
Learning from
Bounded Arithmetic

Antonina Kolokolova (Memorial University of Newfoundland)

joint with Marco Carmosino, Valentine Kabanets and Igor C. Oliveira

Proof Theory Virtual Seminar, June 30, 2021

P vs NP?
-- and friends

Complexity of resolving
P vs NP?

-- and related questions

Meta-complexity quest

Complexity quest

Complexity of learning to
solve hard problems

Power of efficient reasoning
for solving complexity questions

Non-uniformity

• Proving P ≠ NP seems hard… So let’s try to solve an even harder problem!

• Non-uniform computation:
• A family of Boolean circuits, each solving the problem on inputs of specific length

• Can solve an undecidable problem with a family of constant-size circuits!

• Efficient non-uniform computation = circuits are small
• Small: polynomial size (number of gates)

• Most Boolean functions require exponential size circuits [Shannon’49, Lupanov’58]

• Best we know for a problem in NP: slightly more than 3n gates.

x1 x2 x3 … xn

• Can all problems in NP be solved by polynomial-size circuits
(is NP ⊂ P/poly)?
• Can Boolean satisfiability (SAT) be solved by a family of circuits

of size 𝑂(𝑛𝑘) for some constant k?

• Can all problems in P be solved by circuits of size 𝑂(𝑛2), that is, is
𝑃 ⊂ 𝑆𝐼𝑍𝐸[𝑂(𝑛2)]?

• Or 𝑆𝐼𝑍𝐸[𝑂 𝑛𝑘] for some other constant k? Even linear?

• What power of reasoning (weak system of arithmetic) do we need
to prove these statements, if they are true?

An upper bound statement

“A language L is computable by a family of circuits of size 𝑛𝑘“

∀𝑛 ∃𝐶 𝑠𝑖𝑧𝑒 𝐶 ≤ 𝑛𝑘 ∧ ∀𝑍 (𝑍 = 𝑛 → 𝐶 𝑍 = 𝐿 𝑍)

• We want to study provability of such statements in weak theories of
arithmetic.

Input length Circuit Input string

A proof of the existence of an object
often provides more information about the
object than just its existence.

Herbrand’s theorem

• Let 𝑇 be a universal theory, and 𝜑(𝑥, 𝑦) a quantifier-free formula.

• Let 𝑇 ⊢ ∀𝑥 ∃𝑦 𝜑 𝑥, 𝑦 .

Then there is a constant 𝑘 and terms 𝑡1, … , 𝑡𝑘 in the language of 𝑇 such that

• 𝑇 ⊢ ∀𝑥 (𝜑(𝑥, 𝑡1 𝑥) ∨ 𝜑(𝑥, 𝑡2 𝑥) ∨ ⋯∨ 𝜑(𝑥, 𝑡𝑘 𝑥))

Provability gives us a way to find (witness) existentially quantified objects

Bounded arithmetic

• Weak theories of arithmetic: all quantifiers bounded by terms
• Cook’s PV, Buss’ 𝑆2

1, 𝑇2
1, etc, Jerabek’s 𝐴𝑃𝐶1…

• Power of reasoning: definability + witnessing theorems
• PV: polynomial-time reasoning
• 𝐴𝑃𝐶1: probabilistic polynomial time reasoning

• We use two-sorted theories, following Cook/Nguyen
• Universally axiomatized theories for many classes, including within P.
• Have analogues of all first-order theories above:

• “large numbers” become strings, “small numbers” are just numbers (indices)

Two-sorted theories of bounded arithmetic

• Language: 2-sorted arithmetic (numbers + strings)
• 0, 1, +,∗, ≤ for the number sort, length |X| for strings, = for both sorts, n ∈ X.

• Axioms:
• For numbers: standard (𝑥 + 1 ≠ 0, etc)

• For strings: defining length and string equality
• 𝑋 𝑦 → 𝑦<|X|, 𝑦 + 1 = 𝑋 → 𝑋(𝑦),..

• Comprehension: for a class of formulas Φ (different Φ give different theories.)
• ∃𝑋 ≤ 𝑛 ∀𝑧 < 𝑛 𝑋 𝑧 ↔ 𝜑 𝑧 for 𝜑 ∈ Φ

• Can also add induction on string length (provable in all our theories):

• 𝑋 0 ∧ ∀𝑦 < 𝑛 𝑋 𝑦 → 𝑋 𝑦 + 1 → 𝑋(𝑛)

Two-sorted theories of bounded arithmetic

• Theory 𝑉0: comprehension over formulas with no second-sort quantifiers
• We actually need its universally axiomatized conservative extension, 𝑉0.

• 𝑉1: Φ = Σ1
𝐵, formulas with one (bounded) existential string quantifier

• 𝑉1 is equivalent to Buss’ 𝑆2
1 via RSUV isomorphism

• Similarly, 𝑉𝑖 with Φ = Σ𝑖
𝐵

• 𝑉PV1 : universal theory for polynomial time
• 𝑉0 + function symbols for all polytime functions with their defining axioms.
• Similarly, theories for complexity classes other than P (eg VLV for logspace)
• 𝑉𝑃𝑉2, with functions from 𝑃𝑁𝑃 , is conservative over (two-sorted variant of) 𝑇2

1

• 𝑉𝐴𝑃𝐶1: VPV+dual weak pigeonhole principle for all polytime functions.
• dWPHP: ∀𝑛 ∀𝑆 ∃𝑌 (𝑌 = 𝑛 + 1, " 𝑌 < 2𝑛 + 2𝑛/𝑛 " ∀𝑋 𝑋 = 𝑛 𝐹(𝑆, 𝑋) ≠ 𝑌

⋮
𝑉𝑃𝑉𝑖+1~𝑇2

i

𝑉𝑖 ~ 𝑆2
𝑖

⋮
𝑉𝑃𝑉3~𝑇2

2

𝑉2~𝑆2
2

𝑉𝑃𝑉2~𝑇2
1

𝑉1~ 𝑆2
1

𝑉𝑃𝑉1~ 𝑃𝑉
⋮

𝑉𝐿𝑉
⋮
𝑉0

𝑉
𝐴
𝑃
𝐶
1

Power of reasoning in bounded arithmetic

• 𝑉𝑃𝑉1:
• Captures polytime computation

• Proves Cook-Levin, PCP theorem [Pich’15],…

• Does not prove 𝑃 ⊆ 𝑆𝐼𝑍𝐸 𝑛𝑘 [Krajicek/Oliveira’17, BOK’20]
• Previous conditional collapses [Cook/Krajicek’07]

• 𝑉𝐴𝑃𝐶1 [Jerabek’05,’07]
• Captures probabilistic polytime

• Formalizes much of known complexity theory

• Proves 𝑃𝑎𝑟𝑖𝑡𝑦 ∉ constant-depth Boolean circuits, etc

⋮
𝑉𝑃𝑉𝑖+1~𝑇2

i

𝑉𝑖 ~ 𝑆2
𝑖

⋮
𝑉𝑃𝑉3~𝑇2

2

𝑉2~𝑆2
2

𝑉𝑃𝑉2~𝑇2
1

𝑉1~ 𝑆2
1

𝑉𝑃𝑉1~ 𝑃𝑉
⋮

𝑉𝐿𝑉
⋮
𝑉0

𝑉
𝐴
𝑃
𝐶
1

Buss’s witnessing theorem

• So provability of a ∀∃ formula in 𝑉1 gives a polynomial-time algorithm to
witness the existential quantifier.
• Works for multiple variables of both sorts for both quantifiers.

• Scales up the polynomial-time hierarchy.

• Corollary: If 𝑉1 ⊢ "𝑃𝑟𝑖𝑚𝑎𝑙𝑖𝑡𝑦 𝑖𝑠 𝑖𝑛 𝑃“, get polytime algorithm for factoring

What if our formula is ∀∃∀, such as that upper bound statement?

Let 𝜑(𝑋, 𝑌) be a formula with no second-sort quantifiers (Σ1
𝐵 also OK)

If 𝑉1 ⊢ ∀𝑋 ∃𝑌 𝜑(𝑋, 𝑌), then there exists a polytime function F such that
𝑉1 𝐹 ⊢ ∀𝑋 𝜑(𝑋, 𝐹 𝑋)

KPT witnessing theorem [Krajicek/Pudlak/Takeuti]

• Proved using Herbrand’s theorem

Let 𝜑(𝑋, 𝑌, 𝑍) be a formula with no string quantifiers, T a universal theory.

If 𝑇 ⊢ ∀𝑋 ∃𝑌 ∀𝑍 𝜑(𝑋, 𝑌, 𝑍), then there exists a finite sequence of terms
𝐹1, … , 𝐹𝑘 in the language of T such that

T ⊢ ∀𝑋 ∀𝑍1…∀𝑍𝑘 𝜑 𝑋, 𝐹1 𝑋 , 𝑍1 ∨ 𝜑 𝑋, 𝐹2 𝑋, 𝑍1 , 𝑍2 ∨ ⋯∨
∨ 𝜑 𝑋, 𝐹𝑘 𝑋, 𝑍1, … , 𝑍𝑘−1 , 𝑍𝑘

What kind of an algorithm for computing Y does KPT theorem give?

Student-teacher game / counterexample computation

In computational learning theory, this is known as “learning with equivalence
queries” [Angluin’87].

Uniformity

• A problem is in CLASS-uniform 𝑺𝑰𝒁𝑬[𝒕 𝒏] if

there is an algorithm from CLASS that,

given input length 𝑛, outputs a description

of a circuit of size ≤ 𝑡 𝑛 solving that problem on all inputs of length 𝑛.
• Usually, 𝑛 is in unary.

• [Santhanam/Williams’14]:
• For every 𝑘 ≥ 1 there is a problem 𝐿 ∈ 𝑃 such that 𝐿 ∉ 𝑃-uniform 𝑆𝐼𝑍𝐸 𝑛𝑘

1𝑛

x1 x2 x3 … xn

Algorithm … P-uniform circuit family … Non-uniform = 𝐹𝑍𝑃𝑃𝑁𝑃

𝐿𝐸𝐴𝑅𝑁𝐸𝑄-uniformity

• A problem L is in 𝑳𝑬𝑨𝑹𝑵𝑬𝑸[𝒓]-uniform 𝑺𝑰𝒁𝑬[𝒕 𝒏] if

there is a student-teacher game with
• a polytime student algorithm

• which, on input 1𝑛

• after at most 𝑟 equivalence queries to the teacher

• outputs a circuit of size ≤ 𝑡 𝑛 solving 𝐿 on inputs of size n

1𝑛

x1 x2 x3 … xn

Algorithm P-uniform … Non-uniform = 𝐹𝑍𝑃𝑃𝑁𝑃𝑳𝑬𝑨𝑹𝑵𝑬𝑸-uniform…

Extending [SW’14] to 𝐿𝐸𝐴𝑅𝑁𝐸𝑄-uniformity

For every 𝑘 ≥ 1,

1. 𝑃 ⊈ 𝐿𝐸𝐴𝑅𝑁𝐸𝑄 𝑶(𝟏) -uniform 𝑆𝐼𝑍𝐸 𝑛𝑘

2. 𝑁𝑃 ⊈ 𝐿𝐸𝐴𝑅𝑁𝐸𝑄 𝒏𝒐 𝟏
-uniform SIZE[𝑛𝑘]

3. 𝑁𝑃 ⊈ 𝐿𝐸𝐴𝑅𝑁𝐸𝑄 𝒏𝑶 𝟏
-uniform SIZE[𝑛𝑘]

or SearchSAT ∉ 𝐿𝐸𝐴𝑅𝑁𝑆𝑒𝑎𝑟𝑐ℎ𝑆𝐴𝑇−𝐸𝑄 𝒏𝑶 𝟏
-uniform SIZE[𝑛𝑘]

• Also get lower bounds for randomized uniformity (eg. ZPP, FZPP…) and randomized 𝐿𝐸𝐴𝑅𝑁𝐸𝑄

𝐿𝐸𝐴𝑅𝑁𝐸𝑄-uniformity bounds to unprovability

• Let T be a universal theory (eg 𝑉𝑃𝑉1) and suppose that

𝑇 ⊢ ∀𝑛 ∃𝐶 𝑠𝑖𝑧𝑒 𝐶 ≤ 𝑛𝑘 ∧ ∀𝑍 (𝑍 = 𝑛 → 𝐶 𝑍 = 𝐿 𝑍)

• By KPT witnessing theorem, get a 𝐿𝐸𝐴𝑅𝑁𝐸𝑄[𝑂 1]-uniform family of
circuits for L.
• T cannot prove a truly non-uniform upper bound, only 𝐿𝐸𝐴𝑅𝑁𝐸𝑄[𝑂 1]-uniform.

• If 𝐿 ∉ 𝐿𝐸𝐴𝑅𝑁𝐸𝑄[𝑂 1]-uniform 𝑆𝐼𝑍𝐸 𝑛𝑘 , then T cannot prove a non-
uniform upper bound for L.

Unprovability results

For all 𝑘 ≥ 1,

1. 𝑉𝑃𝑉1 ⊬ 𝑃 ⊆ 𝑆𝐼𝑍𝐸 𝑛𝑘

2. 𝑉1 ⊬ 𝑁𝑃 ⊆ 𝑆𝐼𝑍𝐸 𝑛𝑘

• Moreover, 𝑉1 ⊬ 𝑁𝑃 ⊆ 𝑖𝑜𝑆𝐼𝑍𝐸 𝑝𝑜𝑙𝑦 ∩ 𝑖𝑜𝑆𝐼𝑍𝐸𝑆𝐴𝑇 𝑛𝑘

3. 𝑉𝑃𝑉2 ⊬ 𝑃𝑁𝑃 ⊆ 𝑆𝐼𝑍𝐸𝑆𝐴𝑇 𝑛𝑘

4. VLV does not prove that logspace has branching programs size 𝑂 𝑛𝑘

5. 𝑉𝐴𝑃𝐶1 ⊬ 𝑆𝐴𝑇 ∈ 𝑖𝑜𝑆𝐼𝑍𝐸 𝑝𝑜𝑙𝑦 , 𝑜𝑟 𝑍𝑃𝑃𝑁𝑃[𝑂 1] ⊈ 𝑖𝑜𝑆𝐼𝑍𝐸𝑆𝐴𝑇 𝑛𝑘

Also in [BKO’20]

Limits of provability

• 𝑉𝑃𝑉1 ⊬ 𝑁𝑃 ⊈ 𝑃 ∧ (𝑁𝑃 ⊆ 𝑖𝑜𝑆𝐼𝑍𝐸 𝑝𝑜𝑙𝑦)

• 𝑉𝐴𝑃𝐶1 ⊬ 𝑁𝑃 ⊈ 𝐵𝑃𝑃 ∧ (𝑁𝑃 ⊆ 𝑖𝑜𝑆𝐼𝑍𝐸 𝑝𝑜𝑙𝑦)

• Proof idea: KPT witnessing for the upper bound statement pitched against
Buss’ witnessing for the uniform lower bound.

Feasible reasoning cannot simultaneously prove non-
uniform upper bounds and uniform lower bounds!

𝑉𝑃𝑉1 ⊬ 𝑁𝑃 ⊈ 𝑃 ∧ (𝑁𝑃 ⊆ 𝑖𝑜𝑆𝐼𝑍𝐸 𝑝𝑜𝑙𝑦)

• Upper bound statement: 𝑁𝑃 ⊆ 𝑖𝑜𝑆𝐼𝑍𝐸 𝑝𝑜𝑙𝑦
• equivalent to SAT ∈ 𝑖𝑜𝑆𝐼𝑍𝐸 𝑝𝑜𝑙𝑦
∀𝑚 ∃𝑛 > 𝑚 ∃𝐶 𝑠𝑖𝑧𝑒 𝐶 ≤ 𝑛𝑘 ∧ ∀ 𝜑,𝑤 ≤ 𝑛 (𝜑(𝑤) → 𝜑(𝐶(𝜑)))

• If provable, can apply KPT theorem to get a learning algorithm for SearchSAT

• Lower bound statement: 𝑁𝑃 ⊈ P
• Equivalent to 𝑆𝐴𝑇 ∉ 𝑃. For every function 𝐺 that tries to solve SAT,

∀𝑚 ∃𝑛 ≥ 𝑚 ∃ 𝜑,𝑤 ≤ 𝑛 (𝜑 𝑤 ∧ ¬𝜑 𝐺 𝜑)

• If provable, can use Buss’ witnessing to eliminate equivalence queries.

Open problems

• Show that 𝑉1 ⊬ 𝑃 ⊆ 𝑆𝐼𝑍𝐸 𝑛𝑘 , not just 𝑁𝑃 ⊆ 𝑆𝐼𝑍𝐸 𝑛𝑘

• Show that 𝑉𝐴𝑃𝐶1 ⊬ 𝑍𝑃𝑃 ⊆ 𝑆𝐼𝑍𝐸 𝑛𝑘

• May need to get better randomized-uniformity lower bounds first

• Show independence of some natural circuit complexity statement
from at least 𝑉𝑃𝑉1.

A proof of the existence of an object
often provides more information about the
object than just its existence.

Thank you!

⋮
𝑉𝑃𝑉𝑖+1~𝑇2

i

𝑉𝑖 ~ 𝑆2
𝑖

⋮
𝑉𝑃𝑉3~𝑇2

2

𝑉2~𝑆2
2

𝑉𝑃𝑉2~𝑇2
1

𝑉1~ 𝑆2
1

𝑉𝑃𝑉1~ 𝑃𝑉
⋮

𝑉𝐿𝑉
⋮
𝑉0

𝑉
𝐴
𝑃
𝐶
1

1𝑛

x1 x2 x3 … xn

Algorithm P-uniform … Non-uniform = 𝐹𝑍𝑃𝑃𝑁𝑃𝑳𝑬𝑨𝑹𝑵𝑬𝑸-uniform…

