Propositional proof systems and bounded arithmetic for logspace and nondeterministic logspace

> Sam Buss U.C. San Diego

Virtual Seminar Proof Society proofsociety.org October 7, 2020

includes joint work with Anupam Das and Alexander Knop

### Setting:

- Formal theories of weak fragments of Peano arithmetic
  - First- and second-order theories of bounded arithmetic
- $\forall \exists$  consequences: Provably total functions
  - Computational complexity characterizations
- $\forall$  consequences: Universal statements
  - Cook/Paris-Wilkie translation to propositional logic

### Underlying philosophy:

- A feasibly constructive proof that a function is total should provide a feasible method to compute it.
- A feasibly constructive proof of a universal statement should provide a feasible method to verify any given instance.

### This talk (work-in-progress)

• Propositional and second-order systems for logspace and non-deterministic log space.



æ

イロト イヨト イヨト イヨト







< ロ > < 同 > < 三 > < 三 >

æ

# $S_2^1$ , PV — Polynomial time — $e\mathcal{F}$ [B'85; C'76]

### First-order theory $S_2^1$ of arithmetic:

- Terms have polynomial growth rate (smash, #, is used).
- Bounded quantifiers  $\forall x \leq t, \exists x \leq t$ .
- Sharply bounded quantifiers ∀x≤|t|, ∃x≤|t|, bound x by log (or length) of t.
- Classes Σ<sub>i</sub><sup>b</sup> and Π<sub>i</sub><sup>b</sup> of formulas are defined by counting bounded quantifiers, ignoring sharply bounded quantifiers.
- $\Sigma_1^{\rm b}$  formulas express exactly the NP predicates.  $\Sigma_i^{\rm b}$ ,  $\Pi_i^{\rm b}$  - express exactly the predicates at the *i*-th level of the polynomial time hierarchy.
- S<sub>2</sub><sup>1</sup> has polynomial induction PIND, equivalently length induction (LIND), for Σ<sub>1</sub><sup>b</sup> formulas A (i.e., NP formulas):

$$A(0) \land (\forall x)(A(x) \rightarrow A(x+1)) \rightarrow (\forall x)A(|x|)$$

### (1) Provably total functions of $S_2^1$ :

• The  $\forall \Sigma_1^{\rm b}$ -definable functions (aka: *provably total functions*) are precisely the polynomial time computable functions.

(2) Translation to propositional logic ("Cook translation")

- Any polynomial identity ( $\forall \Sigma_0^b$ -property) provable in  $PV / S_2^1$ , has a natural translation to a family F of propositional formulas. These formulas have polynomial size extended Frege ( $e\mathcal{F}$ ) proofs.
- (3)  $S_2^1$  proves the consistency of  $e\mathcal{F}$ . Conversely, any propositional proof system (p.p.s.)  $S_2^1$  proves is consistent(provably) polynomially simulated by  $e\mathcal{F}$ .
- (4) Lines (formulas) in an eF proof correspond to Boolean circuits. The circuit value problem is complete for P (polynomial time).

## First-order theories work well for $NC^2$ and stronger classes.

E.g., for polynomial time:



## For complexity classes below $NC^2$

[Clote-Takeuti; Zambella; Arai; Cook, Morioka, Perron, Kolokolova, Nguyen]



These second-order theories use

(a) first-order objects playing the role of sharply bounded objects,
(b) second-order objects playing the role of inputs and outputs.
Base theory V<sup>0</sup> has comprehension and induction for bounded first-order formulas (with second order free variables).

### Syntax:

- First-order bounded quantifiers ∀x≤t, ∃x≤t range over small objects, namely "integers".
- Second-order quantifiers ∀X,∃X range over large objects, namely (finite) sets of integers.
- $x \in Y$  or Y(x) set membership.
- $\bullet~\Sigma_0^{\rm B}$  formulas have only bounded first-order quantifiers and no second-order quantifiers
- First-order arithmetic operations: 0, S, pd, +,  $\cdot$ ,  $\leq$ , =
- |X| maximal element in X (optional).

- "Basic" axioms of first-order functions and  $\leq$  and =.
- Boundedness:  $\exists y \forall x (A(x) \rightarrow x \leq y)$ .
- Minimization:  $A(b) \rightarrow \exists x [A(x) \land \forall y < x. \neg A(y)].$
- Σ<sub>0</sub><sup>B</sup>-Comprehension ∃X ∀y≤a[X(y) ↔ φ(y)], for φ a Σ<sub>0</sub><sup>B</sup>-formula (with parameters allowed).

Theories VL (for logspace) and VNL (for nondeterministic logspace) have additional axioms for totality of L and NL complete functions - on next slides ...

# A theory for L (log space) [Z, P, CN]

- $\bullet~{\rm VL}$  is  ${\rm V}^0$  plus the totality of log-bounded recursion.
- Provably total functions are precisely the log-space computable functions.
- Cook translation is a tree-like propositional proof system  ${\rm GL}^*$  for  $\Sigma{\rm -CNF}(2)$  formulas, a class of  ${\rm QBF}$  formulas complete for log space. [J]

### Log-bounded recursion axiom [Zambella]

$$\begin{array}{l} (\forall x \leq a)(\exists y \leq a)A(x,y) \rightarrow \exists X[X(0,0) \land \\ (\forall i \leq b)(\forall y \leq a)(X(i,y) \rightarrow (\forall y' < y) \neg X(i,y')) \land \\ (\forall i < b)(\exists y \leq a)(\exists y' \leq a)(X(i,y) \land X(i+1,y') \land A(y,y'))] \end{array}$$

Intuition: A(x, y) denotes the (wlog deterministic) step for a path; defines a directed graph with out-degree  $\geq 1..$ X(i, y) means y is the *i*-th vertex in the path. The axiom asserts existence of a path of length b. The predicate X(i, y) is log-space complete.

# A theory for NL (non-deterministic log space) [CK, P, CN]

- VNL is V<sup>0</sup> plus the existence of a distance predicate for graph reachability.
- Provably total functions are precisely the polynomial growth rate functions with NL bit graph.
- Cook translation is a tree-like propositional proof system  ${\rm GNL}^*$  for  $\Sigma Krom$  formulas, a class of  ${\rm QBF}$  formulas complete for  ${\rm NL}.$  [G]

### Reachability/connectivity axiom [NC]

$$\begin{aligned} (\exists X)[(\forall y \le a)(X(0, y) \leftrightarrow y = 0) \land \\ (\forall y \le a)(\forall i < b)[X(i+1, y) \leftrightarrow \\ [X(i, y) \lor (\exists y' < a)(X(i, y') \land A(y', y))]]] \end{aligned}$$

Intuition: A(x, y) denotes a possible step for a path. X(i, y) means y is reachable from 0 in  $\leq i$  steps. The predicate X(i, y) is NL complete.

| Formal<br>Theory                        | Propositional<br>Proof System               | Total<br>Functions                                    |                  |
|-----------------------------------------|---------------------------------------------|-------------------------------------------------------|------------------|
| PV, $S_2^1$ , VPV                       | $\mathrm{e}\mathcal{F}$ , $\mathcal{G}_1^*$ | Р                                                     | [C, B, CN]       |
| $T_{2}^{1}, S_{2}^{2}$                  | $G_1, G_2^*$                                | $\leq_{\text{1-1}}(\text{PLS})$                       | [B, KP, KT, BK]  |
| $T_2^2, S_2^3$                          | $G_2$ , $G_3^*$                             | $\leq_{1-1}(\text{CPLS})$                             | [B, KP, KT, KST] |
| $\mathbf{T}_2^i$ , $\mathbf{S}_2^{i+1}$ | $G_i$ , $G_{i+1}^*$                         | $\leq_{\scriptscriptstyle 1-1}(\operatorname{LLI}_i)$ | [B, KP, KT, KNT] |
| $PSA, U_2^1, W_1^1$                     | QBF                                         | PSPACE                                                | [D, B, S]        |
| $V_2^1$                                 | **                                          | EXPTIME                                               | [B]              |
| $\rm VNC^1$                             | Frege $(\mathcal{F})$                       | ALogTime                                              | [CT, A; CM, CN]  |
| VL                                      | $\mathrm{GL}^*$                             | L                                                     | [Z, P, CN]       |
| VNL                                     | $\mathrm{GNL}^*$                            | NL                                                    | [CK, P, CN]      |

PV, PSA - equational theories.

 $S_2^i,\,T_2^i$  - first order  $U_2^1,\,V_2^1,\,VNC^1,\,VL,\,VNL,\,VPV$  - second order

| Formal<br>Theory                        | Propositional<br>Proof System               | Total<br>Functions                                                 |                  |
|-----------------------------------------|---------------------------------------------|--------------------------------------------------------------------|------------------|
| PV, $S_2^1$ , VPV                       | $\mathrm{e}\mathcal{F}$ , $\mathcal{G}_1^*$ | Р                                                                  | [C, B, CN]       |
| $T_{2}^{1}, S_{2}^{2}$                  | $G_1, G_2^*$                                | $\leq_{\text{1-1}}(\text{PLS})$                                    | [B, KP, KT, BK]  |
| $T_2^2$ , $S_2^3$                       | $\mathrm{G}_2$ , $\mathrm{G}_3^*$           | $\leq_{1-1}(\text{CPLS})$                                          | [B, KP, KT, KST] |
| $\mathbf{T}_2^i$ , $\mathbf{S}_2^{i+1}$ | $G_i$ , $G_{i+1}^*$                         | $\leq_{{\scriptscriptstyle 1}{\scriptscriptstyle -1}}({ m LLI}_i)$ | [B, KP, KT, KNT] |
| PSA, $U_2^1$ , $W_1^1$                  | QBF                                         | PSPACE                                                             | [D, B, S]        |
| $V_2^1$                                 | **                                          | EXPTIME                                                            | [B]              |
| $\rm VNC^1$                             | Frege $(\mathcal{F})$                       | ALogTime                                                           | [CT, A; CM, CN]  |
| VL                                      | $\mathrm{GL}^*$                             | $\mathbf{L}$                                                       | [Z, P, CN]       |
| VNL                                     | $\mathrm{GNL}^*$                            | NL                                                                 | [CK, P, CN]      |

Using Cook translation to propositional proof systems (p.p.s.'s)

 $\mathcal{F}, \mathrm{e}\mathcal{F}$  - Frege and extended Frege.

 $\mathrm{G}_{\mathit{i}}, \, \mathrm{QBF}$  - quantified propositional logics.

Starred (\*) propositional systems are tree-like.

| Formal                                                                                                                                                                                                                       | Propositional                                                                                  | Total                                                                                                                                                             |                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Theory                                                                                                                                                                                                                       | Proof System                                                                                   | Functions                                                                                                                                                         |                                                                                           |
| $\begin{array}{c} \text{PV, } \text{S}_2^1, \text{VPV} \\ \text{T}_2^1, \text{S}_2^2 \\ \text{T}_2^2, \text{S}_2^3 \\ \text{T}_2^i, \text{S}_2^{i+1} \\ \text{PSA, } \text{U}_2^1, \text{W}_1^1 \\ \text{V}_2^1 \end{array}$ | $e\mathcal{F}, \ G_1^*$<br>$G_1, \ G_2^*$<br>$G_2, \ G_3^*$<br>$G_i, \ G_{i+1}^*$<br>QBF<br>** | $\begin{array}{l} & \text{P} \\ \leq_{1-1}(\text{PLS}) \\ \leq_{1-1}(\text{CPLS}) \\ \leq_{1-1}(\text{LLI}_i) \\ & \text{PSPACE} \\ & \text{EXPTIME} \end{array}$ | [C, B, CN]<br>[B, KP, KT, BK]<br>[B, KP, KT, KST]<br>[B, KP, KT, KNT]<br>[D, B, S]<br>[B] |
| VNC <sup>1</sup>                                                                                                                                                                                                             | Frege (F)                                                                                      | ALogTime                                                                                                                                                          | [CT, A; CM, CN]                                                                           |
| VL                                                                                                                                                                                                                           | GL*                                                                                            | L                                                                                                                                                                 | [Z, P, CN]                                                                                |
| VNL                                                                                                                                                                                                                          | GNL*                                                                                           | NL                                                                                                                                                                | [CK, P, CN]                                                                               |

PLS = Polynomial local search [JPY]

 $\mathrm{CPLS}=\text{``Colored''} \text{ PLS [ST]}$ 

 $\mathrm{LLI}=\mathsf{Linear}\;\mathsf{local}\;\mathsf{improvement}$ 

# New Propositional Theories for L and NL [B-D-K]

The propositional theories  $GL^*$  and  $GNL^*$  are hard to work with since they are only indirectly connected with (non-uniform) log space and non-deterministic log space.

[Buss-Das-Knop'20]: Theories  $\rm eLDT$  and  $\rm eLNDT$  for propositional logic acting on

- Branching programs (eDT formulas), or
- Non-deterministic branching programs (eNDT formulas).

[Similar to a suggestion of Cook, but not using Prover-Liar games.]

<u>Nomenclature:</u> "DT" means "Decision Tree". An "eDT" ("extension Decision Tree") allows also extension variables, which converts the decision tree into a decision DAG, i.e., into a Branching Program (BP).

## DT formulas

- Atomic DT formulas: p,  $\overline{p}$ , optionally 0 and 1.
- Decision (or case/if-then-else) connective:  $(\varphi p \psi)$ . Meaning "if p then  $\psi$  else  $\varphi$ " or "case $(p, \psi, \varphi)$ ".

Example:



These represent the equivalent formulas  $\overline{q} p (q q r)$ , and (1q0) p (0 q (0r1)).

Gentzen-style sequent calculus for DT/eDT formulas:

- Initial sequents, weak inferences, cut rule, and
- Decision connective rules:

$$dec-l: \frac{A, \Gamma \longrightarrow \Delta, p \qquad p, B, \Gamma \longrightarrow \Delta}{(ApB), \Gamma \longrightarrow \Delta}$$
$$dec-r: \frac{\Gamma \longrightarrow \Delta, A, p \qquad p, \Gamma \longrightarrow \Delta, B}{\Gamma \longrightarrow \Delta, (ApB)}$$

**Extension** DT (eDT) formulas. Allow also introducing new extension variable, e, with a defining equation  $e \leftrightarrow \varphi$ .

eDT formulas, together with their defining equations express exactly (deterministic) branching programs.

Extension variables e can be used — unnegated — as atomic formulas, but cannot be used as decision literals. The new initial sequents are  $e \longrightarrow \varphi$  and  $\varphi \longrightarrow e$ .

- An eLDT proof is a sequence of sequents of eDT formulas inferred using the sequent calculus rules.
- The eDT formulas are used in conjunction with the defining equations for extension variables.
- Evaluation of eDT formulas is log-space complete. Thus, each line of an eLDT proof expresses a (non-uniform) logspace property.

#### Theorem ([BDK] - work in progress)

- The ∀Σ<sub>0</sub><sup>B</sup>-consequences of VL have natural propositional translations which have polynomial size eLDT-proofs.
- VL can prove the consistency of eLDT proofs.
- Any propositional proof system which is VL-provably sound is p-simulated by eLDT.

## $\operatorname{eLNDT}$ for non-deterministic logspace

- NDT and eNDT formulas are defined exactly like DT and eDT formulas, but allowing also the connective V (disjunction). Now it is important that extension variables can not be negated!
- An NDT formula expresses a "nondeterministic decision tree".
- An eNDT formula (together with defining equations for extension variables) expresses a "nondeterministic branching program".
- Evaluation of eNDT formulas (nondeterministic branching programs) is complete for non-deterministic logspace.
- An eLNDT proof consists of sequents of eNDT formulas.
- The permitted rules of inference are the inference rules for eLDT proofs (including the decision rule), plus the usual Gentzen  $\lor$ :left and  $\lor$ :right rules.

### Theorem ([BDK] - work in progress)

- The ∀Σ<sub>0</sub><sup>B</sup>-consequences of VNL have natural propositional translations which have polynomial size eLNDT-proofs.
- VNL can prove the consistency of eLNDT proofs.
- Any propositional proof system which is VNL-provably sound is p-simulated by eLDT.

This includes (re)proving the Immerman-Szelepcsényi theorem that NL = coNL in VNL. C.f. [CK, P].

Thank you for virtual attendance!



æ