradox (cont’d)

Example (cont’d)

1 P(ey=P(y)) — P(ey=P(y)) TAUT
2 (P(ey=P(y)) = P(ey=P(y))) —

— (P(ex(P(x) — P(gy=P(y))))) — P(ey,=P(y))) critical axiom
3 P(ex(P(x) = P(ey=P(y))))) — P(ey=P(y)) 1,2,mP
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Drinker’s Paradox (cont’d)

Example (cont’d)

1 P(ey=P(y)) — P(ey—P(y)) TAUT
2 (P(ey=P(y)) = P(ey—=P(y))) —

— (P(ex(P(x) = P(ey—P(y))))) — P(gy,—P(y))) critical axiom
3 P(ex(P(x) = P(ey=P(y))))) — P(ey=P(y)) 1,2,MP

® c-calculus allows proof compression, eg. due to quantifier-shifts

® propositional inferences and structural rules become irrelevant
e focus on quantifier inferences
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Drinker’s Paradox (cont’d)

Example (cont’d)

1 P(ey=P(y)) — P(ey—P(y)) TAUT
2 (P(ey=P(y)) = P(ey—=P(y))) —

— (P(ex(P(x) = P(ey—P(y))))) — P(gy,—P(y))) critical axiom
3 P(ex(P(x) = P(ey=P(y))))) — P(ey=P(y)) 1,2,MP

® c-calculus allows proof compression, eg. due to quantifier-shifts

(see eg. Aguilera, Baaz, Unsound Inferences Make Proofs Shorter, |]SL 2019)
® propositional inferences and structural rules become irrelevant
e focus on quantifier inferences
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The Extended First Epsilon Theorem

(w/o e-Equality Axioms)

Theorem

Suppose E(as, . ..,am) is quantifier-free and s, ..., sy are e-terms such that
EC. Fr E(S1,-..,5m)

Then there are e-free terms t}' such that

n
ECH \/E(ty,... th)
i=1
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The Extended First Epsilon Theorem

(w/o e-Equality Axioms)

Theorem

Suppose E(as, ...,am) is quantifier-free and s;
ECE }_7r E(S]_,

Then there are e-free terms t}' such that

n
ECH \/E(ty,. ..
i=1

3-ce(m)

where n < 22_CC(W)

, ..., Sm are e-terms such that

.o ySm)

W universitat
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The Extended First Epsilon Theorem

(w/o e-Equality Axioms)

Theorem

Suppose E(as, . ..,am) is quantifier-free and s, ..., sy are e-terms such that
EC. Fr E(S1,-..,5m)

Then there are e-free terms t}' such that
n
ECH \/E(ty,... th)
i=1

3-ce(m)

where n < 22_CC(W)

number of instances independent of # of propositional inferences
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Herbrand’s Theorem
(w/o e-Equality Axioms)

Theorem
If Ix1 ... 3IxmE(X1,...,Xm) is a purely existential formula containing only the bound
variables x1, ..., Xm, and

PChr 3Ixy...3IxmE(X1,. .., Xm)

Then there are terms t}' such that

n
ECH \/E(ty,. .. th)
i=1
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Theorem

If Ix1 ... 3IxmE(X1,...,Xm) is a purely existential formula containing only the bound
variables x1, ..., Xm, and

PChr 3Ixy...3IxmE(X1,. .., Xm)
Then there are terms t}' such that

n
ECH \/E(ty,. .. th)
i=1

3-ce(m)

where n < 22_CC(W)

upper bound on Herbrand complexity independent of # of propositional inferences
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Herbrand’s Theorem
(w/o e-Equality Axioms)

Theorem

If Ix1 ... 3IxmE(X1,...,Xm) is a purely existential formula containing only the bound
variables x1, ..., Xm, and

PC. br 3Xx1 ... IXmE(X1, ..., Xm)
Then there are e-free terms t}' such that

n
ECH \/E(ty,. .. th)
i=1

3-ce(m)

where n < 22_CC(W)

upper bound on Herbrand complexity independent of # of propositional inferences
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Term Complexity of Herbrand Disjunction

Corollary

If 3XE(X) is a purely existential formula containing only the bound variables x1, ..., Xm,
and

PCh, 3Ixy...3IXmE(X1,...,Xm),

then there exists a primitive recursive function g and e-free terms t]’f such that
n
ECH \/ E(ty,... th)
i=1

where n, dp(t]) < g(cc(r), Id(E(X)))
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Term Complexity of Herbrand Disjunction

Corollary

If 3XE(X) is a purely existential formula containing only the bound variables x1, ..., Xm,
and

PCh, 3Ixy...3IXmE(X1,...,Xm),

then there exists a primitive recursive function g and e-free terms tj’f such that
n
ECH \/ E(ty,... th)
i=1
where n, dp(t)) < g(ce(r), Id(E(X)))

employ unification [ |
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Proof of the First Epsilon Theorem (w/o =)

Simplifications

® suppose EC. - E and E contains no e-terms

¢ we show that EC - E by induction on a term measure of 7

® w.l.o.g. m doesn’t contain any free variables (replace free variables by new
constants—may be resubstituted later)
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Proof of the First Epsilon Theorem (w/o =)

Simplifications

® suppose EC. - E and E contains no e-terms
¢ we show that EC - E by induction on a term measure of 7

® w.l.o.g. m doesn’t contain any free variables (replace free variables by new
constants—may be resubstituted later)

Lemma

Let w = A, let e be a critical e-term in 7 of “maximal” term measure. Then we F A,
where e is of “smaller” term measure
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Proof of Lemma.

Construct 7. as follows:

El Suppose A(t1) — A(e), ..., A(tn) — A(e) are all the critical formulas belonging
to e. For each critical axiom (i=1,...,n)

A(t) — A(e)
we obtain a derivation
i = A(t,') — E

as follows:
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El Suppose A(t1) — A(e), ..., A(tn) — A(e) are all the critical formulas belonging
to e. For each critical axiom (i=1,...,n)

A(t) — A(e)
we obtain a derivation
i = A(t,') — E

as follows:

® Replace e everywhere it occurs by t;. Every critical formula A(t) — A(e) belonging to
e turns into a formula of the form B — A(t;)
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to e. For each critical axiom (i=1,...,n)
A(t) — A(e)

we obtain a derivation
i = A(t,') — E

as follows:
® Replace e everywhere it occurs by t;. Every critical formula A(t) — A(e) belonging to

e turns into a formula of the form B — A(t;)
® Add A(t;) to the axioms. Now every such formula is derivable using the propositional

tautology A(t;) — (B — A(t;)) and modus ponens
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Proof of Lemma.

Construct 7. as follows:
El Suppose A(t1) — A(e), ..., A(tn) — A(e) are all the critical formulas belonging
to e. For each critical axiom (i=1,...,n)
A(t) — A(e)

we obtain a derivation
i = A(t,') — E

as follows:
® Replace e everywhere it occurs by t;. Every critical formula A(t) — A(e) belonging to
e turns into a formula of the form B — A(t;)
® Add A(t;) to the axioms. Now every such formula is derivable using the propositional
tautology A(t;) — (B — A(t;)) and modus ponens
® Apply the deduction theorem for the propositional calculus to obtain ;
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Proof (cont’d).

E Obtain a derivation 7’ of

N\ -A) — E
by:
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Proof (cont’d).

E Obtain a derivation 7’ of

N\ -A) — E

by:
® Add A —A(t;) to the axioms. Now every critical formula A(t;) — A(e) belonging to e is
derivable using the propositional tautology —A(t;) — (A(t;) — A(e)).
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Proof (cont’d).

E Obtain a derivation 7’ of

N\ -A) — E

by:
® Add A —A(t;) to the axioms. Now every critical formula A(t;) — A(e) belonging to e is
derivable using the propositional tautology —A(t;) — (A(t;) — A(e)).
® Apply the deduction theorem to obtain 7’
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Proof (cont’d).

E Obtain a derivation 7’ of
N\ -A) — E

by:
® Add A —A(t;) to the axioms. Now every critical formula A(t;) — A(e) belonging to e is
derivable using the propositional tautology —A(t;) — (A(t;) — A(e)).
® Apply the deduction theorem to obtain 7’
El Combine the proofs
T = A(t,') — E

and
'+ \-A(t) —» E

to get me - E (case distinction)
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Proof (cont’d).

E Obtain a derivation 7’ of
N\ -A) — E

by:
® Add A —A(t;) to the axioms. Now every critical formula A(t;) — A(e) belonging to e is
derivable using the propositional tautology —A(t;) — (A(t;) — A(e)).
® Apply the deduction theorem to obtain 7’
El Combine the proofs
T = A(t,') — E

and
'+ \-A(t) —» E

to get 7e - E (case distinction) ||
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Proof of the Extended First Epsilon Theorem

Theorem (Extended First Epsilon Theorem)

Suppose E(ax, . ..,am) is quantifier-free and s1, ..., s, are e-terms such that
EC. b E(s1,...,5m). Then there are e-free terms tj’- such that

n
ECH \/E(ty,....t})

i=1

where n < 22?3:3

® suppose now the endformula E does contain e-term
® c-elimination method produces Herbrand disjunction of E by construction
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Theorem (Herbrand’s Theorem)

If 3x1 ... 3IxkE(x1, ..., Xxk) is a purely existential formula containing only the bound
variables x1, ..., Xk, and PC \ 3x; ... 3xkE(X1,...,Xk). Then there are terms tj such
that

n
ECH \/E(th,....t})
i=1

3-ce(m)

where n < 22‘66(@

e consider PC F, 3xj ... 3x¢E(X1, ..., Xk)

* employing embedding we obtain EC. - E(s1,...,Sk), where s, ..., sk are terms
(containing €’s)

® employ the Extended First Epsilon Theorem
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Epsilon Calculus with Epsilon Equality

Definition (“Grundtyp”)

An e-term e4A(x) is an e-matrix if the only terms that occur in exA(x) are free variables,
each of which occurs exactly once.
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Epsilon Calculus with Epsilon Equality

Definition (“Grundtyp”)

An e-term e4A(x) is an e-matrix if the only terms that occur in exA(x) are free variables,
each of which occurs exactly once.

Definition (revisited)

AXECZ: AXEC + all substitution instances of critical formulas + all substitution
instances of

s =t — exA(x,U,s,V) = exA(x, U, t, V)

where e4A(x, b, a, €) is an e-matrix
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Epsilon Calculus with Epsilon Equality

Definition (“Grundtyp”)

An e-term e4A(x) is an e-matrix if the only terms that occur in exA(x) are free variables,
each of which occurs exactly once.

Definition (revisited)

AXECZ: AXEC + all substitution instances of critical formulas + all substitution
instances of

s =t — exA(x,U,s,V) = exA(x, U, t, V)

where e4A(x, b, a, €) is an e-matrix

the restriction to e-matrices for e-equality axioms is crucial
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Digression: Unrestricted Epsilon Equality Axioms

let EC', denote the extension of the e-calculus EC. with the following axioms to cover
e-equality:
s =t — exA(x,U,s,V) = e A(x, U, t, V)
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Digression: Unrestricted Epsilon Equality Axioms

let EC', denote the extension of the e-calculus EC. with the following axioms to cover
e-equality:
s =1t = exA(x,U,S,V) = xA(X, U, t, V)

Theorem

There exists an existential formulas 3IXE(X) such that
EC'C b, [3XE(X)]F

but we cannot show existence of c-free terms to, ty, . . ., t, such that EC - \/"_, E(£)
and n is bounded in the size ©
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Digression: Unrestricted Epsilon Equality Axioms

let EC', denote the extension of the e-calculus EC. with the following axioms to cover
e-equality:
s =1t = exA(x,U,S,V) = xA(X, U, t, V)

There exists an existential formulas 3IXE(X) such that
EC'C b, [3XE(X)]F

but we cannot show existence of c-free terms to, ty, . . ., t, such that EC - \/"_, E(£)
and n is bounded in the size ©

apply Yukami’s trick [ |
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The Extended First Epsilon Theorem
(with e-Equality Axioms)

Theorem (First Epsilon Theorem with Epsilon Equality)

Suppose E(as, . ..,am) is quantifier-free and s, ..., sy are e-terms such that
ECC Fr E(S1,...,5m)

Then there are e-free terms t}' such that

n
ECH\/E(t;,...,t)
i=1
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The Extended First Epsilon Theorem
(with e-Equality Axioms)

Theorem (First Epsilon Theorem with Epsilon Equality)

Suppose E(as, . ..,am) is quantifier-free and s, ..., sy are e-terms such that
ECC Fr E(S1,...,5m)

Then there are e-free terms t}' such that

n
ECH\/E(t;,...,t)
i=1
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The Extended First Epsilon Theorem
(with e-Equality Axioms)

Theorem (First Epsilon Theorem with Epsilon Equality)

Suppose E(as, . ..,am) is quantifier-free and s, ..., sy are e-terms such that
ECC Fr E(S1,...,5m)

Then there are e-free terms t}' such that
n
ECH\/E(t;,...,t)
i=1

ce(m)+mpd(7)
where n < 23_6(:(7T)Jr2
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Proof Sketch.

® remove critical axioms belonging to “maximal” e-terms

¢ |et the following e-equality axioms belong to e-term e
=e

——
I]_ =Ir — EXA(X,Il,t]_) = EXA(X, r1./t1)
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Proof Sketch.

® remove critical axioms belonging to “maximal” e-terms

¢ |et the following e-equality axioms belong to e-term e
=e

——
I]_ =Ir — EXA(X,Il,t]_) = EXA(X, r1./t1)

Iq =rq — EXA(X> IQ7 t_c;) - EXA(X7 rq, t_C;)

* we obtain a derivation 7; - ; = r; — E by replacing e by £,A(x, t;, ;)
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Iq =rq — EXA(X> IQa t_c;) - EXA(X7 rq, t_C;)

* we obtain a derivation 7; - ; = r; — E by replacing e by £,A(x, t;, ;)

e similarly define 7’ = A\l #ri — E
® use case distinction as in the case w/o equality
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Proof Sketch.

® remove critical axioms belonging to “maximal” e-terms

let the following e-equality axioms belong to e-term e
=e

——
I]_ =Ir — EXA(X,Il,t]_) = EXA(X, rl,t]_)

Iq =rq — EXA(X> IQa t_c;) - EXA(X7 rq, t_C;)

* we obtain a derivation «; - [; = r; — E by replacing e by e4A(x, t;, l;) ; the e-equality
axioms become tautologies or derivable from the assumed ; = r;

this step may require to “repair” critical axioms by derived identity schemas:
s=t—A(s) = A(t)

similarly define 7’ = A\l #ri — E
® use case distinction as in the case w/o equality
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Term Complexities Revisited

Corollary

Suppose E(as, . ..,am) is a quantifier-free and s1, ..., s, are e-terms, such that
ECC b, E(s1,...,Sm). Then there exists a primitive recursive function g and e-free

terms t}’ such that
n

ECH \/E(th,. ... t})
i=1

where n, dp(t]) < g(cc(r), mpd(n), Id(E(X)))
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Term Complexities Revisited

Corollary
Suppose E(a1,...,am) is a quantifier-free and s1, ..., sm are e-terms, such that
ECC b, E(s1,...,Sm). Then there exists a primitive recursive function g and e-free

terms t}’ such that
n

ECH \/E(th,. ... t})
i=1
where n, dp(t]) < g(cc(r), mpd(n), Id(E(X)))

¢ the presence of e-equality axioms makes the e-elimination (much) more involved

® again a bound on the Herbrand complexity can be read off, however depending
not only on the cc(m), but also on properties (mpd(x)) of e-matrices in
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Conclusion and Open Questions

Final Remarks

E3 two results on Herbrand complexity

® Herbrand complexity depends on the critical count of the initial proof (w/o e-equality
formulas)

® Herbrand complexity depends on the critical count of the initial proof and term
complexity of e-equality formulas

E1 Statman’s lower bound example can be employed to show the need for a
non-elementary bound
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Conclusion and Open Questions

Final Remarks

E3 two results on Herbrand complexity

® Herbrand complexity depends on the critical count of the initial proof (w/o e-equality
formulas)

® Herbrand complexity depends on the critical count of the initial proof and term
complexity of e-equality formulas

E1 Statman’s lower bound example can be employed to show the need for a
non-elementary bound

Open Questions

E¥ significant gap between lower/upper bound

E1 sequent calculus representation, like the Mints-Yasuhara system, that admits
syntactic cut-elimination
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Thank You for Your Attention!
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