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Setting:

Formal theories of weak fragments of Peano arithmetic

First- and second-order theories of bounded arithmetic

∀∃ consequences: Provably total functions

Computational complexity characterizations

∀ consequences: Universal statements

Cook/Paris-Wilkie translation to propositional logic

Underlying philosophy:

A feasibly constructive proof that a function is total should
provide a feasible method to compute it.

A feasibly constructive proof of a universal statement should
provide a feasible method to verify any given instance.

This talk (work-in-progress)

Propositional and second-order systems for logspace and
non-deterministic log space.
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S
1
2, PV — Polynomial time — eF [B’85; C’76]

First-order theory S12 of arithmetic:

Terms have polynomial growth rate (smash, #, is used).

Bounded quantifiers ∀x≤t, ∃x≤t.

Sharply bounded quantifiers ∀x≤|t|, ∃x≤|t|,

bound x by log (or length) of t.

Classes Σb

i
and Πb

i
of formulas are defined by counting

bounded quantifiers, ignoring sharply bounded quantifiers.

Σb

1 formulas express exactly the NP predicates.

Σb

i
, Πb

i
- express exactly the predicates at the i -th level of the

polynomial time hierarchy.

S12 has polynomial induction PIND, equivalently length

induction (LIND), for Σb

1 formulas A (i.e., NP formulas):

A(0) ∧ (∀x)(A(x) → A(x+1)) → (∀x)A(|x |)
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(1) Provably total functions of S1
2:

· The ∀Σb

1-definable functions (aka: provably total functions)
are precisely the polynomial time computable functions.

(2) Translation to propositional logic (“Cook translation”)

· Any polynomial identity (∀Σb

0-property) provable in PV / S12,
has a natural translation to a family F of propositional
formulas. These formulas have polynomial size extended Frege
(eF) proofs.

(3) S12 proves the consistency of eF . Conversely, any propositional
proof system (p.p.s.) S12 proves is consistent(provably)
polynomially simulated by eF .

(4) Lines (formulas) in an eF proof correspond to Boolean
circuits. The circuit value problem is complete for P
(polynomial time).
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First-order theories work well for NC2 and stronger classes.

E.g., for polynomial time:

First-order
theories of

bounded arithmetic

Π2-consequences:
Provably total

functions

Π1-consequences:
Translations to

propositional logic

PV1 / S12

Polynomial time
functions (P)

extended Frege (eF )
Proof lines are
Boolean circuits
(nonuniform P)
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For complexity classes below NC
2

[Clote-Takeuti; Zambella; Arai; Cook, Morioka, Perron, Kolokolova, Nguyen]

Second-order
theories of

bounded arithmetic

∀∃ΣB

0 -consequences:
Provably total

functions

∀ΣB

0 -consequences:
Translations to

propositional logic

VNC1,VL,VNL, . . .

Low complexity
class

Proof lines are
restricted
Boolean circuits
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Weak second-order theories

These second-order theories use
(a) first-order objects playing the role of sharply bounded objects,
(b) second-order objects playing the role of inputs and outputs.
Base theory V0 has comprehension and induction for bounded
first-order formulas (with second order free variables).
Syntax:

First-order bounded quantifiers ∀x≤t,∃x≤t - range over small
objects, namely “integers”.

Second-order quantifiers ∀X ,∃X - range over large objects,
namely (finite) sets of integers.

x ∈ Y or Y (x) - set membership.

ΣB

0 formulas have only bounded first-order quantifiers and no
second-order quantifiers

First-order arithmetic operations: 0,S ,pd,+, ·,≤,=

|X | - maximal element in X (optional).
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Axioms of base theory V0:

“Basic” axioms of first-order functions and ≤ and =.

Boundedness: ∃y ∀x(A(x) → x≤y).

Minimization: A(b) → ∃x [A(x) ∧ ∀y<x .¬A(y)].

ΣB

0 -Comprehension ∃X ∀y≤a [X (y) ↔ ϕ(y)],
for ϕ a ΣB

0 -formula (with parameters allowed).

Theories VL (for logspace) and VNL (for nondeterministic
logspace) have additional axioms for totality of L and NL complete
functions — on next slides ...
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A theory for L (log space) [Z, P, CN]

VL - is V0 plus the totality of log-bounded recursion.

Provably total functions are precisely the log-space
computable functions.

Cook translation is a tree-like propositional proof system GL∗

for Σ-CNF(2) formulas, a class of QBF formulas complete for
log space. [J]

Log-bounded recursion axiom [Zambella]

(∀x≤a)(∃y≤a)A(x , y) → ∃X [X (0, 0)∧

(∀i≤b)(∀y≤a)(X (i , y) → (∀y ′<y)¬X (i , y ′)) ∧

(∀i<b)(∃y≤a)(∃y ′≤a)(X (i , y) ∧ X (i+1, y ′) ∧ A(y , y ′))]

Intuition: A(x , y) denotes the (wlog deterministic) step for a path;
defines a directed graph with out-degree ≥ 1..
X (i , y) means y is the i -th vertex in the path.
The axiom asserts existence of a path of length b.
The predicate X (i , y) is log-space complete.
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A theory for NL (non-deterministic log space) [CK, P, CN]

VNL - is V0 plus the existence of a distance predicate for
graph reachability.

Provably total functions are precisely the polynomial growth
rate functions with NL bit graph.

Cook translation is a tree-like propositional proof system
GNL∗ for ΣKrom formulas, a class of QBF formulas complete
for NL. [G]

Reachability/connectivity axiom [NC]

(∃X )[(∀y≤a)(X (0, y) ↔ y = 0) ∧

(∀y≤a)(∀i<b)[X (i+1, y) ↔

[X (i , y) ∨ (∃y ′<a)(X (i , y ′) ∧ A(y ′, y)) ] ] ]

Intuition: A(x , y) denotes a possible step for a path.
X (i , y) means y is reachable from 0 in ≤ i steps.
The predicate X (i , y) is NL complete.
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Formal Propositional Total
Theory Proof System Functions

PV, S12, VPV eF , G ∗

1 P [C, B, CN]

T1
2, S

2
2 G1, G

∗

2 ≤1-1(PLS) [B, KP, KT, BK]

T2
2, S

3
2 G2, G

∗

3 ≤1-1(CPLS) [B, KP, KT, KST]

Ti
2, S

i+1
2 Gi , G

∗

i+1 ≤1-1(LLIi) [B, KP, KT, KNT]

PSA, U1
2, W

1
1 QBF PSPACE [D, B, S]

V1
2 ** EXPTIME [B]

VNC1 Frege (F) ALogTime [CT, A; CM, CN]

VL GL∗ L [Z, P, CN]

VNL GNL∗ NL [CK, P, CN]

PV, PSA - equational theories.
Si2, T

i
2 - first order

U1
2,V

1
2, VNC

1,VL,VNL,VPV - second order
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Formal Propositional Total
Theory Proof System Functions

PV, S12, VPV eF , G ∗

1 P [C, B, CN]

T1
2, S

2
2 G1, G

∗

2 ≤1-1(PLS) [B, KP, KT, BK]

T2
2, S

3
2 G2, G

∗

3 ≤1-1(CPLS) [B, KP, KT, KST]

Ti
2, S

i+1
2 Gi , G

∗

i+1 ≤1-1(LLIi) [B, KP, KT, KNT]

PSA, U1
2, W

1
1 QBF PSPACE [D, B, S]

V1
2 ** EXPTIME [B]

VNC1 Frege (F) ALogTime [CT, A; CM, CN]

VL GL∗ L [Z, P, CN]

VNL GNL∗ NL [CK, P, CN]

Using Cook translation to propositional proof systems (p.p.s.’s)
F , eF - Frege and extended Frege.
Gi , QBF - quantified propositional logics.
Starred (∗) propositional systems are tree-like.
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Formal Propositional Total
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1
1 QBF PSPACE [D, B, S]

V1
2 ** EXPTIME [B]

VNC1 Frege (F) ALogTime [CT, A; CM, CN]

VL GL∗ L [Z, P, CN]

VNL GNL∗ NL [CK, P, CN]

PLS = Polynomial local search [JPY]
CPLS = “Colored” PLS [ST]
LLI = Linear local improvement
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New Propositional Theories for L and NL [B-D-K]

The propositional theories GL∗ and GNL∗ are hard to work with
since they are only indirectly connected with (non-uniform) log
space and non-deterministic log space.

[Buss-Das-Knop’20]: Theories eLDT and eLNDT for propositional
logic acting on

Branching programs (eDT formulas), or

Non-deterministic branching programs (eNDT formulas).

[Similar to a suggestion of Cook, but not using Prover-Liar games.]

Nomenclature: “DT” means “Decision Tree”. An “eDT”
(“extension Decision Tree”) allows also extension variables, which
converts the decision tree into a decision DAG, i.e., into a
Branching Program (BP).
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DT formulas

Atomic DT formulas: p, p, optionally 0 and 1.

Decision (or case/if-then-else) connective: (ϕpψ).
Meaning “if p then ψ else ϕ” or “case(p,ψ,ϕ)”.

Example:

p

q q

q r

0 1

0 1

p

q

1 0

q

0 r

0 1

0 1

0 1 0 1

0 1

These represent the equivalent formulas
q p (q q r), and (1q0) p (0 q (0r1)).
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Gentzen-style sequent calculus for DT/eDT formulas:

Initial sequents, weak inferences, cut rule, and

Decision connective rules:

A, Γ −→ ∆, p p,B , Γ −→ ∆
dec-l:

(ApB), Γ −→ ∆

Γ −→ ∆,A, p p, Γ −→ ∆,B
dec-r:

Γ −→ ∆, (ApB)
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eDT - Extension DT formulas

Extension DT (eDT) formulas. Allow also introducing new
extension variable, e, with a defining equation e ↔ ϕ.

eDT formulas, together with their defining equations express
exactly (deterministic) branching programs.

Extension variables e can be used — unnegated — as atomic
formulas, but cannot be used as decision literals.
The new initial sequents are e −→ ϕ and ϕ −→ e.
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An eLDT proof is a sequence of sequents of eDT formulas
inferred using the sequent calculus rules.

The eDT formulas are used in conjunction with the defining
equations for extension variables.

Evaluation of eDT formulas is log-space complete. Thus, each
line of an eLDT proof expresses a (non-uniform) logspace
property.

Theorem ([BDK] - work in progress)

The ∀ΣB

0 -consequences of VL have natural propositional

translations which have polynomial size eLDT-proofs.

VL can prove the consistency of eLDT proofs.

Any propositional proof system which is VL-provably sound is

p-simulated by eLDT.
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eLNDT for non-deterministic logspace

NDT and eNDT formulas are defined exactly like DT and
eDT formulas, but allowing also the connective ∨
(disjunction). Now it is important that extension variables can
not be negated!

An NDT formula expresses a “nondeterministic decision tree”.

An eNDT formula (together with defining equations for
extension variables) expresses a “nondeterministic branching
program”.

Evaluation of eNDT formulas (nondeterministic branching
programs) is complete for non-deterministic logspace.

An eLNDT proof consists of sequents of eNDT formulas.

The permitted rules of inference are the inference rules for
eLDT proofs (including the decision rule), plus the usual
Gentzen ∨:left and ∨:right rules.
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Theorem ([BDK] - work in progress)

The ∀ΣB

0 -consequences of VNL have natural propositional

translations which have polynomial size eLNDT-proofs.

VNL can prove the consistency of eLNDT proofs.

Any propositional proof system which is VNL-provably sound

is p-simulated by eLDT.

This includes (re)proving the Immerman-Szelepcsényi theorem that
NL = coNL in VNL. C.f. [CK, P].
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Thank you for virtual attendance!
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