

Herbrand Complexity and the Epsilon Calculus (the case with equality)

Georg Moser (joint work with Kenji Miyamoto)

tcs-informatik.uibk.ac.at

Herbrand Complexity

The optimal calculation of Herbrand disjunctions from unformalized or formalized mathematical proofs is one of the most prominent problems in proof theory of first-order logic.¹

nnsbruck

¹A Sequent-Calculus Based Formulation of the Extended First Epsilon Theorem. Baaz et al. LFCS 2018

Herbrand Complexity

The optimal calculation of Herbrand disjunctions from unformalized or formalized mathematical proofs is one of the most prominent problems in proof theory of first-order logic.¹

Theorem

if $\exists \vec{x} E(\vec{x})$ is a purely existential formula containing only the bound variables \vec{x} , and PC $\vdash_{\pi} \exists \vec{x} E(\vec{x})$ then there are terms t_j^i such that $\bigvee_{i=1}^n E(t_1^i, \dots, t_m^i)$ Herbrand disjunction

is a tautology

nsbruck

¹A Sequent-Calculus Based Formulation of the Extended First Epsilon Theorem. Baaz et al. LFCS 2018

Herbrand Complexity

The optimal calculation of Herbrand disjunctions from unformalized or formalized mathematical proofs is one of the most prominent problems in proof theory of first-order logic.¹

Theorem

if $\exists \vec{x} E(\vec{x})$ is a purely existential formula containing only the bound variables \vec{x} , and PC $\vdash_{\pi} \exists \vec{x} E(\vec{x})$ then there are terms t_j^i such that $\bigvee_{i=1}^n E(t_1^i, \dots, t_m^i)$ Herbrand disjunction

is a tautology

nsbruck

the Herbrand complexity is the length *n* of the shortest Herbrand disjunction

¹A Sequent-Calculus Based Formulation of the Extended First Epsilon Theorem. Baaz et al. LFCS 2018

Definition

• the ε -calculus is a formalisation of logic without quantifiers; instead one uses the ε -operator

Definition

- the ε -calculus is a formalisation of logic without quantifiers; instead one uses the ε -operator
- if A(x) is a formula, then $\varepsilon_x A(x)$ is an ε -term

Definition

- the ε -calculus is a formalisation of logic without quantifiers; instead one uses the ε -operator
- if A(x) is a formula, then $\varepsilon_x A(x)$ is an ε -term
- $\varepsilon_x A(x)$ is an indefinite description: $\varepsilon_x A(x)$ is some x for which A(x) is true

Definition

- the ε -calculus is a formalisation of logic without quantifiers; instead one uses the ε -operator
- if A(x) is a formula, then $\varepsilon_x A(x)$ is an ε -term
- $\varepsilon_x A(x)$ is an indefinite description: $\varepsilon_x A(x)$ is some x for which A(x) is true
- ε can replace $\exists : \exists x A(x) \Leftrightarrow A(\varepsilon_x A(x))$

Definition

- the ε -calculus is a formalisation of logic without quantifiers; instead one uses the ε -operator
- if A(x) is a formula, then $\varepsilon_x A(x)$ is an ε -term
- $\varepsilon_x A(x)$ is an indefinite description: $\varepsilon_x A(x)$ is some x for which A(x) is true
- ε can replace \exists : $\exists x A(x) \Leftrightarrow A(\varepsilon_x A(x))$
- axioms of ε-calculus:
 - 1 propositional tautologies 2 equality axioms 3 $A(t) \rightarrow A(\varepsilon_x A(x))$

critical axioms

Definition

- the ε -calculus is a formalisation of logic without quantifiers; instead one uses the ε -operator
- if A(x) is a formula, then $\varepsilon_x A(x)$ is an ε -term
- $\varepsilon_x A(x)$ is an indefinite description: $\varepsilon_x A(x)$ is some x for which A(x) is true
- ε can replace \exists : $\exists x A(x) \Leftrightarrow A(\varepsilon_x A(x))$
- axioms of ε-calculus:
 - 1 propositional tautologies
 - 2 equality axioms
 - 3 $A(t) \rightarrow A(\varepsilon_x A(x))$

critical axioms

an ε -proof is a tautology $(\bigwedge_{i=1}^n A_i(t_i) \to A(\varepsilon_x A_i(x))) \to [\exists \ \vec{x} E(\vec{x})]^{\varepsilon}$

Definition

- the ε -calculus is a formalisation of logic without quantifiers; instead one uses the ε -operator
- if A(x) is a formula, then $\varepsilon_x A(x)$ is an ε -term
- $\varepsilon_x A(x)$ is an indefinite description: $\varepsilon_x A(x)$ is some x for which A(x) is true

(somel in Isabelle/HOL)

- ε can replace \exists : $\exists x A(x) \Leftrightarrow A(\varepsilon_x A(x))$
- axioms of ε-calculus:
 - 1 propositional tautologies
 - 2 equality axioms
 - 3 $A(t) \rightarrow A(\varepsilon_x A(x))$

critical axioms

an ε -proof is a tautology $(\bigwedge_{i=1}^{n} A_i(t_i) \to A(\varepsilon_x A_i(x))) \to [\exists \vec{x} E(\vec{x})]^{\varepsilon}$

• Why Bother?

• Epsilon Calculus with Equality

• Epsilon Calculus with Epsilon Equality

Why Bother?

Where Does the Epsilon Calculus Come From?

Rough Timeline

- **1922** introduced by Hilbert in 1921, as the basis for a formulation of mathematics for which his program was supposed to be carried out
- **1930s** original work in proof theory (pre-Gentzen) concentrated on the ε -calculus and ε -substitution method (Ackermann, von Neumann, Bernays)
- **1950s** ε -substitution method used by Kreisel for no-counterexample interpretation leading to work on proof analysis by Kreisel, Luckhardt, Kohlenbach
- **1990s** use of the ε -substitution method for ordinal analysis by Arai, Avigad, Mints, Tait
- **recent** renewed interest in connection to structural proof theory, update procedures and learning: Avigad, Aschieri, Baaz, Leitsch, Lolic, Powell ...

Example

consider the embedding of $\exists x \exists y \exists z A(x, y, z)$, which yields

Example

consider the embedding of $\exists x \exists y \exists z A(x, y, z)$, which yields

 $\begin{aligned} &A(\varepsilon_{x}A(x,\varepsilon_{y}A(x,y,\varepsilon_{z}A(x,y,z)),\varepsilon_{z}A(x,\varepsilon_{y}A(x,y,\varepsilon_{z}A(x,y,z)),z)),\\ &\varepsilon_{y}A(\varepsilon_{x}A(x,\varepsilon_{y}A(x,y,\varepsilon_{z}A(x,y,z)),\varepsilon_{z}A(x,\varepsilon_{y}A(x,y,\varepsilon_{z}A(x,y,z)),z)),y,\\ &\varepsilon_{z}A(\varepsilon_{x}A(x,\varepsilon_{y}A(x,y,\varepsilon_{z}A(x,y,z)),\varepsilon_{z}A(x,\varepsilon_{y}A(x,y,\varepsilon_{z}A(x,y,z)),z)),y,z)),\\ &\varepsilon_{z}A(\varepsilon_{x}A(x,\varepsilon_{y}A(x,y,\varepsilon_{z}A(x,y,z)),\varepsilon_{z}A(x,\varepsilon_{y}A(x,y,\varepsilon_{z}A(x,y,z)),z)),y,z)),\\ &\varepsilon_{z}A(\varepsilon_{x}A(x,\varepsilon_{y}A(x,y,\varepsilon_{z}A(x,y,z)),\varepsilon_{z}A(x,\varepsilon_{y}A(x,y,\varepsilon_{z}A(x,y,z)),z)),y,z)),\\ &\varepsilon_{z}A(\varepsilon_{x}A(x,\varepsilon_{y}A(x,y,\varepsilon_{z}A(x,y,z)),\varepsilon_{z}A(x,\varepsilon_{y}A(x,y,\varepsilon_{z}A(x,y,z)),y,z)),y,z))),\\ &\varepsilon_{z}A(\varepsilon_{x}A(x,\varepsilon_{y}A(x,y,\varepsilon_{z}A(x,y,z)),\varepsilon_{z}A(x,\varepsilon_{y}A(x,y,\varepsilon_{z}A(x,y,z)),y,z)))))))))))))))\\ \end{aligned}$

28: % 29 = load i32, i32 * %2, align 4% 30 = trunc i 32 % 29 to i 8% 31 = load i8*, i8** %7, align 8 store i8 %30, i8* %31, align 1 % 32 = load i8*, i8** %6, align 8 % 33 = load i64, i64* %4, align 8 % 34 = getelementptr inbounds i8, i8* % 32, i64 % 33 % 35 = getelementptr inbounds i8. i8* % 34. i64 -1% 36 = load i8*, i8** %7, align 8 % 37 = icmp ule i8* %35. %36 br i1 %37, label %38, label %121

; preds = %25, %0

LLVM bytecode

Example

consider the embedding of $\exists x \exists y \exists z A(x, y, z)$, which yields

 $\begin{aligned} &A(\varepsilon_{x}A(x,\varepsilon_{y}A(x,y,\varepsilon_{z}A(x,y,z)),\varepsilon_{z}A(x,\varepsilon_{y}A(x,y,\varepsilon_{z}A(x,y,z)),z)),\\ &\varepsilon_{y}A(\varepsilon_{x}A(x,\varepsilon_{y}A(x,y,\varepsilon_{z}A(x,y,z)),\varepsilon_{z}A(x,\varepsilon_{y}A(x,y,\varepsilon_{z}A(x,y,z)),z)),y,\\ &\varepsilon_{z}A(\varepsilon_{x}A(x,\varepsilon_{y}A(x,y,\varepsilon_{z}A(x,y,z)),\varepsilon_{z}A(x,\varepsilon_{y}A(x,y,\varepsilon_{z}A(x,y,z)),z)),y,z)),\\ &\varepsilon_{z}A(\varepsilon_{x}A(x,\varepsilon_{y}A(x,y,\varepsilon_{z}A(x,y,z)),\varepsilon_{z}A(x,\varepsilon_{y}A(x,y,\varepsilon_{z}A(x,y,z)),z)),y,z)),\\ &\varepsilon_{z}A(\varepsilon_{x}A(x,\varepsilon_{y}A(x,y,\varepsilon_{z}A(x,y,z)),\varepsilon_{z}A(x,\varepsilon_{y}A(x,y,\varepsilon_{z}A(x,y,z)),z)),y,z)),\\ &\varepsilon_{z}A(\varepsilon_{x}A(x,\varepsilon_{y}A(x,y,\varepsilon_{z}A(x,y,z)),\varepsilon_{z}A(x,\varepsilon_{y}A(x,y,\varepsilon_{z}A(x,y,z)),y,z)),y,z)),z)),z))),z)) \end{aligned}$

perhaps an ε -proof should be conceived as an internal representation, rather than something one writes down explicitely

Axioms of the Epsilon Calculus

Definitions

• AxEC: all propositional tautologies + substitution instances of equality axioms:

$$s = s$$
 $s = t \rightarrow f(\vec{u}, s, \vec{v}) = f(\vec{u}, t, \vec{v})$ $s = t \rightarrow (P(\vec{u}, s, \vec{v}) \rightarrow P(\vec{u}, t, \vec{v}))$

AxEC_ε: AxEC + all substitution instances of

 $A(t)
ightarrow A(arepsilon_x A(x))$ (critical axiom)

- $AxEC_{\varepsilon}^{=}$: $AxEC_{\varepsilon}$ + all substitution instances of $s = t \rightarrow \varepsilon_x A(x, \vec{u}, s, \vec{v}) = \varepsilon_x A(x, \vec{u}, t, \vec{v})$ (ε -equality axiom)
- AxPC: AxEC + all substitution instances of

$$A(a) \rightarrow \exists x A(x) \qquad \forall x A(x) \rightarrow A(a)$$

• $AxPC_{\varepsilon}^{(=)}$: AxPC + all substitution instances of critical formulas (and ε -equality ax.)

Definitions

- a proof in EC (EC_ε⁼) is a sequence A₁,..., A_n of formulas such that each A_i is either in AxEC (AxEC_ε⁼) or it follows from formulas preceding it by modus ponens
- a proof in PC (PC⁼_ε) is a sequence A₁,..., A_n of formulas such that each A_i is either in AxPC (AxPC⁼_ε) or follows from formulas preceding it by modus ponens or generalisation
- if A is provable in say EC_{ε} we write $EC_{\varepsilon} \vdash_{\pi} A$

Definitions

- a proof in EC (EC_ε⁼) is a sequence A₁,..., A_n of formulas such that each A_i is either in AxEC (AxEC_ε⁼) or it follows from formulas preceding it by modus ponens
- a proof in PC (PC⁼_ε) is a sequence A₁, ..., A_n of formulas such that each A_i is either in AxPC (AxPC⁼_ε) or follows from formulas preceding it by modus ponens or generalisation
- if A is provable in say $\mathsf{EC}_{\varepsilon}$ we write $\mathsf{EC}_{\varepsilon} \vdash_{\pi} A$
- the size $sz(\pi)$ of a proof π is the number of steps in π

Definitions

- a proof in EC (EC⁼_ε) is a sequence A₁, ..., A_n of formulas such that each A_i is either in AxEC (AxEC⁼_ε) or it follows from formulas preceding it by modus ponens
- a proof in PC (PC⁼_ε) is a sequence A₁, ..., A_n of formulas such that each A_i is either in AxPC (AxPC⁼_ε) or follows from formulas preceding it by modus ponens or generalisation
- if A is provable in say $\mathsf{EC}_{\varepsilon}$ we write $\mathsf{EC}_{\varepsilon} \vdash_{\pi} A$
- the size $sz(\pi)$ of a proof π is the number of steps in π
- the critical count $cc(\pi)$ of π is the number of distinct critical formulas, ε -equality axioms and quantifier axioms in π (plus 1)

$\exists x A(x) \Leftrightarrow A(\varepsilon_x A(x)) \qquad \forall x A(x) \Leftrightarrow A(\varepsilon_x \neg A(x))$

$$\exists x A(x) \Leftrightarrow A(\varepsilon_x A(x)) \qquad \forall x A(x) \Leftrightarrow A(\varepsilon_x \neg A(x))$$

Definition

$$f(t_1, \dots, t_n)^{\varepsilon} = f(t_1^{\varepsilon}, \dots, t_n^{\varepsilon})$$
$$x^{\varepsilon} = x \qquad [\varepsilon_x A(x)]^{\varepsilon} = \varepsilon_x A^{\varepsilon}(x)$$
$$a^{\varepsilon} = a$$

$$\exists x A(x) \Leftrightarrow A(\varepsilon_x A(x)) \qquad \forall x A(x) \Leftrightarrow A(\varepsilon_x \neg A(x))$$

Definition

$$\exists x A(x) \Leftrightarrow A(\varepsilon_x A(x)) \qquad \forall x A(x) \Leftrightarrow A(\varepsilon_x \neg A(x))$$

Definition

$$f(t_1, \dots, t_n)^{\varepsilon} = f(t_1^{\varepsilon}, \dots, t_n^{\varepsilon}) \qquad P(t_1, \dots, t_n)^{\varepsilon} = P(t_1^{\varepsilon}, \dots, t_n^{\varepsilon})$$
$$x^{\varepsilon} = x \qquad (A \to B)^{\varepsilon} = A^{\varepsilon} \to B^{\varepsilon} \qquad [\varepsilon_x A(x)]^{\varepsilon} = \varepsilon_x A^{\varepsilon}(x)$$
$$a^{\varepsilon} = a \qquad (A \lor B)^{\varepsilon} = A^{\varepsilon} \lor B^{\varepsilon}$$
$$(\neg A)^{\varepsilon} = \neg A^{\varepsilon} \qquad (A \land B)^{\varepsilon} = A^{\varepsilon} \land B^{\varepsilon}$$

$$\exists x A(x) \Leftrightarrow A(\varepsilon_x A(x)) \qquad \forall x A(x) \Leftrightarrow A(\varepsilon_x \neg A(x))$$

Definition

$$f(t_1, \dots, t_n)^{\varepsilon} = f(t_1^{\varepsilon}, \dots, t_n^{\varepsilon}) \qquad P(t_1, \dots, t_n)^{\varepsilon} = P(t_1^{\varepsilon}, \dots, t_n^{\varepsilon})$$
$$x^{\varepsilon} = x \qquad (A \to B)^{\varepsilon} = A^{\varepsilon} \to B^{\varepsilon} \qquad [\varepsilon_x A(x)]^{\varepsilon} = \varepsilon_x A^{\varepsilon}(x)$$
$$a^{\varepsilon} = a \qquad (A \lor B)^{\varepsilon} = A^{\varepsilon} \lor B^{\varepsilon} \qquad (\exists x A(x))^{\varepsilon} = A^{\varepsilon}(\varepsilon_x A^{\varepsilon}(x))$$
$$(\neg A)^{\varepsilon} = \neg A^{\varepsilon} \qquad (A \land B)^{\varepsilon} = A^{\varepsilon} \land B^{\varepsilon} \qquad (\forall x A(x))^{\varepsilon} = A^{\varepsilon}(\varepsilon_x \neg A^{\varepsilon}(x))$$

$$\exists x A(x) \Leftrightarrow A(\varepsilon_x A(x)) \qquad \forall x A(x) \Leftrightarrow A(\varepsilon_x \neg A(x))$$

Definition

define a mapping ε :

$$f(t_1, \dots, t_n)^{\varepsilon} = f(t_1^{\varepsilon}, \dots, t_n^{\varepsilon}) \qquad P(t_1, \dots, t_n)^{\varepsilon} = P(t_1^{\varepsilon}, \dots, t_n^{\varepsilon})$$
$$x^{\varepsilon} = x \qquad (A \to B)^{\varepsilon} = A^{\varepsilon} \to B^{\varepsilon} \qquad [\varepsilon_x A(x)]^{\varepsilon} = \varepsilon_x A^{\varepsilon}(x)$$
$$a^{\varepsilon} = a \qquad (A \lor B)^{\varepsilon} = A^{\varepsilon} \lor B^{\varepsilon} \qquad (\exists x A(x))^{\varepsilon} = A^{\varepsilon}(\varepsilon_x A^{\varepsilon}(x))$$
$$(\neg A)^{\varepsilon} = \neg A^{\varepsilon} \qquad (A \land B)^{\varepsilon} = A^{\varepsilon} \land B^{\varepsilon} \qquad (\forall x A(x))^{\varepsilon} = A^{\varepsilon}(\varepsilon_x \neg A^{\varepsilon}(x))$$

Embedding Lemma

 $\text{if}\ \pi \text{ is a}$

universität

PC-proof of A then there is an
$$EC_{\varepsilon}$$
-proof π^{ε} of A^{ε} with $cc(\pi^{\varepsilon}) \leq cc(\pi)$

$$\exists x A(x) \Leftrightarrow A(\varepsilon_x A(x)) \qquad \forall x A(x) \Leftrightarrow A(\varepsilon_x \neg A(x))$$

Definition

universität

innsbruck

define a mapping ε :

$$f(t_1, \dots, t_n)^{\varepsilon} = f(t_1^{\varepsilon}, \dots, t_n^{\varepsilon}) \qquad P(t_1, \dots, t_n)^{\varepsilon} = P(t_1^{\varepsilon}, \dots, t_n^{\varepsilon})$$
$$x^{\varepsilon} = x \qquad (A \to B)^{\varepsilon} = A^{\varepsilon} \to B^{\varepsilon} \qquad [\varepsilon_x A(x)]^{\varepsilon} = \varepsilon_x A^{\varepsilon}(x)$$
$$a^{\varepsilon} = a \qquad (A \lor B)^{\varepsilon} = A^{\varepsilon} \lor B^{\varepsilon} \qquad (\exists x A(x))^{\varepsilon} = A^{\varepsilon}(\varepsilon_x A^{\varepsilon}(x))$$
$$(\neg A)^{\varepsilon} = \neg A^{\varepsilon} \qquad (A \land B)^{\varepsilon} = A^{\varepsilon} \land B^{\varepsilon} \qquad (\forall x A(x))^{\varepsilon} = A^{\varepsilon}(\varepsilon_x \neg A^{\varepsilon}(x))$$

Embedding Lemma

if π is a regular PC-proof of A then there is an EC_{ε} -proof π^{ε} of A^{ε} with $cc(\pi^{\varepsilon}) \leq cc(\pi)$

$$\exists x A(x) \Leftrightarrow A(\varepsilon_x A(x)) \qquad \forall x A(x) \Leftrightarrow A(\varepsilon_x \neg A(x))$$

Definition

universität

innsbruck

define a mapping ε :

$$f(t_1, \dots, t_n)^{\varepsilon} = f(t_1^{\varepsilon}, \dots, t_n^{\varepsilon}) \qquad P(t_1, \dots, t_n)^{\varepsilon} = P(t_1^{\varepsilon}, \dots, t_n^{\varepsilon})$$
$$x^{\varepsilon} = x \qquad (A \to B)^{\varepsilon} = A^{\varepsilon} \to B^{\varepsilon} \qquad [\varepsilon_x A(x)]^{\varepsilon} = \varepsilon_x A^{\varepsilon}(x)$$
$$a^{\varepsilon} = a \qquad (A \lor B)^{\varepsilon} = A^{\varepsilon} \lor B^{\varepsilon} \qquad (\exists x A(x))^{\varepsilon} = A^{\varepsilon}(\varepsilon_x A^{\varepsilon}(x))$$
$$(\neg A)^{\varepsilon} = \neg A^{\varepsilon} \qquad (A \land B)^{\varepsilon} = A^{\varepsilon} \land B^{\varepsilon} \qquad (\forall x A(x))^{\varepsilon} = A^{\varepsilon}(\varepsilon_x \neg A^{\varepsilon}(x))$$

Embedding Lemma (with equality)

if π is a regular PC-proof of A then there is an EC_{ε} -proof π^{ε} of A^{ε} with $cc(\pi^{\varepsilon}) \leq cc(\pi)$

Example

Example

$$\begin{aligned} [\exists x (P(x) \lor \forall y Q(y))]^{\varepsilon} &= \\ &= [P(x) \lor \forall y Q(y)]^{\varepsilon} \quad \{x \leftarrow \varepsilon_{x} [P(x) \lor \forall y Q(y)]^{\varepsilon} \} \end{aligned}$$

Example

$$\exists x (P(x) \lor \forall yQ(y))]^{\varepsilon} = \\ = [P(x) \lor \forall yQ(y)]^{\varepsilon} \{x \leftarrow \varepsilon_{x} [P(x) \lor \forall yQ(y)]^{\varepsilon} \} \\ [P(x) \lor \forall yQ(y)]^{\varepsilon} = P(x) \lor Q(\underbrace{\varepsilon_{y} \neg Q(y)}_{e_{1}}) \\ \underbrace{e_{1}}$$

Example

 $[\exists x(P(x) \lor \forall yQ(y))]^{\varepsilon} =$ $= [P(x) \lor \forall yQ(y)]^{\varepsilon} \{x \leftarrow \varepsilon_{x}[P(x) \lor \forall yQ(y)]^{\varepsilon}\}$ $= [P(x) \lor \forall yQ(y)]^{\varepsilon} = P(x) \lor Q(\underbrace{\varepsilon_{y} \neg Q(y)}_{e_{1}})$ $= P(x) \lor Q(\underbrace{\varepsilon_{y} \neg Q(y)}_{e_{1}}) \{x \leftarrow \varepsilon_{x}[P(x) \lor Q(\underbrace{\varepsilon_{y} \neg Q(y)}_{e_{1}})]\}$

Example

 $[\exists x(P(x) \lor \forall yQ(y))]^{\varepsilon} =$ $= [P(x) \lor \forall y Q(y)]^{\varepsilon} \{x \leftarrow \varepsilon_{x} [P(x) \lor \forall y Q(y)]^{\varepsilon}\}$ $[P(x) \lor \forall y Q(y)]^{\varepsilon} = P(x) \lor Q(\varepsilon_y \neg Q(y))$ $= P(x) \vee Q(\varepsilon_y \neg Q(y)) \quad \{x \leftarrow \varepsilon_x [P(x) \vee Q(\varepsilon_y \neg Q(y))]\}$ ea $P(\varepsilon_x[P(x) \lor Q(\varepsilon_y \neg Q(y))]) \lor Q(\varepsilon_y \neg Q(y))$ e1 eı e_2
$P(a) \Rightarrow P(a)$ $P(a) \Rightarrow P(a), \forall y P(y)$ $\Rightarrow P(a) \rightarrow \forall y P(y), P(a)$ $\Rightarrow \exists x(P(x) \rightarrow \forall yP(y)), P(a)$ $\Rightarrow \exists x(P(x) \rightarrow \forall y P(y)), \forall y P(y)$ $P(b) \Rightarrow \exists x(P(x) \rightarrow \forall y P(y)), \forall y P(y)$ $\Rightarrow \exists x (P(x) \rightarrow \forall y P(y)), P(b) \rightarrow \forall y P(y)$ $\Rightarrow \exists x (P(x) \rightarrow \forall y P(y)), \exists x (P(x) \rightarrow \forall y P(y))$ $\Rightarrow \exists x (P(x) \rightarrow \forall y P(y))$

 $P(a) \Rightarrow P(a)$ $P(a) \Rightarrow P(a), \forall y P(y)$ $\Rightarrow P(a) \rightarrow \forall y P(y), P(a)$ $\Rightarrow \exists x(P(x) \rightarrow \forall yP(y)), P(a)$ $\Rightarrow \exists x (P(x) \rightarrow \forall y P(y)), \forall y P(y)$ $P(b) \Rightarrow \exists x (P(x) \rightarrow \forall y P(y)), \forall y P(y)$ $\Rightarrow \exists x (P(x) \rightarrow \forall y P(y)), P(b) \rightarrow \forall y P(y)$ $\Rightarrow \exists x (P(x) \rightarrow \forall y P(y)), \exists x (P(x) \rightarrow \forall y P(y))$ $\Rightarrow P(\varepsilon) \rightarrow P(\varepsilon_v \neg P(y))$

$$[\forall y P(y)]^{\varepsilon} = P(\varepsilon_y \neg P(y))$$
$$\exists x (P(x) \rightarrow \forall y P(y)]^{\varepsilon} = P(\underbrace{\varepsilon_x (P(x) \rightarrow P(\varepsilon_y \neg P(y)))}_{\varepsilon}) \rightarrow P(\varepsilon_y \neg P(y))$$

 $P(a) \Rightarrow P(a)$ $P(a) \Rightarrow P(a), \forall y P(y)$ \Rightarrow P(a) $\rightarrow \forall y P(y), P(a)$ $\Rightarrow P(\varepsilon) \rightarrow P(\varepsilon_v \neg P(y)), P(a)$ $\Rightarrow P(\varepsilon) \rightarrow P(\varepsilon_v \neg P(y)), \forall y P(y)$ $\overline{P(b)} \Rightarrow \overline{P(\varepsilon)} \rightarrow \overline{P(\varepsilon_v \neg P(y))}, \forall y \overline{P(y)}$ $\Rightarrow P(\varepsilon) \rightarrow P(\varepsilon_v \neg P(y)), P(b) \rightarrow \forall y P(y)$ $\Rightarrow P(\varepsilon) \rightarrow P(\varepsilon_V \neg P(y)), P(\varepsilon) \rightarrow P(\varepsilon_V \neg P(y))$ $\Rightarrow P(\varepsilon) \rightarrow P(\varepsilon_v \neg P(y))$

$$[\forall y P(y)]^{\varepsilon} = P(\varepsilon_y \neg P(y))$$
$$[\exists x (P(x) \to \forall y P(y)]^{\varepsilon} = P(\underbrace{\varepsilon_x (P(x) \to P(\varepsilon_y \neg P(y)))}_{\varepsilon}) \to P(\varepsilon_y \neg P(y))$$

$$\frac{P(a) \Rightarrow P(a)}{P(a) \Rightarrow P(a), P(\varepsilon_y \neg P(y))} \\
\Rightarrow P(a) \rightarrow P(\varepsilon_y \neg P(y)), P(a) \\
\Rightarrow P(\varepsilon) \rightarrow P(\varepsilon_y \neg P(y)), P(a) \\
\Rightarrow P(\varepsilon) \rightarrow P(\varepsilon_y \neg P(y)), P(\varepsilon_y \neg P(y)) \\
\frac{P(b) \Rightarrow P(\varepsilon) \rightarrow P(\varepsilon_y \neg P(y)), P(\varepsilon_y \neg P(y))}{P(b) \Rightarrow P(\varepsilon) \rightarrow P(\varepsilon_y \neg P(y)), P(b) \rightarrow P(\varepsilon_y \neg P(y))} \\
\Rightarrow P(\varepsilon) \rightarrow P(\varepsilon_y \neg P(y)), P(b) \rightarrow P(\varepsilon_y \neg P(y)) \\
\Rightarrow P(\varepsilon) \rightarrow P(\varepsilon_y \neg P(y)), P(\varepsilon) \rightarrow P(\varepsilon_y \neg P(y)) \\
\Rightarrow P(\varepsilon) \rightarrow P(\varepsilon_y \neg P(y)), P(\varepsilon) \rightarrow P(\varepsilon_y \neg P(y)) \\
\Rightarrow P(\varepsilon) \rightarrow P(\varepsilon_y \neg P(y))$$

$$[\forall y P(y)]^{\varepsilon} = P(\varepsilon_y \neg P(y))$$
$$\exists x (P(x) \rightarrow \forall y P(y)]^{\varepsilon} = P(\underbrace{\varepsilon_x (P(x) \rightarrow P(\varepsilon_y \neg P(y)))}_{\varepsilon}) \rightarrow P(\varepsilon_y \neg P(y))$$

$$\frac{P(\varepsilon_{y}\neg P(y)) \Rightarrow P(\varepsilon_{y}\neg P(y))}{P(\varepsilon_{y}\neg P(y)) \Rightarrow P(\varepsilon_{y}\neg P(y)), P(\varepsilon_{y}\neg P(y))}
\Rightarrow P(\varepsilon_{y}\neg P(y)) \Rightarrow P(\varepsilon_{y}\neg P(y)), P(\varepsilon_{y}\neg P(y))}{\Rightarrow P(\varepsilon) \Rightarrow P(\varepsilon_{y}\neg P(y)), P(\varepsilon_{y}\neg P(y))}
\frac{\Rightarrow P(\varepsilon) \Rightarrow P(\varepsilon_{y}\neg P(y)), P(\varepsilon_{y}\neg P(y))}{P(\varepsilon) \Rightarrow P(\varepsilon) \Rightarrow P(\varepsilon_{y}\neg P(y)), P(\varepsilon_{y}\neg P(y))}
\Rightarrow P(\varepsilon) \Rightarrow P(\varepsilon) \Rightarrow P(\varepsilon_{y}\neg P(y)), P(\varepsilon_{y}\neg P(y))}
\Rightarrow P(\varepsilon) \Rightarrow P(\varepsilon_{y}\neg P(y)), P(\varepsilon) \Rightarrow P(\varepsilon_{y}\neg P(y))}
\Rightarrow P(\varepsilon) \Rightarrow P(\varepsilon_{y}\neg P(y)), P(\varepsilon) \Rightarrow P(\varepsilon_{y}\neg P(y))}
\Rightarrow P(\varepsilon) \Rightarrow P(\varepsilon_{y}\neg P(y)), P(\varepsilon) \Rightarrow P(\varepsilon_{y}\neg P(y))}$$

$$[\forall y P(y)]^{\varepsilon} = P(\varepsilon_y \neg P(y))$$
$$\exists x (P(x) \rightarrow \forall y P(y)]^{\varepsilon} = P(\underbrace{\varepsilon_x (P(x) \rightarrow P(\varepsilon_y \neg P(y)))}_{\varepsilon}) \rightarrow P(\varepsilon_y \neg P(y))$$

$$\frac{P(\varepsilon_{y}\neg P(y)) \Rightarrow P(\varepsilon_{y}\neg P(y))}{P(\varepsilon_{y}\neg P(y)) \Rightarrow P(\varepsilon_{y}\neg P(y)), P(\varepsilon_{y}\neg P(y))}
\Rightarrow \frac{P(\varepsilon_{y}\neg P(y)) \Rightarrow P(\varepsilon_{y}\neg P(y)), P(\varepsilon_{y}\neg P(y))}{P(\varepsilon_{y}\neg P(y)) \Rightarrow P(\varepsilon_{y} \neg P(y)), P(\varepsilon_{y}\neg P(y))}
\Rightarrow \frac{P(\varepsilon) \Rightarrow P(\varepsilon_{y} \neg P(y)), P(\varepsilon_{y} \neg P(y))}{P(\varepsilon) \Rightarrow P(\varepsilon) \Rightarrow P(\varepsilon_{y} \neg P(y)), P(\varepsilon_{y} \neg P(y))}
\Rightarrow \frac{P(\varepsilon) \Rightarrow P(\varepsilon_{y} \neg P(y)), P(\varepsilon_{y} \neg P(y))}{P(\varepsilon) \Rightarrow P(\varepsilon_{y} \neg P(y)), P(\varepsilon_{y} \neg P(y))}
\Rightarrow P(\varepsilon) \Rightarrow P(\varepsilon_{y} \neg P(y)), P(\varepsilon) \Rightarrow P(\varepsilon_{y} \neg P(y))
\Rightarrow P(\varepsilon) \Rightarrow P(\varepsilon_{y} \neg P(y)), P(\varepsilon) \Rightarrow P(\varepsilon_{y} \neg P(y))
\Rightarrow P(\varepsilon) \Rightarrow P(\varepsilon_{y} \neg P(y)), P(\varepsilon) \Rightarrow P(\varepsilon_{y} \neg P(y))$$

$$[\forall y P(y)]^{\varepsilon} = P(\varepsilon_y \neg P(y))$$
$$\exists x (P(x) \rightarrow \forall y P(y)]^{\varepsilon} = P(\underbrace{\varepsilon_x (P(x) \rightarrow P(\varepsilon_y \neg P(y)))}_{\varepsilon}) \rightarrow P(\varepsilon_y \neg P(y))$$

 $P(\varepsilon_V \neg P(y)) \Rightarrow P(\varepsilon_V \neg P(y))$ $P(\varepsilon_v \neg P(y)) \Rightarrow P(\varepsilon_v \neg P(y)), P(\varepsilon_v \neg P(y))$ $\Rightarrow P(\varepsilon_{v} \neg P(y)) \rightarrow P(\varepsilon_{v} \neg P(y)), P(\varepsilon_{v} \neg P(y))$ $\Rightarrow P(\varepsilon) \rightarrow P(\varepsilon_v \neg P(y)), P(\varepsilon_v \neg P(y))$ $\Rightarrow P(\varepsilon) \rightarrow P(\varepsilon_v \neg P(v)), P(\varepsilon_v \neg P(v))$ $P(\varepsilon) \Rightarrow P(\varepsilon) \rightarrow P(\varepsilon_V \neg P(y)), P(\varepsilon_V \neg P(y))$ $\Rightarrow P(\varepsilon) \rightarrow P(\varepsilon_v \neg P(y)), P(\varepsilon) \rightarrow P(\varepsilon_v \neg P(y))$ $\Rightarrow P(\varepsilon) \rightarrow P(\varepsilon_v \neg P(y)), P(\varepsilon) \rightarrow P(\varepsilon_v \neg P(y))$ $\Rightarrow P(\varepsilon) \rightarrow P(\varepsilon_v \neg P(y))$

$$[P(\varepsilon_{y}\neg P(y)) \rightarrow P(\varepsilon_{y}\neg P(y))] \rightarrow [P(\varepsilon_{x}(P(x) \rightarrow P(\varepsilon_{y}\neg P(y)))) \rightarrow P(\varepsilon_{y}\neg P(y))]$$

Drinker's Paradox (cont'd)

Example (cont'd)

- 1 $P(\varepsilon_y \neg P(y)) \rightarrow P(\varepsilon_y \neg P(y))$
- 2 $(P(\varepsilon_y \neg P(y)) \rightarrow P(\varepsilon_y \neg P(y))) \rightarrow$ $\rightarrow (P(\varepsilon_x(P(x) \rightarrow P(\varepsilon_y \neg P(y))))) \rightarrow P(\varepsilon_y \neg P(y)))$
- 3 $P(\varepsilon_x(P(x) \to P(\varepsilon_y \neg P(y)))) \to P(\varepsilon_y \neg P(y))$

TAUT

critical axiom 1, 2, *MP*

Drinker's Paradox (cont'd)

Example (cont'd)

1	${\it P}(arepsilon_y eg {\it P}(y)) o {\it P}(arepsilon_y eg {\it P}(y))$	TAUT

2
$$(P(\varepsilon_y \neg P(y)) \rightarrow P(\varepsilon_y \neg P(y))) \rightarrow$$

 $\rightarrow (P(\varepsilon_x(P(x) \rightarrow P(\varepsilon_y \neg P(y))))) \rightarrow P(\varepsilon_y \neg P(y)))$

$$B \qquad P(\varepsilon_x(P(x) \to P(\varepsilon_y \neg P(y)))) \to P(\varepsilon_y \neg P(y))$$

Remarks

- ε -calculus allows proof compression, eg. due to quantifier-shifts
- propositional inferences and structural rules become irrelevant
- focus on quantifier inferences

Drinker's Paradox (cont'd)

Example (cont'd)

1 $P(\varepsilon_y \neg P(y)) \rightarrow P(\varepsilon_y \neg P(y))$ TA
--

- 2 $(P(\varepsilon_y \neg P(y)) \rightarrow P(\varepsilon_y \neg P(y))) \rightarrow$ $\rightarrow (P(\varepsilon_x(P(x) \rightarrow P(\varepsilon_y \neg P(y))))) \rightarrow P(\varepsilon_y \neg P(y)))$
- 3 $P(\varepsilon_x(P(x) \rightarrow P(\varepsilon_y \neg P(y))))) \rightarrow P(\varepsilon_y \neg P(y))$

critical axiom 1, 2, *MP*

Remarks

- ε-calculus allows proof compression, eg. due to quantifier-shifts (see eg. Aguilera, Baaz, Unsound Inferences Make Proofs Shorter, JSL 2019)
- propositional inferences and structural rules become irrelevant
- focus on quantifier inferences

Epsilon Calculus with Equality

The Extended First Epsilon Theorem (w/o ε-Equality Axioms)

Theorem

Suppose $E(a_1, ..., a_m)$ is quantifier-free and $s_1, ..., s_m$ are ε -terms such that $EC_{\varepsilon} \vdash_{\pi} E(s_1, ..., s_m)$

```
Then there are \varepsilon-free terms t_j^i such that
```

$$\mathsf{EC} \vdash \bigvee_{i=1}^{''} \mathsf{E}(t_1^i, \ldots, t_m^i)$$

The Extended First Epsilon Theorem (w/o ε-Equality Axioms)

Theorem

Suppose $E(a_1, ..., a_m)$ is quantifier-free and $s_1, ..., s_m$ are ε -terms such that $EC_{\varepsilon} \vdash_{\pi} E(s_1, ..., s_m)$ Then there are ε -free terms t_i^i such that

$$\mathsf{EC} \vdash \bigvee_{i=1}^n \mathsf{E}(t_1^i, \dots, t_m^i)$$

where
$$n \leq 2^{3 \cdot cc(\pi)}_{2 \cdot cc(\pi)}$$

The Extended First Epsilon Theorem (w/o ε-Equality Axioms)

Theorem

Suppose $E(a_1, ..., a_m)$ is quantifier-free and $s_1, ..., s_m$ are ε -terms such that $EC_{\varepsilon} \vdash_{\pi} E(s_1, ..., s_m)$

Then there are ε -free terms t_i^i such that

$$\mathsf{EC} \vdash \bigvee_{i=1}^{n} \mathsf{E}(t_{1}^{i}, \ldots, t_{m}^{i})$$

where $n \leq 2^{3 \cdot cc(\pi)}_{2 \cdot cc(\pi)}$

number of instances independent of # of propositional inferences

(w/o ε -Equality Axioms)

Theorem

If $\exists x_1 \dots \exists x_m E(x_1, \dots, x_m)$ is a purely existential formula containing only the bound variables x_1, \dots, x_m , and

$$\mathsf{PC} \vdash_{\pi} \exists x_1 \ldots \exists x_m E(x_1, \ldots, x_m)$$

Then there are

terms
$$t^i_j$$
 such that
 $\mathsf{EC} \vdash \bigvee^n \mathsf{E}(t^i_1, \dots, t^i_m)$

i=1

(w/o ε -Equality Axioms)

Theorem

If $\exists x_1 \dots \exists x_m E(x_1, \dots, x_m)$ is a purely existential formula containing only the bound variables x_1, \dots, x_m , and $PC \vdash_{\pi} \exists x_1 \dots \exists x_m E(x_1, \dots, x_m)$

Then there are

terms
$$t^i_j$$
 such that
 $\mathsf{EC} \vdash \bigvee^n \mathsf{E}(t^i_1, \dots, t^i_m)$

i=1

where
$$n \leq 2^{3 \cdot cc(\pi)}_{2 \cdot cc(\pi)}$$

(w/o ε -Equality Axioms)

Theorem

If $\exists x_1 \dots \exists x_m E(x_1, \dots, x_m)$ is a purely existential formula containing only the bound variables x_1, \dots, x_m , and

$$\mathsf{PC} \vdash_{\pi} \exists x_1 \ldots \exists x_m E(x_1, \ldots, x_m)$$

 $\mathsf{EC} \vdash \bigvee \mathsf{E}(t_1^i, \dots, t_m^i)$

Then there are

where
$$n \leqslant 2^{3 \cdot \operatorname{cc}(\pi)}_{2 \cdot \operatorname{cc}(\pi)}$$

upper bound on Herbrand complexity independent of # of propositional inferences

ter

(w/o ε -Equality Axioms)

Theorem

If $\exists x_1 \dots \exists x_m E(x_1, \dots, x_m)$ is a purely existential formula containing only the bound variables x_1, \dots, x_m , and

$$\mathsf{PC}_{\varepsilon} \vdash_{\pi} \exists x_1 \ldots \exists x_m \mathsf{E}(x_1, \ldots, x_m)$$

Then there are ε -free terms t_i^i such that

$$\mathsf{EC} \vdash \bigvee_{i=1}^n \mathsf{E}(t_1^i, \dots, t_m^i)$$

where $n \leq 2^{3 \cdot cc(\pi)}_{2 \cdot cc(\pi)}$

upper bound on Herbrand complexity independent of # of propositional inferences

Term Complexity of Herbrand Disjunction

Corollary

If $\exists \vec{x} E(\vec{x})$ is a purely existential formula containing only the bound variables x_1, \ldots, x_m , and

$$\mathsf{PC} \vdash_{\pi} \exists x_1 \ldots \exists x_m \mathsf{E}(x_1, \ldots, x_m)$$
 ,

then there exists a primitive recursive function g and ε -free terms t_j^i such that $\mathsf{EC} \vdash \bigvee_{i=1}^n \mathcal{E}(t_1^i, \dots, t_m^i)$ where $\mathsf{p}_i \, \mathsf{dp}(t_j^i) \leq \mathsf{q}(\mathsf{pr}(\tau))$

where $n, dp(t_j^i) \leqslant g(cc(\pi), \mathsf{ld}(E(\vec{x})))$

Term Complexity of Herbrand Disjunction

Corollary

If $\exists \vec{x} E(\vec{x})$ is a purely existential formula containing only the bound variables x_1, \ldots, x_m , and

$$\mathsf{PC} \vdash_{\pi} \exists x_1 \ldots \exists x_m \mathsf{E}(x_1, \ldots, x_m)$$
 ,

then there exists a primitive recursive function g and ε -free terms t_j^i such that $\mathsf{EC} \vdash \bigvee_{i=1}^n \mathsf{E}(t_1^i, \dots, t_m^i)$

where $n, dp(t_j^i) \leqslant g(cc(\pi), \mathsf{Id}(\mathcal{E}(\vec{x})))$

Term Complexity of Herbrand Disjunction

Corollary

If $\exists \vec{x} E(\vec{x})$ is a purely existential formula containing only the bound variables x_1, \ldots, x_m , and

$$\mathsf{PC} \vdash_{\pi} \exists x_1 \ldots \exists x_m \mathsf{E}(x_1, \ldots, x_m)$$
 ,

then there exists a primitive recursive function g and ε -free terms t_j^i such that $\mathsf{EC} \vdash \bigvee_{i=1}^n \mathcal{E}(t_1^i, \dots, t_m^i)$

where $n, dp(t_j^i) \leqslant g(cc(\pi), ld(E(\vec{x})))$

Proof.

employ unification

Proof of the First Epsilon Theorem (w/o =)

Simplifications

- suppose $EC_{\varepsilon} \vdash_{\pi} E$ and E contains no ε -terms
- we show that $\mathsf{EC} \vdash \mathbf{E}$ by induction on a term measure of π
- w.l.o.g. π doesn't contain any free variables (replace free variables by new constants—may be resubstituted later)

Proof of the First Epsilon Theorem (w/o =)

Simplifications

- suppose $EC_{\varepsilon} \vdash_{\pi} E$ and E contains no ε -terms
- we show that EC \vdash *E* by induction on a term measure of π
- w.l.o.g. π doesn't contain any free variables (replace free variables by new constants—may be resubstituted later)

Lemma

Let $\pi \vdash A$, let e be a critical ε -term in π of "maximal" term measure. Then $\pi_e \vdash A$, where π_e is of "smaller" term measure

Construct π_e as follows:

1 Suppose $A(t_1) \rightarrow A(e), \ldots, A(t_n) \rightarrow A(e)$ are all the critical formulas belonging to *e*. For each critical axiom ($i = 1, \ldots, n$)

$$A(t_i) \rightarrow A(e)$$

we obtain a derivation

 $\pi_i \vdash A(t_i) \rightarrow E$

as follows:

Construct π_e as follows:

1 Suppose $A(t_1) \rightarrow A(e), \ldots, A(t_n) \rightarrow A(e)$ are all the critical formulas belonging to *e*. For each critical axiom ($i = 1, \ldots, n$)

$$A(t_i) \rightarrow A(e)$$

we obtain a derivation

$$\pi_i \vdash A(t_i) \to E$$

as follows:

• Replace *e* everywhere it occurs by t_i . Every critical formula $A(t) \rightarrow A(e)$ belonging to *e* turns into a formula of the form $B \rightarrow A(t_i)$

Construct π_e as follows:

1 Suppose $A(t_1) \rightarrow A(e), \ldots, A(t_n) \rightarrow A(e)$ are all the critical formulas belonging to *e*. For each critical axiom ($i = 1, \ldots, n$)

$$A(t_i)
ightarrow A(e)$$

we obtain a derivation

$$\pi_i \vdash A(t_i) \to E$$

as follows:

- Replace *e* everywhere it occurs by t_i . Every critical formula $A(t) \rightarrow A(e)$ belonging to *e* turns into a formula of the form $B \rightarrow A(t_i)$
- Add $A(t_i)$ to the axioms. Now every such formula is derivable using the propositional tautology $A(t_i) \rightarrow (B \rightarrow A(t_i))$ and modus ponens

Construct π_e as follows:

1 Suppose $A(t_1) \rightarrow A(e), \ldots, A(t_n) \rightarrow A(e)$ are all the critical formulas belonging to *e*. For each critical axiom ($i = 1, \ldots, n$)

$$A(t_i)
ightarrow A(e)$$

we obtain a derivation

$$\pi_i \vdash A(t_i) \rightarrow E$$

as follows:

- Replace *e* everywhere it occurs by t_i . Every critical formula $A(t) \rightarrow A(e)$ belonging to *e* turns into a formula of the form $B \rightarrow A(t_i)$
- Add $A(t_i)$ to the axioms. Now every such formula is derivable using the propositional tautology $A(t_i) \rightarrow (B \rightarrow A(t_i))$ and modus ponens
- Apply the deduction theorem for the propositional calculus to obtain π_i

2 Obtain a derivation π' of

$$\bigwedge
eg A(t_i) o E$$

by:

2 Obtain a derivation π' of

$$\bigwedge \neg A(t_i)
ightarrow E$$

by:

• Add $\bigwedge \neg A(t_i)$ to the axioms. Now every critical formula $A(t_i) \rightarrow A(e)$ belonging to e is derivable using the propositional tautology $\neg A(t_i) \rightarrow (A(t_i) \rightarrow A(e))$.

2 Obtain a derivation π' of

$$\bigwedge \neg A(t_i)
ightarrow E$$

by:

- Add $\bigwedge \neg A(t_i)$ to the axioms. Now every critical formula $A(t_i) \rightarrow A(e)$ belonging to e is derivable using the propositional tautology $\neg A(t_i) \rightarrow (A(t_i) \rightarrow A(e))$.
- Apply the deduction theorem to obtain π'

2 Obtain a derivation π' of

$$\bigwedge \neg A(t_i)
ightarrow E$$

by:

- Add $\bigwedge \neg A(t_i)$ to the axioms. Now every critical formula $A(t_i) \rightarrow A(e)$ belonging to e is derivable using the propositional tautology $\neg A(t_i) \rightarrow (A(t_i) \rightarrow A(e))$.
- Apply the deduction theorem to obtain π'
- Combine the proofs

$$\pi_i \vdash A(t_i) \to E$$

and

$$\pi' \vdash \bigwedge \neg A(t_i) \to E$$

to get $\pi_e \vdash E$ (case distinction)

2 Obtain a derivation π' of

$$\bigwedge \neg A(t_i)
ightarrow E$$

by:

- Add ∧ ¬A(t_i) to the axioms. Now every critical formula A(t_i) → A(e) belonging to e is derivable using the propositional tautology ¬A(t_i) → (A(t_i) → A(e)).
- Apply the deduction theorem to obtain π'
- Combine the proofs

$$\pi_i \vdash A(t_i) \to E$$

and

$$\pi' \vdash \bigwedge \neg A(t_i) \to E$$

to get $\pi_e \vdash E$ (case distinction)

Proof of the Extended First Epsilon Theorem

Theorem (Extended First Epsilon Theorem)

Suppose $E(a_1, ..., a_m)$ is quantifier-free and $s_1, ..., s_m$ are ε -terms such that $EC_{\varepsilon} \vdash_{\pi} E(s_1, ..., s_m)$. Then there are ε -free terms t_j^i such that $EC \vdash \bigvee_{i=1}^n E(t_1^i, ..., t_m^i)$

where
$$n \leq 2^{3 \cdot cc(\pi)}_{2 \cdot cc(\pi)}$$

Proof.

- suppose now the endformula *E* does contain ε -term
- ε -elimination method produces Herbrand disjunction of *E* by construction

Theorem (Herbrand's Theorem)

If $\exists x_1 \ldots \exists x_k E(x_1, \ldots, x_k)$ is a purely existential formula containing only the bound variables x_1, \ldots, x_k , and $\mathsf{PC} \vdash \exists x_1 \ldots \exists x_k E(x_1, \ldots, x_k)$. Then there are terms t_{ij} such that

$$\mathsf{EC} \vdash \bigvee_{i=1}^{n} \mathsf{E}(t_{1}^{i}, \ldots, t_{m}^{i})$$

where $n \leq 2^{3 \cdot cc(\pi)}_{2 \cdot cc(\pi)}$

Proof.

- consider PC $\vdash_{\pi} \exists x_1 \ldots \exists x_k E(x_1, \ldots, x_k)$
- employing embedding we obtain EC_ε ⊢ E(s₁,...,s_k), where s₁,..., s_k are terms (containing ε's)
- employ the Extended First Epsilon Theorem

Epsilon Calculus with Epsilon Equality

Epsilon Calculus with Epsilon Equality

Definition ("Grundtyp")

An ε -term $\varepsilon_x A(x)$ is an ε -matrix if the only terms that occur in $\varepsilon_x A(x)$ are free variables, each of which occurs exactly once.
Epsilon Calculus with Epsilon Equality

Definition ("Grundtyp")

An ε -term $\varepsilon_x A(x)$ is an ε -matrix if the only terms that occur in $\varepsilon_x A(x)$ are free variables, each of which occurs exactly once.

Definition (revisited)

 $AxEC_{\varepsilon}^{=}$: AxEC + all substitution instances of critical formulas + all substitution instances of

$$s = t
ightarrow arepsilon_x A(x, ec{u}, s, ec{v}) = arepsilon_x A(x, ec{u}, t, ec{v})$$

where $\varepsilon_x A(x, \vec{b}, a, \vec{c})$ is an ε -matrix

Epsilon Calculus with Epsilon Equality

Definition ("Grundtyp")

An ε -term $\varepsilon_x A(x)$ is an ε -matrix if the only terms that occur in $\varepsilon_x A(x)$ are free variables, each of which occurs exactly once.

Definition (revisited)

 $AxEC_{\varepsilon}^{=}$: AxEC + all substitution instances of critical formulas + all substitution instances of

$$s = t
ightarrow arepsilon_x A(x, ec{u}, s, ec{v}) = arepsilon_x A(x, ec{u}, t, ec{v})$$

where $\varepsilon_x A(x, \vec{b}, a, \vec{c})$ is an ε -matrix

Epsilon Calculus with Epsilon Equality

Definition ("Grundtyp")

An ε -term $\varepsilon_x A(x)$ is an ε -matrix if the only terms that occur in $\varepsilon_x A(x)$ are free variables, each of which occurs exactly once.

Definition (revisited)

 $AxEC_{\varepsilon}^{=}$: AxEC + all substitution instances of critical formulas + all substitution instances of

$$s = t
ightarrow arepsilon_x A(x, ec{u}, s, ec{v}) = arepsilon_x A(x, ec{u}, t, ec{v})$$

where $\varepsilon_x A(x, \vec{b}, a, \vec{c})$ is an ε -matrix

Remark

the restriction to ε -matrices for ε -equality axioms is crucial

let $EC_{\varepsilon}^{\prime=}$ denote the extension of the ε -calculus EC_{ε} with the following axioms to cover ε -equality:

$$s = t
ightarrow arepsilon_x A(x,ec{u},s,ec{v}) = arepsilon_x A(x,ec{u},t,ec{v})$$

let $EC_{\varepsilon}^{\prime=}$ denote the extension of the ε -calculus EC_{ε} with the following axioms to cover ε -equality:

$$s = t \rightarrow \varepsilon_x A(x, \vec{u}, s, \vec{v}) = \varepsilon_x A(x, \vec{u}, t, \vec{v})$$

Theorem

There exists an existential formulas $\exists \vec{x} E(\vec{x})$ such that

 $\mathsf{EC}'^{=}_{\varepsilon} \vdash_{\pi} [\exists \vec{\mathsf{x}} \mathsf{E}(\vec{\mathsf{x}})]^{\varepsilon}$

but we cannot show existence of ε -free terms $\vec{t}_0, \vec{t}_1, \ldots, \vec{t}_n$ such that $\mathsf{EC} \vdash \bigvee_{i=0}^n \mathsf{E}(\vec{t}_i)$ and n is bounded in the size π

let $EC_{\varepsilon}^{\prime=}$ denote the extension of the ε -calculus EC_{ε} with the following axioms to cover ε -equality:

$$s = t \rightarrow \varepsilon_x A(x, \vec{u}, s, \vec{v}) = \varepsilon_x A(x, \vec{u}, t, \vec{v})$$

Theorem

There exists an existential formulas $\exists \vec{x} E(\vec{x})$ such that

 $\mathsf{EC}'^{=}_{\varepsilon} \vdash_{\pi} [\exists \vec{\mathsf{x}} \mathsf{E}(\vec{\mathsf{x}})]^{\varepsilon}$

but we cannot show existence of ε -free terms $\vec{t}_0, \vec{t}_1, \ldots, \vec{t}_n$ such that $EC \vdash \bigvee_{i=0}^n E(\vec{t}_i)$ and n is bounded in the size π

let $EC_{\varepsilon}^{\prime=}$ denote the extension of the ε -calculus EC_{ε} with the following axioms to cover ε -equality:

$$s = t
ightarrow arepsilon_x A(x, ec{u}, s, ec{v}) = arepsilon_x A(x, ec{u}, t, ec{v})$$

Theorem

There exists an existential formulas $\exists \vec{x} E(\vec{x})$ such that

 $\mathsf{EC}'^{=}_{\varepsilon} \vdash_{\pi} [\exists \vec{\mathsf{x}} \mathsf{E}(\vec{\mathsf{x}})]^{\varepsilon}$

but we cannot show existence of ε -free terms $\vec{t}_0, \vec{t}_1, \ldots, \vec{t}_n$ such that $EC \vdash \bigvee_{i=0}^n E(\vec{t}_i)$ and n is bounded in the size π

Proof.

apply Yukami's trick

The Extended First Epsilon Theorem (with ε-Equality Axioms)

Theorem (First Epsilon Theorem with Epsilon Equality)

Suppose $E(a_1, \ldots, a_m)$ is quantifier-free and s_1, \ldots, s_m are ε -terms such that $EC_{\varepsilon}^{=} \vdash_{\pi} E(s_1, \ldots, s_m)$ Then there are ε -free terms t_j^i such that $EC \vdash \bigvee_{j}^{n} E(t_1^i, \ldots, t_k^i)$

The Extended First Epsilon Theorem (with ε-Equality Axioms)

Theorem (First Epsilon Theorem with Epsilon Equality)

Suppose $E(a_1, ..., a_m)$ is quantifier-free and $s_1, ..., s_m$ are ε -terms such that $EC_{\varepsilon}^{=} \vdash_{\pi} E(s_1, ..., s_m)$ Then there are ε -free terms t_j^i such that $EC \vdash \bigvee_{j}^{n} E(t_1^i, ..., t_k^i)$

The Extended First Epsilon Theorem (with ε-Equality Axioms)

Theorem (First Epsilon Theorem with Epsilon Equality)

Suppose $E(a_1, \ldots, a_m)$ is quantifier-free and s_1, \ldots, s_m are ε -terms such that $EC_{\varepsilon}^{=} \vdash_{\pi} E(s_1, \ldots, s_m)$ Then there are ε -free terms t_j^i such that $EC \vdash \bigvee_{i=1}^n E(t_1^i, \ldots, t_k^i)$ where $n \leq 2_{3 \cdot cc(\pi)+2}^{cc(\pi)+mpd(\pi)}$

- remove critical axioms belonging to "maximal" ε -terms
- let the following ε -equality axioms belong to ε -term e

$$l_{1} = r_{1} \rightarrow \varepsilon_{x} A(x, l_{1}, \vec{t_{1}}) = \overbrace{\varepsilon_{x} A(x, r_{1}, \vec{t_{1}})}^{=e}$$

$$\vdots$$

$$l_{q} = r_{q} \rightarrow \varepsilon_{x} A(x, l_{q}, \vec{t_{q}}) = \varepsilon_{x} A(x, r_{q}, \vec{t_{q}})$$

- remove critical axioms belonging to "maximal" ε -terms
- let the following ε -equality axioms belong to ε -term e

$$l_{1} = r_{1} \rightarrow \varepsilon_{x} A(x, l_{1}, \vec{t_{1}}) = \overbrace{\varepsilon_{x} A(x, r_{1}, \vec{t_{1}})}^{=e}$$

$$\vdots$$

$$l_{q} = r_{q} \rightarrow \varepsilon_{x} A(x, l_{q}, \vec{t_{q}}) = \varepsilon_{x} A(x, r_{q}, \vec{t_{q}})$$

• we obtain a derivation $\pi_i \vdash I_i = r_i \rightarrow E$ by replacing e by $\varepsilon_x A(x, \vec{t}_i, I_i)$

- remove critical axioms belonging to "maximal" ε-terms
- let the following ε -equality axioms belong to ε -term e

$$I_{1} = r_{1} \rightarrow \varepsilon_{x} A(x, l_{1}, \vec{t_{1}}) = \overbrace{\varepsilon_{x} A(x, r_{1}, \vec{t_{1}})}^{=e}$$

$$\vdots$$

$$I_{q} = r_{q} \rightarrow \varepsilon_{x} A(x, l_{q}, \vec{t_{q}}) = \varepsilon_{x} A(x, r_{q}, \vec{t_{q}})$$

• we obtain a derivation $\pi_i \vdash I_i = r_i \rightarrow E$ by replacing e by $\varepsilon_x A(x, \vec{t}_i, I_i)$

• similarly define $\pi' \vdash \bigwedge I_i \neq r_i \rightarrow E$

- remove critical axioms belonging to "maximal" ε-terms
- let the following ε -equality axioms belong to ε -term e

$$I_{1} = r_{1} \rightarrow \varepsilon_{x} A(x, l_{1}, \vec{t_{1}}) = \overbrace{\varepsilon_{x} A(x, r_{1}, \vec{t_{1}})}^{=e}$$

$$\vdots$$

$$I_{q} = r_{q} \rightarrow \varepsilon_{x} A(x, l_{q}, \vec{t_{q}}) = \varepsilon_{x} A(x, r_{q}, \vec{t_{q}})$$

• we obtain a derivation $\pi_i \vdash I_i = r_i \rightarrow E$ by replacing e by $\varepsilon_x A(x, \vec{t}_i, I_i)$

- similarly define $\pi' \vdash \bigwedge I_i \neq r_i \rightarrow E$
- use case distinction as in the case w/o equality

- remove critical axioms belonging to "maximal" ε-terms
- let the following ε -equality axioms belong to ε -term e

$$l_{1} = r_{1} \rightarrow \varepsilon_{x} A(x, l_{1}, \vec{t_{1}}) = \overbrace{\varepsilon_{x} A(x, r_{1}, \vec{t_{1}})}^{=e}$$

$$\vdots$$

$$l_{q} = r_{q} \rightarrow \varepsilon_{x} A(x, l_{q}, \vec{t_{q}}) = \varepsilon_{x} A(x, r_{q}, \vec{t_{q}})$$

- we obtain a derivation $\pi_i \vdash I_i = r_i \rightarrow E$ by replacing e by $\varepsilon_x A(x, \vec{t}_i, I_i)$; the ε -equality axioms become tautologies or derivable from the assumed $I_i = r_i$
- this step may require to "repair" critical axioms by derived identity schemas:

$$s = t \rightarrow A(s) \rightarrow A(t)$$

- similarly define $\pi' \vdash \bigwedge I_i \neq r_i \rightarrow E$
- use case distinction as in the case w/o equality

- remove critical axioms belonging to "maximal" ε-terms
- let the following ε -equality axioms belong to ε -term e

$$l_{1} = r_{1} \rightarrow \varepsilon_{x} A(x, l_{1}, \vec{t_{1}}) = \overbrace{\varepsilon_{x} A(x, r_{1}, \vec{t_{1}})}^{=e}$$

$$\vdots$$

$$l_{q} = r_{q} \rightarrow \varepsilon_{x} A(x, l_{q}, \vec{t_{q}}) = \varepsilon_{x} A(x, r_{q}, \vec{t_{q}})$$

- we obtain a derivation $\pi_i \vdash I_i = r_i \rightarrow E$ by replacing e by $\varepsilon_x A(x, \vec{t}_i, I_i)$; the ε -equality axioms become tautologies or derivable from the assumed $I_i = r_i$
- this step may require to "repair" critical axioms by derived identity schemas:

$$s = t \rightarrow A(s) \rightarrow A(t)$$

- similarly define $\pi' \vdash \bigwedge I_i \neq r_i \rightarrow E$
- use case distinction as in the case w/o equality

Term Complexities Revisited

Corollary

Suppose $E(a_1, \ldots, a_m)$ is a quantifier-free and s_1, \ldots, s_m are ε -terms, such that $EC_{\varepsilon}^{=} \vdash_{\pi} E(s_1, \ldots, s_m)$. Then there exists a primitive recursive function g and ε -free terms t_i^i such that

$$\mathsf{EC} \vdash \bigvee_{i=1}^n \mathsf{E}(t_1^i, \dots, t_m^i)$$

where $n, dp(t_j^i) \leqslant g(cc(\pi), \mathsf{mpd}(\pi), \mathsf{ld}(E(\vec{x})))$

Term Complexities Revisited

Corollary

Suppose $E(a_1, \ldots, a_m)$ is a quantifier-free and s_1, \ldots, s_m are ε -terms, such that $EC_{\varepsilon}^{=} \vdash_{\pi} E(s_1, \ldots, s_m)$. Then there exists a primitive recursive function g and ε -free terms t_i^i such that

$$\mathsf{EC} \vdash \bigvee_{i=1}^n \mathsf{E}(t_1^i, \dots, t_m^i)$$

where $n, dp(t_j^i) \leqslant g(cc(\pi), mpd(\pi), Id(E(\vec{x})))$

Term Complexities Revisited

Corollary

Suppose $E(a_1, \ldots, a_m)$ is a quantifier-free and s_1, \ldots, s_m are ε -terms, such that $EC_{\varepsilon}^{=} \vdash_{\pi} E(s_1, \ldots, s_m)$. Then there exists a primitive recursive function g and ε -free terms t_i^i such that

$$\mathsf{EC} \vdash igvee_{i=1}^n \mathsf{E}(t_1^i, \dots, t_m^i)$$

where $n, dp(t_j^i) \leq g(cc(\pi), mpd(\pi), ld(E(\vec{x})))$

Remark

nsbruck

- the presence of ε -equality axioms makes the ε -elimination (much) more involved
- again a bound on the Herbrand complexity can be read off, however depending not only on the $cc(\pi)$, but also on properties $(mpd(\pi))$ of ε -matrices in π

Conclusion and Open Questions

Final Remarks

two results on Herbrand complexity

- Herbrand complexity depends on the critical count of the initial proof (w/o ε -equality formulas)
- Herbrand complexity depends on the critical count of the initial proof and term complexity of ε -equality formulas
- Statman's lower bound example can be employed to show the need for a non-elementary bound

Conclusion and Open Questions

Final Remarks

two results on Herbrand complexity

- Herbrand complexity depends on the critical count of the initial proof (w/o ε -equality formulas)
- Herbrand complexity depends on the critical count of the initial proof and term complexity of ε -equality formulas
- Statman's lower bound example can be employed to show the need for a non-elementary bound

Conclusion and Open Questions

Final Remarks

two results on Herbrand complexity

- Herbrand complexity depends on the critical count of the initial proof (w/o ε -equality formulas)
- Herbrand complexity depends on the critical count of the initial proof and term complexity of ε -equality formulas
- Statman's lower bound example can be employed to show the need for a non-elementary bound

Open Questions

nsbruck

- significant gap between lower/upper bound
- sequent calculus representation, like the Mints-Yasuhara system, that admits syntactic cut-elimination

Thank You for Your Attention!

