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Complexity of resolving
Meta-complexity quest Pvs NP?

-- and related questions

Complexity of learning to Power of efficient reasoning
solve hard problems for solving complexity questions

P vs NP?
Complexity quest -- and friends



Non-uniformity

X; X3 X3 e X,

* Proving P # NP seems hard... So let’s try to solve an even harder problem!

* Non-uniform computation:
* A family of Boolean circuits, each solving the problem on inputs of specific length
e Can solve an undecidable problem with a family of constant-size circuits!

* Efficient non-uniform computation = circuits are small

* Small: polynomial size (number of gates)
* Most Boolean functions require exponential size circuits [Shannon’49, Lupanov’58]

* Best we know for a problem in NP: slightly more than 3n gates.



* Can all problems in NP be solved by polynomial-size circuits
(is NP c P/poly)?
e Can Boolean satisfiability (SAT) be solved by a family of circuits
of size O(n*) for some constant k?

e Can all problems in P be solved by circuits of size O(n?), that s, is
P c SIZE[O(n?)]?
* Or SIZE[O(nk)] for some other constant k? Even linear?

* What power of reasoning (weak system of arithmetic) do we need
to prove these statements, if they are true?




An upper bound statement

“A language L is computable by a family of circuits of size n*“

vn 3C size(C) <n® A VZ (|Z|=n - C(Z)=L(2))

]

Input length Circuit Input string

* We want to study provability of such statements in weak theories of
arithmetic.



A proof of the cxistence of an object
oflen provides more informdtion aboul the
ﬁ@m‘ o 7 Just 1ls existence



Herbrand’s theorem

* Let T be a universal theory, and ¢ (x, y) a quantifier-free formula.

elet T+ Vx 3y o(x,y).

Then there is a constant k and terms tq, ..., t; in the language of T such that

T EVx (p(x, t1(x) Vol t,(x)) V-V o(x, t(x)))

Provability gives us a way to find (witness) existentially quantified objects
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* Weak theories of arithmetic: all quantifiers bounded by terms
 Cook’s PV, Buss’ Si,T,,etc, Jerabek’s APC!...

* Power of reasoning: definability + witnessing theorems

* PV: polynomial-time reasoning
« APC': probabilistic polynomial time reasoning

* We use two-sorted theories, following Cook/Nguyen
* Universally axiomatized theories for many classes, including within P.

* Have analogues of all first-order theories above:
e “large numbers” become strings, “small numbers” are just numbers (indices)



Two-sorted theories of bounded arithmetic

* Language: 2-sorted arithmetic (numbers + strings)
* 0,1, +,%, < for the number sort, length |X| for strings, = for both sorts, n € X.

* AXioms:

* For numbers: standard (x + 1 # 0, etc)

* For strings: defining length and string equality
* X(y) - y<IX], y+1=|X] > X(),-

 Comprehension: for a class of formulas ® (different ® give different theories. )
e 3IX<nvz <n(X(z) o <p(z)) forp € @
e Can also add induction on string length (provable in all our theories):

« X(OAVy<n(X(y) > X(y+1)) - X(n)



Two-sorted theories of bounded arithmetic

Theory V°: comprehension over formulas with no second-sort quantifiers
* We actually need its universally axiomatized conservative extension, V0.

V1. & = ¥B, formulas with one (bounded) existential string quantifier

« V1is equivalent to Buss’ S5 via RSUV isomorphism
« Similarly, V! with @ = 27

VPV?! : universal theory for polynomial time

« V0 + function symbols for all polytime functions with their defining axioms.
» Similarly, theories for complexity classes other than P (eg VLV for logspace)
« VPV?2, with functions from PN? is conservative over (two-sorted variant of) T,

VAPC?': VPV+dual weak pigeonhole principle for all polytime functions.
e dWPHP: VnVvSaY (|Y|=n+1,"Y<2"+2"/n" VX (X| =n) F(S,X) =Y




Power of reasoning in bounded arithmetic

- VPV
* Captures polytime computation
* Proves Cook-Levin, PCP theorem [Pich’15],...
* Does not prove P € SIZE[n*] [Krajicek/Oliveira’17, BOK’20]

* Previous conditional collapses [Cook/Krajicek’07]

e VAPC! [Jerabek’05,07]
e Captures probabilistic polytime
* Formalizes much of known complexity theory
* Proves Parity & constant-depth Boolean circuits, etc




Buss’s withessing theorem

Let @(X,Y) be aformula with no second-sort quantifiers (X7 also OK)

If V1 vX3Y ¢(X,Y), then there exists a polytime function F such that
VI(F) F VX @(X,F(X))

* So provability of a V3 formula in V! gives a polynomial-time algorithm to
witness the existential quantifier.

* Works for multiple variables of both sorts for both quantifiers.
e Scales up the polynomial-time hierarchy.

e Corollary: If V1 + "Primality is in P, get polytime algorithm for factoring

What if our formula is V3V, such as that upper bound statement?




KPT witnessing theorem [Krajicek/Pudlak/Takeuti]

Let 9 (X,Y,Z) be aformula with no string quantifiers, T a universal theory.

If T-VvX3AYVZ @(X,Y,Z), then there exists a finite sequence of terms
F;, ..., F;, inthe language of T such that

T - VXVZ, ..YZ, o(X,Fy(X),Z)V @(X,Fy(X,Z1),Z5) V +V
V(P(X,FR(X,Zl,...,Zk_l),Zk)

* Proved using Herbrand’s theorem

What kind of an algorithm for computing Y does KPT theorem give?




Student-teacher game / counterexample computation

In computational learning theory, this is known as “learning with equivalence
queries” [Angluin’87].




Uniformity

A problem is in CLASS-uniform SIZE[t(n)] if
there is an algorithm from CLASS that,
given input length n, outputs a description

of a circuit of size < t(n) solving that problem on all inputs of length n.
* Usually, nis in unary.

Algorithm P-uniform circuit family Non-uniform = FZPPN?

e [Santhanam/Williams’14]:
* For every k > 1 thereis a problem L € P such that L & P-uniform SIZE[n*]



LEARNEC uniformity

e Aproblem Lisin LEARNEC! _uniform SIZE[t(n)] if

there is a student-teacher game with
* a polytime student algorithm
* which, oninput 1™
 after at most r equivalence queries to the teacher
* outputs a circuit of size < t(n) solving L on inputs of size n

Algorithm P-uniform LEARNECQ uniform Non-uniform = FZPPNP




Extending [SW’14] to LEARNE9-uniformity

Foreveryk = 1,
1. P ¢ LEARNECIOM] yniform SIZE[n*]

2. NP ¢ LEARNEC[™™] yniform SIZE[n*]

3. NP & LEARNECM®™] _yniform SIZE[n¥]

or SearchSAT ¢ LEARNSearchSAT-EQ[nD] _niform SIZE[nk]

« Also get lower bounds for randomized uniformity (eg. ZPP, FZPP... ) and randomized LEARNE?



LEARNEC uniformity bounds to unprovability

* Let T be a universal theory (eg VPV!) and suppose that

T +Vn 3C size(C) <n®* A VZ (|Z| =n - C(Z) = L(2Z))

« By KPT witnessing theorem, get a LEARNEQIOWI_yniform family of
circuits for L.

« T cannot prove a truly non-uniform upper bound, only LEARNEQIOWI_yniform.

* If L ¢ LEARNECIOWI yniform SIZE[n¥*], then T cannot prove a non-
uniform upper bound for L.



Unprovability results

Forall k = 1, N
1. VPV i P € SIZE[n¥]

1
2. V1 # NP < SIZE[n*] - Also in [BKO'20]
* Moreover, V1 t+ NP C ioSIZE[poly] N ioSIZESAT [n¥]

3. VPV? i PNP C SIZESAT [nk]

J

4. VLV does not prove that logspace has branching programs size O(nk)

5. VAPC' v+ SAT € ioSIZE[poly], or ZPPNPIOWI ¢ joSIZESAT [n¥]



Limits of provability
« VPV - (NP £ P) A (NP € i0SIZE[poly])
« VAPC' #+ (NP &€ BPP) A (NP € i0SIZE[poly])

Feasible reasoning cannot simultaneously prove non-

uniform upper bounds and uniform lower bounds!

* Proof idea: KPT witnessing for the upper bound statement pitched against
Buss’ witnessing for the uniform lower bound.



VPV (NP € P) A (NP € i0SIZE[poly])

* Upper bound statement: NP € ioSIZE|[poly]
* equivalent to SAT € i0SIZE|poly]
vm3an >m 3C size(C) <n® A V(p,w) <n(ew) = ¢(C(¢)))

* |f provable, can apply KPT theorem to get a learning algorithm for SearchSAT

* Lower bound statement: NP € P
e Equivalent to SAT & P. For every function G that tries to solve SAT,

vman=m3I(p,w) <n(pw)A —|g0(G(g0)))

* |f provable, can use Buss’ witnessing to eliminate equivalence queries.



Open problems

* Show that V! 1+ P € SIZE[n*], not just NP C SIZE[n*]

e Show that VAPC! \+ ZPP C SIZE[n*]

* May need to get better randomized-uniformity lower bounds first

* Show independence of some natural circuit complexity statement
from at least VPV?!.



A proof of the cxistence of an object
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Algorithm P-uniform LEARNEQ-uniform Non-uniform = FZPPNP




