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P vs NP?  
-- and friends 

Complexity of resolving 
P vs NP?  

-- and related questions

Meta-complexity quest

Complexity quest

Complexity of learning to 
solve hard  problems 

Power of efficient reasoning
for solving complexity questions



Non-uniformity

• Proving  P ≠ NP seems hard…  So let’s try to solve an even harder problem!  

• Non-uniform computation:  
• A family of Boolean circuits, each solving the problem on inputs of specific length

• Can solve an undecidable problem with a family of constant-size circuits! 

• Efficient non-uniform computation = circuits are small 
• Small: polynomial size (number of gates) 

• Most Boolean functions require exponential size circuits [Shannon’49, Lupanov’58]

• Best we know for a problem in NP: slightly more than 3n gates. 




x1 x2    x3 …         xn



• Can all problems in NP be solved by polynomial-size circuits                     
(is NP ⊂ P/poly)? 
• Can Boolean satisfiability (SAT)  be solved by a family of circuits 

of size 𝑂(𝑛𝑘) for some constant k?

• Can all problems in P be solved  by circuits of size 𝑂(𝑛2), that is, is     
𝑃 ⊂ 𝑆𝐼𝑍𝐸[𝑂(𝑛2)]? 

• Or 𝑆𝐼𝑍𝐸[𝑂 𝑛𝑘 ] for some other constant k?  Even linear? 

• What power of reasoning (weak system of arithmetic) do we need 
to prove these statements, if they are true? 



An upper bound statement 

“A language L is computable by a family of circuits of size 𝑛𝑘“

∀𝑛 ∃𝐶 𝑠𝑖𝑧𝑒 𝐶 ≤ 𝑛𝑘 ∧ ∀𝑍 ( 𝑍 = 𝑛 → 𝐶 𝑍 = 𝐿 𝑍 )

• We want to study provability of such statements in weak theories of 
arithmetic. 

Input length Circuit Input string  



A proof of the existence of an object
often provides more information about the 
object than just its existence.



Herbrand’s theorem 

• Let 𝑇 be a universal theory, and 𝜑(𝑥, 𝑦) a quantifier-free formula. 

• Let  𝑇 ⊢ ∀𝑥 ∃𝑦 𝜑 𝑥, 𝑦 .

Then there is a constant 𝑘 and terms 𝑡1, … , 𝑡𝑘 in the language of 𝑇 such that 

• 𝑇 ⊢ ∀𝑥 (𝜑(𝑥, 𝑡1 𝑥 ) ∨ 𝜑(𝑥, 𝑡2 𝑥 ) ∨ ⋯∨ 𝜑(𝑥, 𝑡𝑘 𝑥 ))

Provability gives us a way to find (witness)  existentially quantified objects 



Bounded arithmetic

• Weak theories of arithmetic: all quantifiers bounded by terms 
• Cook’s PV,   Buss’  𝑆2

1, 𝑇2
1, etc,  Jerabek’s 𝐴𝑃𝐶1…  

• Power of reasoning:  definability + witnessing theorems 
• PV:  polynomial-time reasoning
• 𝐴𝑃𝐶1:  probabilistic polynomial time reasoning

• We use two-sorted theories, following Cook/Nguyen 
• Universally axiomatized theories for many classes, including within P.  
• Have analogues of all first-order theories above: 

• “large numbers” become strings, “small numbers”  are just numbers (indices) 



Two-sorted theories of bounded arithmetic

• Language: 2-sorted arithmetic (numbers + strings)
• 0, 1, +,∗, ≤ for the number sort,  length |X| for strings, = for both sorts,  n ∈ X.

• Axioms: 
• For numbers: standard (𝑥 + 1 ≠ 0, etc) 

• For strings:  defining length and string equality 
• 𝑋 𝑦 → 𝑦<|X|,  𝑦 + 1 = 𝑋 → 𝑋(𝑦),..

• Comprehension: for a class of formulas Φ (different Φ give different theories. )
• ∃𝑋 ≤ 𝑛 ∀𝑧 < 𝑛 𝑋 𝑧 ↔ 𝜑 𝑧 for 𝜑 ∈ Φ

• Can also add induction on string length (provable in all our theories):

• 𝑋 0 ∧ ∀𝑦 < 𝑛 𝑋 𝑦 → 𝑋 𝑦 + 1 → 𝑋(𝑛)



Two-sorted theories of bounded arithmetic

• Theory  𝑉0: comprehension over formulas with no second-sort quantifiers
• We actually need its universally axiomatized conservative extension, 𝑉0.

• 𝑉1: Φ = Σ1
𝐵, formulas with one (bounded) existential string quantifier 

• 𝑉1 is equivalent to Buss’ 𝑆2
1 via RSUV isomorphism 

• Similarly, 𝑉𝑖 with Φ = Σ𝑖
𝐵

• 𝑉PV1 : universal theory for polynomial time 
• 𝑉0 + function symbols for all polytime functions with their defining axioms. 
• Similarly, theories for  complexity classes other than P (eg VLV for logspace) 
• 𝑉𝑃𝑉2, with functions from 𝑃𝑁𝑃 , is conservative over (two-sorted variant of)  𝑇2

1

• 𝑉𝐴𝑃𝐶1:   VPV+dual weak pigeonhole principle for all polytime functions. 
• dWPHP:  ∀𝑛 ∀𝑆 ∃𝑌 ( 𝑌 = 𝑛 + 1, " 𝑌 < 2𝑛 + 2𝑛/𝑛 " ∀𝑋 𝑋 = 𝑛 𝐹(𝑆, 𝑋) ≠ 𝑌
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Power of reasoning in bounded arithmetic

• 𝑉𝑃𝑉1:  
• Captures polytime computation

• Proves Cook-Levin, PCP theorem [Pich’15],… 

• Does  not prove 𝑃 ⊆ 𝑆𝐼𝑍𝐸 𝑛𝑘 [Krajicek/Oliveira’17, BOK’20]
• Previous conditional collapses [Cook/Krajicek’07]

• 𝑉𝐴𝑃𝐶1 [Jerabek’05,’07] 
• Captures probabilistic polytime 

• Formalizes much of known complexity theory 

• Proves 𝑃𝑎𝑟𝑖𝑡𝑦 ∉ constant-depth Boolean circuits, etc
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Buss’s witnessing theorem 

• So provability of a ∀∃ formula in 𝑉1 gives a polynomial-time algorithm to 
witness the existential quantifier. 
• Works for multiple variables of both sorts for both quantifiers. 

• Scales up the polynomial-time hierarchy. 

• Corollary: If 𝑉1 ⊢ "𝑃𝑟𝑖𝑚𝑎𝑙𝑖𝑡𝑦 𝑖𝑠 𝑖𝑛 𝑃“,  get polytime algorithm for factoring 

What if our formula is ∀∃∀, such as that upper bound statement? 

Let 𝜑(𝑋, 𝑌) be a formula with no second-sort quantifiers (Σ1
𝐵 also OK) 

If  𝑉1 ⊢ ∀𝑋 ∃𝑌 𝜑(𝑋, 𝑌),  then there exists a polytime function F such that 
𝑉1 𝐹 ⊢ ∀𝑋 𝜑(𝑋, 𝐹 𝑋 )



KPT witnessing theorem [Krajicek/Pudlak/Takeuti]

• Proved using Herbrand’s theorem

Let 𝜑(𝑋, 𝑌, 𝑍) be a formula with no string quantifiers, T a universal theory.

If  𝑇 ⊢ ∀𝑋 ∃𝑌 ∀𝑍 𝜑(𝑋, 𝑌, 𝑍),  then there exists a finite sequence of terms 
𝐹1, … , 𝐹𝑘 in the language of T such that  

T ⊢ ∀𝑋 ∀𝑍1…∀𝑍𝑘 𝜑 𝑋, 𝐹1 𝑋 , 𝑍1 ∨ 𝜑 𝑋, 𝐹2 𝑋, 𝑍1 , 𝑍2 ∨ ⋯∨
∨ 𝜑 𝑋, 𝐹𝑘 𝑋, 𝑍1, … , 𝑍𝑘−1 , 𝑍𝑘

What kind of an algorithm for computing Y does KPT theorem give? 



Student-teacher game / counterexample computation

In computational learning theory, this is known as “learning with equivalence 
queries”  [Angluin’87].  



Uniformity 

• A problem is in CLASS-uniform 𝑺𝑰𝒁𝑬[𝒕 𝒏 ] if 

there is an algorithm from CLASS  that,

given input length 𝑛, outputs a description 

of a circuit of size  ≤ 𝑡 𝑛 solving that problem on all inputs of length 𝑛.
• Usually,  𝑛 is  in unary. 

• [Santhanam/Williams’14]: 
• For every 𝑘 ≥ 1 there is a problem 𝐿 ∈ 𝑃 such that  𝐿 ∉ 𝑃-uniform 𝑆𝐼𝑍𝐸 𝑛𝑘

1𝑛






x1 x2    x3 …         xn

Algorithm … P-uniform circuit family … Non-uniform = 𝐹𝑍𝑃𝑃𝑁𝑃



𝐿𝐸𝐴𝑅𝑁𝐸𝑄-uniformity 

• A problem L is in 𝑳𝑬𝑨𝑹𝑵𝑬𝑸[𝒓]-uniform 𝑺𝑰𝒁𝑬[𝒕 𝒏 ] if 

there is a student-teacher game with 
• a polytime  student algorithm 

• which, on input 1𝑛

• after at most 𝑟 equivalence queries to the teacher

• outputs a circuit of size ≤ 𝑡 𝑛 solving 𝐿 on inputs of size n 

1𝑛




x1 x2    x3 …         xn

Algorithm P-uniform … Non-uniform = 𝐹𝑍𝑃𝑃𝑁𝑃𝑳𝑬𝑨𝑹𝑵𝑬𝑸-uniform…



Extending [SW’14] to 𝐿𝐸𝐴𝑅𝑁𝐸𝑄-uniformity  

For every 𝑘 ≥ 1,  

1. 𝑃 ⊈ 𝐿𝐸𝐴𝑅𝑁𝐸𝑄 𝑶(𝟏) -uniform 𝑆𝐼𝑍𝐸 𝑛𝑘

2. 𝑁𝑃 ⊈ 𝐿𝐸𝐴𝑅𝑁𝐸𝑄 𝒏𝒐 𝟏
-uniform SIZE[𝑛𝑘]

3. 𝑁𝑃 ⊈ 𝐿𝐸𝐴𝑅𝑁𝐸𝑄 𝒏𝑶 𝟏
-uniform SIZE[𝑛𝑘]

or SearchSAT ∉ 𝐿𝐸𝐴𝑅𝑁𝑆𝑒𝑎𝑟𝑐ℎ𝑆𝐴𝑇−𝐸𝑄 𝒏𝑶 𝟏
-uniform SIZE[𝑛𝑘]

• Also get lower bounds for randomized uniformity (eg. ZPP, FZPP… ) and randomized  𝐿𝐸𝐴𝑅𝑁𝐸𝑄



𝐿𝐸𝐴𝑅𝑁𝐸𝑄-uniformity bounds to unprovability 

• Let T be a universal theory (eg 𝑉𝑃𝑉1) and suppose that 

𝑇 ⊢ ∀𝑛 ∃𝐶 𝑠𝑖𝑧𝑒 𝐶 ≤ 𝑛𝑘 ∧ ∀𝑍 ( 𝑍 = 𝑛 → 𝐶 𝑍 = 𝐿 𝑍 )

• By KPT witnessing theorem, get a 𝐿𝐸𝐴𝑅𝑁𝐸𝑄[𝑂 1 ]-uniform family of 
circuits for L.  
• T cannot prove a truly non-uniform upper bound, only 𝐿𝐸𝐴𝑅𝑁𝐸𝑄[𝑂 1 ]-uniform.

• If  𝐿 ∉ 𝐿𝐸𝐴𝑅𝑁𝐸𝑄[𝑂 1 ]-uniform 𝑆𝐼𝑍𝐸 𝑛𝑘 ,  then T cannot prove a non-
uniform upper bound for L. 



Unprovability results  

For all 𝑘 ≥ 1,

1. 𝑉𝑃𝑉1 ⊬ 𝑃 ⊆ 𝑆𝐼𝑍𝐸 𝑛𝑘

2. 𝑉1 ⊬ 𝑁𝑃 ⊆ 𝑆𝐼𝑍𝐸 𝑛𝑘

• Moreover, 𝑉1 ⊬ 𝑁𝑃 ⊆ 𝑖𝑜𝑆𝐼𝑍𝐸 𝑝𝑜𝑙𝑦 ∩ 𝑖𝑜𝑆𝐼𝑍𝐸𝑆𝐴𝑇 𝑛𝑘

3. 𝑉𝑃𝑉2 ⊬ 𝑃𝑁𝑃 ⊆ 𝑆𝐼𝑍𝐸𝑆𝐴𝑇 𝑛𝑘

4. VLV does not prove that logspace has branching programs size 𝑂 𝑛𝑘

5. 𝑉𝐴𝑃𝐶1 ⊬ 𝑆𝐴𝑇 ∈ 𝑖𝑜𝑆𝐼𝑍𝐸 𝑝𝑜𝑙𝑦 , 𝑜𝑟 𝑍𝑃𝑃𝑁𝑃[𝑂 1 ] ⊈ 𝑖𝑜𝑆𝐼𝑍𝐸𝑆𝐴𝑇 𝑛𝑘

Also in [BKO’20]



Limits of provability 

• 𝑉𝑃𝑉1 ⊬ 𝑁𝑃 ⊈ 𝑃 ∧ (𝑁𝑃 ⊆ 𝑖𝑜𝑆𝐼𝑍𝐸 𝑝𝑜𝑙𝑦 )  

• 𝑉𝐴𝑃𝐶1 ⊬ 𝑁𝑃 ⊈ 𝐵𝑃𝑃 ∧ (𝑁𝑃 ⊆ 𝑖𝑜𝑆𝐼𝑍𝐸 𝑝𝑜𝑙𝑦 )

• Proof idea:  KPT witnessing for the upper bound statement pitched against 
Buss’ witnessing for the uniform lower bound. 

Feasible reasoning cannot simultaneously prove non-
uniform upper bounds and uniform lower bounds!  



𝑉𝑃𝑉1 ⊬ 𝑁𝑃 ⊈ 𝑃 ∧ (𝑁𝑃 ⊆ 𝑖𝑜𝑆𝐼𝑍𝐸 𝑝𝑜𝑙𝑦 )  

• Upper bound statement: 𝑁𝑃 ⊆ 𝑖𝑜𝑆𝐼𝑍𝐸 𝑝𝑜𝑙𝑦
• equivalent to SAT ∈ 𝑖𝑜𝑆𝐼𝑍𝐸 𝑝𝑜𝑙𝑦
∀𝑚 ∃𝑛 > 𝑚 ∃𝐶 𝑠𝑖𝑧𝑒 𝐶 ≤ 𝑛𝑘 ∧ ∀ 𝜑,𝑤 ≤ 𝑛 (𝜑(𝑤) → 𝜑(𝐶(𝜑)))

• If provable, can apply KPT theorem to get a learning algorithm for SearchSAT

• Lower bound statement:  𝑁𝑃 ⊈ P
• Equivalent to 𝑆𝐴𝑇 ∉ 𝑃.   For every function 𝐺 that tries to solve SAT,  

∀𝑚 ∃𝑛 ≥ 𝑚 ∃ 𝜑,𝑤 ≤ 𝑛 (𝜑 𝑤 ∧ ¬𝜑 𝐺 𝜑 )

• If provable, can use Buss’ witnessing to eliminate equivalence queries. 



Open problems 

• Show that  𝑉1 ⊬ 𝑃 ⊆ 𝑆𝐼𝑍𝐸 𝑛𝑘 , not just  𝑁𝑃 ⊆ 𝑆𝐼𝑍𝐸 𝑛𝑘

• Show that 𝑉𝐴𝑃𝐶1 ⊬ 𝑍𝑃𝑃 ⊆ 𝑆𝐼𝑍𝐸 𝑛𝑘

• May need to get better randomized-uniformity lower bounds first 

• Show independence of some natural circuit complexity statement 
from at least 𝑉𝑃𝑉1. 



A proof of the existence of an object
often provides more information about the 
object than just its existence.



Thank you! 
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Algorithm P-uniform … Non-uniform = 𝐹𝑍𝑃𝑃𝑁𝑃𝑳𝑬𝑨𝑹𝑵𝑬𝑸-uniform…


