Bounded Arithmetic Men = 384. + Nov (X+

2'+BI = X MX

Antonina Kolokolova (Memorial University of Newfoundland) joint with Marco Carmosino, Valentine Kabanets and Igor C. Oliveira

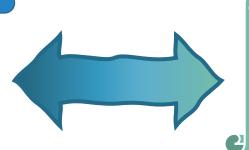
Proof Theory Virtual Seminar, June 30, 2021

Complexity of resolving P vs NP? -- and related questions

Meta-complexity quest

Complexity of **learning** to solve hard problems

C



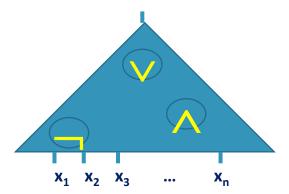
Power of **efficient reasoning** for **solving complexity questions**

Proof theory quest

Complexity quest

P vs NP? -- and friends

Non-uniformity



- Proving $P \neq NP$ seems hard... So let's try to solve an even harder problem!
- Non-uniform computation:
 - A family of Boolean circuits, each solving the problem on inputs of specific length
 - Can solve an undecidable problem with a family of constant-size circuits!

- Efficient non-uniform computation = circuits are small
 - Small: polynomial size (number of gates)
 - Most Boolean functions require exponential size circuits [Shannon'49, Lupanov'58]
 - Best we know for a problem in NP: slightly more than 3n gates.

 Can all problems in NP be solved by polynomial-size circuits (is NP ⊂ P/poly)?

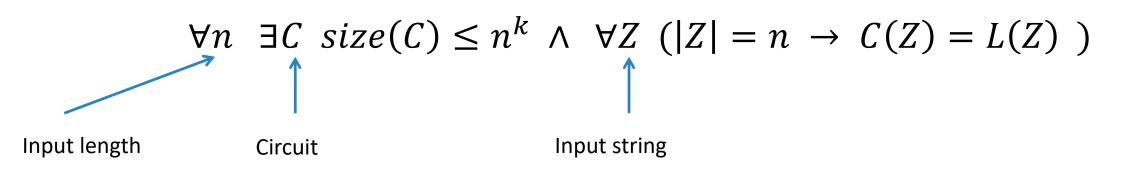
• Can Boolean satisfiability (SAT) be solved by a family of circuits of size $O(n^k)$ for some constant k?

- Can all problems in P be solved by circuits of size $O(n^2)$, that is, is $P \subset SIZE[O(n^2)]$?
 - Or $SIZE[O(n^k)]$ for some other constant k? Even linear?

 What power of reasoning (weak system of arithmetic) do we need to prove these statements, if they are true?

An upper bound statement

"A language L is computable by a family of circuits of size n^{k} "



• We want to study provability of such statements in weak theories of arithmetic.

A **proof** of the existence of an object often provides more information about the object than just its existence.

Herbrand's theorem

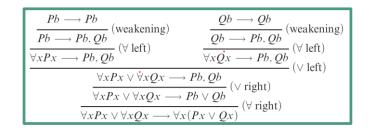
- Let T be a universal theory, and $\varphi(x, y)$ a quantifier-free formula.
- Let $T \vdash \forall x \exists y \ \varphi(x, y)$.

Then there is a constant k and terms t_1, \ldots, t_k in the language of T such that

•
$$T \vdash \forall x (\varphi(x, t_1(x)) \lor \varphi(x, t_2(x)) \lor \cdots \lor \varphi(x, t_k(x)))$$

Provability gives us a way to find (witness) existentially quantified objects

Bounded arithmetic



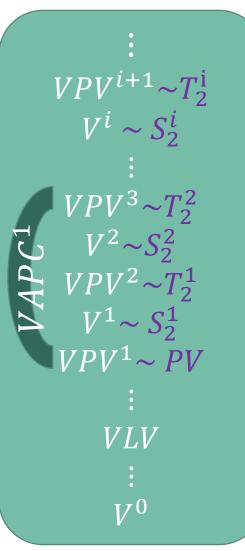
- Weak theories of arithmetic: all quantifiers bounded by terms
 - Cook's PV, Buss' S_2^1, T_2^1 , etc, Jerabek's APC^1 ...
- Power of reasoning: definability + witnessing theorems
 - PV: polynomial-time reasoning
 - *APC*¹: probabilistic polynomial time reasoning
- We use two-sorted theories, following Cook/Nguyen
 - Universally axiomatized theories for many classes, including within P.
 - Have analogues of all first-order theories above:
 - "large numbers" become strings, "small numbers" are just numbers (indices)

Two-sorted theories of bounded arithmetic

- Language: 2-sorted arithmetic (numbers + strings)
 - 0, 1, +,*, \leq for the number sort, length |X| for strings, = for both sorts, $n \in X$.
- Axioms:
 - For numbers: standard ($x + 1 \neq 0$, etc)
 - For strings: defining length and string equality
 - $X(y) \rightarrow y < |\mathsf{X}|, y + 1 = |X| \rightarrow X(y),..$
 - Comprehension: for a class of formulas Φ (different Φ give different theories.)
 - $\exists X \le n \ \forall z < n \ (X(z) \leftrightarrow \varphi(z)) \ \text{for } \varphi \in \Phi$
 - Can also add induction on string length (provable in all our theories):
 - $X(0) \land \forall y < n (X(y) \rightarrow X(y+1)) \rightarrow X(n)$

Two-sorted theories of bounded arithmetic

- Theory V^0 : comprehension over formulas with no second-sort quantifiers
 - We actually need its universally axiomatized conservative extension, V⁰.
- V^1 : $\Phi = \Sigma_1^B$, formulas with one (bounded) existential string quantifier
 - V^1 is equivalent to Buss' S_2^1 via RSUV isomorphism
 - Similarly, V^i with $\Phi = \Sigma_i^B$
- *V*PV¹ : universal theory for polynomial time
 - V^0 + function symbols for all polytime functions with their defining axioms.
 - Similarly, theories for complexity classes other than P (eg VLV for logspace)
 - VPV^2 , with functions from P^{NP} , is conservative over (two-sorted variant of) T_2^1
- *VAPC*¹: VPV+dual weak pigeonhole principle for all polytime functions.
 - dWPHP: $\forall n \forall S \exists Y (|Y| = n + 1, "Y < 2^n + 2^n/n " \forall X (|X| = n) F(S, X) \neq Y$



Power of reasoning in bounded arithmetic

• VPV^1 :

- Captures polytime computation
- Proves Cook-Levin, PCP theorem [Pich'15],...
- Does not prove $P \subseteq SIZE[n^k]$ [Krajicek/Oliveira'17, BOK'20]
 - Previous conditional collapses [Cook/Krajicek'07]
- *VAPC*¹ [Jerabek'05,'07]
 - Captures probabilistic polytime
 - Formalizes much of known complexity theory
 - Proves *Parity* ∉ constant-depth Boolean circuits, etc

 $VPV^{i+1} \sim T_2^i$ $V^i \sim S_2^i$ $VPV^{2} \sim T_{2}^{1}$ V^0

Buss's witnessing theorem

Let $\varphi(X, Y)$ be a formula with no second-sort quantifiers (Σ_1^B also OK) If $V^1 \vdash \forall X \exists Y \varphi(X, Y)$, then there exists a polytime function F such that $V^1(F) \vdash \forall X \varphi(X, F(X))$

- So provability of a ∀∃ formula in V¹ gives a polynomial-time algorithm to witness the existential quantifier.
 - Works for multiple variables of both sorts for both quantifiers.
 - Scales up the polynomial-time hierarchy.

• Corollary: If $V^1 \vdash "Primality is in P"$, get polytime algorithm for factoring

What if our formula is $\forall \exists \forall$, such as that upper bound statement?

KPT witnessing theorem [Krajicek/Pudlak/Takeuti]

Let $\varphi(X, Y, Z)$ be a formula with no string quantifiers, T a universal theory.

If $T \vdash \forall X \exists Y \forall Z \ \varphi(X, Y, Z)$, then there exists a finite sequence of terms F_1, \dots, F_k in the language of T such that

 $T \vdash \forall X \forall Z_1 \dots \forall Z_k \ \varphi(X, F_1(X), Z_1) \lor \varphi(X, F_2(X, Z_1), Z_2) \lor \cdots \lor \\ \lor \varphi(X, F_k(X, Z_1, \dots, Z_{k-1}), Z_k)$

• Proved using Herbrand's theorem

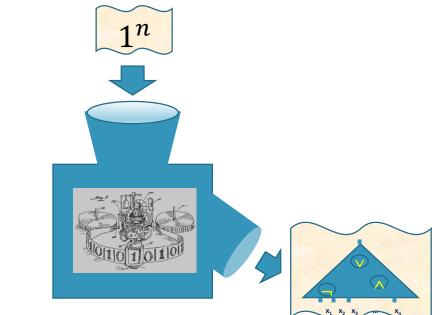
What kind of an algorithm for computing Y does KPT theorem give?

Student-teacher game / counterexample computation

In computational learning theory, this is known as "learning with equivalence queries" [Angluin'87].

Uniformity

 A problem is in CLASS-uniform SIZE[t(n)] if there is an algorithm from CLASS that, given input length n, outputs a description



of a circuit of size $\leq t(n)$ solving that problem on all inputs of length n.

• Usually, *n* is in unary.

- [Santhanam/Williams'14]:
 - For every $k \ge 1$ there is a problem $L \in P$ such that $L \notin P$ -uniform $SIZE[n^k]$

LEARN^{EQ}-uniformity

- A problem L is in *LEARN^{EQ[r]}*-uniform *SIZE*[*t*(*n*)] if there is a student-teacher game with
 - a polytime student algorithm
 - which, on input 1^n

Algorithm

- after at most r equivalence queries to the teacher
- outputs a circuit of size $\leq t(n)$ solving L on inputs of size n

P-uniform

LEARN^{EQ}-uniform

Non-uniform = $FZPP^{NP}$

Extending [SW'14] to *LEARN^{EQ}*-uniformity

For every $k \ge 1$, 1. $P \nsubseteq LEARN^{EQ[\mathbf{0}(1)]}$ -uniform $SIZE[n^k]$

2. NP $\nsubseteq LEARN^{EQ[n^{o(1)}]}$ -uniform SIZE[n^k]

- 3. $NP \not\subseteq LEARN^{EQ[n^{0(1)}]}$ -uniform SIZE[n^k] or SearchSAT $\notin LEARN^{SearchSAT - EQ[n^{0(1)}]}$ -uniform SIZE[n^k]
 - Also get lower bounds for randomized uniformity (eg. ZPP, FZPP...) and randomized LEARN^{EQ}

LEARN^{EQ}-uniformity bounds to unprovability

• Let T be a universal theory (eg VPV^1) and suppose that

 $T \vdash \forall n \; \exists C \; size(C) \le n^k \; \land \; \forall Z \; (|Z| = n \; \rightarrow \; C(Z) = L(Z))$

- By KPT witnessing theorem, get a LEARN^{EQ[O(1)]}-uniform family of circuits for L.
 - T cannot prove a truly non-uniform upper bound, only *LEARN^{EQ[O(1)]}*-uniform.
- If L ∉ LEARN^{EQ[O(1)]}-uniform SIZE[n^k], then T cannot prove a nonuniform upper bound for L.

Unprovability results

For all $k \ge 1$, 1. $VPV^1 \nvDash P \subseteq SIZE[n^k]$ 2. $V^1 \nvDash NP \subseteq SIZE[n^k]$ • Moreover, $V^1 \nvDash NP \subseteq ioSIZE[poly] \cap ioSIZE^{SAT}[n^k]$ 3. $VPV^2 \nvDash P^{NP} \subseteq SIZE^{SAT}[n^k]$

4. VLV does not prove that logspace has branching programs size $O(n^k)$

Also in [BKO'20]

5. $VAPC^1 \not\vdash SAT \in ioSIZE[poly], or ZPP^{NP[O(1)]} \not\subseteq ioSIZE^{SAT}[n^k]$

Limits of provability

- $VPV^1 \not\vdash (NP \not\subseteq P) \land (NP \subseteq ioSIZE[poly])$
- $VAPC^1 \not\vdash (NP \not\subseteq BPP) \land (NP \subseteq ioSIZE[poly])$

Feasible reasoning cannot simultaneously prove nonuniform upper bounds and uniform lower bounds!

• Proof idea: KPT witnessing for the upper bound statement pitched against Buss' witnessing for the uniform lower bound.

$VPV^1 \not\vdash (NP \not\subseteq P) \land (NP \subseteq ioSIZE[poly])$

- Upper bound statement: $NP \subseteq ioSIZE[poly]$
 - equivalent to SAT \in *ioSIZE*[*poly*]

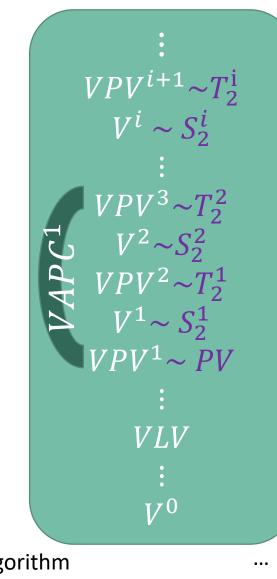
 $\forall m \exists n > m \ \exists C \ size(C) \le n^k \land \ \forall (\varphi, w) \le n \ (\varphi(w) \to \varphi(C(\varphi)))$

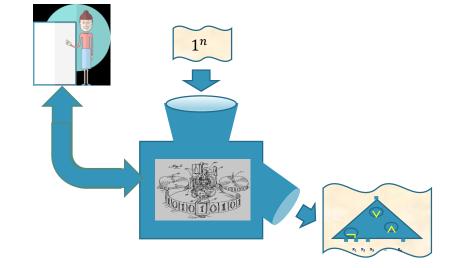
- If provable, can apply KPT theorem to get a learning algorithm for SearchSAT
- Lower bound statement: $NP \not\subseteq P$
 - Equivalent to $SAT \notin P$. For every function G that tries to solve SAT, $\forall m \exists n \ge m \exists (\varphi, w) \le n \ (\varphi(w) \land \neg \varphi(G(\varphi)))$
 - If provable, can use Buss' witnessing to eliminate equivalence queries.

Open problems

- Show that $V^1 \not\vdash P \subseteq SIZE[n^k]$, not just $NP \subseteq SIZE[n^k]$
- Show that $VAPC^1 \not\vdash ZPP \subseteq SIZE[n^k]$
 - May need to get better randomized-uniformity lower bounds first
- Show independence of some natural circuit complexity statement from at least VPV¹.

A **proof** of the existence of an object often provides more information about the object than just its existence.





Thank you!

Algorithm

P-uniform ••• LEARN^{EQ}-uniform

Non-uniform = $FZPP^{NP}$