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6.1202

Proof in logic is only a mechanical expedient to facilitate the recognition
of tautology, where it is complicated.

6.1203

It would be too remarkable, if one could prove a significant proposition
logically from another, and a logical proposition also. It is clear from the
beginning that the logical proof of a significant proposition and the proof
in logic must be two quite different things.

N
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LK

Axioms:
A — A

Structural inferences:

I_1_>A1,A A,r2—>A2

M,M — A1, A cut
IT=4 _Ir=A .,
AT =AY r—AA
MABL—=A T ALABA
,BAT, A ' TS AL BAA,
AAT = A = AAA
AT A r>AA
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LK

Logical inferences:

r—nA AT A
AT A r—A-A
AT A BT—A [ AA
AVB,T = A r—AAVB
Alf—-A r-as .,
ANBT > A 0 r>AAVB 72
BI—-A TAA ToAB
AANBT A 7 r—AAAB
r-AA BTl—>A AT = A,B

ASB,T = A

FSAASB —

Vo

rn
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LK

C(e),l = A
IxC(x),l - A

3./

C(r),l = A
VxC(x),l — A

Vil

with the usual restrictions.

r— A, C(r)

M — A, 3xC(x)
r— A, C(e)

I — A, VxC(x)

. r
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F1—>A1,A A,F2—>A2
Fl, F’2 — All,AQ

mix

where A} is A; after removing A and I}, is 'y after removing A.
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M — A, A ATy — Ay
Fl, F’2 — AII,AQ

mix*

where A} is A; after removing only the As later contracted to the
mix formula and [} is > after removing only the As later
contracted to the mix formula.
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axiom T quiom
vileft \/v‘.l:.j-t
N

right () () axiom

aziom () contr : left () V:left
¥ left At right
Woleft contr e ft

D 3:right

W o right \

\(YL/

Dt right

— VxVyP(x,y) D 3z(P(0, z) A P(z,a) A P(Sz, Sa)).

There is a proof underlying this representation by name iff a is replaced

by 527(0).
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A second order unification problem is a finite set of equations in
the language T U{Subs,...,Suby,} plus free variables for elements
of T. The free variables will be called the term variables. By
introducing new term variables we can transform any such system
into an equivalent one where all equations have form

5(ai/o) = p,

where §, o, p are terms of term variables.

Suppose a unary function symbol is chosen, say S. Then we call a
numeral any term of the form S"(t), t a free variable or t = 0,
neuw.
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Theorem

Let L contain a unary function symbol S, a constant 0 and a binary
function symbol. Let 7y be a term variable. Then for every recursively
enumerable set X C w there exists a second order unification problem <
such that QU {rg = S"(0)} has a solution iff n € X.

Proof

We use Matijasevi¢'s theorem.

Hyl,...

7YkDX(X7}’17~-~»}’k)7

where Dx is a conjunction of formulas of the form

Yi
Yi
Yi
Yi

ij, 1<k

uu<w
Yit+y
Yi*Yi
X
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Proof cont.

1. The equation s(7) = 7(a/s(a)), 7 term variable, has solutions
7=25"a),ncw.

2. The equation 7(a/c) = p plus the equations from 1. for term
variables 7, o, p have solutions:

SP(a),S9(a),S™(a) for p4+g=m.

3. The equations

S(o1) = o1(a/5(a))

S(o2) = 02(a/5(a))

S(os) = o3(b/S(b))
7(a/o1,b/S(b),c/ao(boc)) = op0(0307)

with variables a, b, ¢ and term variables o1, 05, 03, 7 have solutions for
01, 02,03 of the form SP(a), S™(a), S9(b) for px g = m.
The proof is non-trivial only for claim 3.
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Proof cont.

a) Assume p* g = m. Then 5P(a),S™(a), S?(b) and the following
term are solution for the equations above

$Pa () 0 (5771 (b) o (57142 (a) o (S 2(b)

of...($P(a) e (S(b) o (ac (boc)...)))))))-

b) Suppose 5P(a), S™(a), S9(b), t are a solution. We shall proceed by
induction on the depth of t, denoted by dp(t).

(i) dp(t) =0. Then tis c, hence o is a and o3 is b. Thus
pxqg=m=0.
(ii) dp(t) > 0. Then tis t; o tp, where
t1(a/SP(a), b/S(b),c/ao (boc))=S5"(a)
ie. tp =S™P(a) and

tr(a/SP(a), b/S(b),c/ao(boc)) = S9b)ot.

12/39



Proof cont.
Hence dp(t;) > 0,s0 to =t30ts

t3(a/SP(a), b/S(b),c/ao (boc)) = S9(b),
thus t3 = S971(b). Further we have
ta(a/SP(a),b/S(b),c/ao(boc)) =t
=tio(tzots)=S""P(a)o(ST7L(b)oty)
By the induction hypothesis, since dp(ts) < dp(t),
px(qg—1)=m—p

i.e. pxq= m. We are done.
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Theorem

Let L be a language containing a unary function symbol S, a constant 0
and a binary function symbol. Then for every recursively enumerable set
X C w there exists a sequent A — A, P(a) and a skeleton with universal
cuts S such that n € X iff A— A, P(5"(0)) has an LK-proof with
skeleton S.

Proof.

The argument is based on the following observation: Construct a
derivation such that P(a) v P(d), P(s) vV P(t) occur on the right side
enforced by the end-sequent. Quantify both formulas by J-right (one
after the other). Afterwards infer 3-left with eigenvariable a such that
the position of a has to be bound on the right side. The two formulas
can be constructed iff

d(a/s) =t.

Cut the description of the contracted formula F with the description of
F — A D A directly obtained from an axiom by D: r and
weakening : I. O
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A semi-unification problem is a set of pairs of terms
S={(s1,t1),.--,(sn,tn)}. A solution to S is a substitution A
such that there are ¥, ..., %, such that

s1A =tAYq,...,spA = t,AX,,.

Example

{(x,s(y))}: A ={x+s(y')} but also {x + s(0)}.
{(x,s(x))}: unsolvable.
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Theorem
Semi-unification is undecidable.
If a solution exists, then there is a most general solution.

16 /39



Theorem

For every skeleton with universal cuts it is decidable whether a
proof according to this skeleton and block-wise inference of
quantifiers for a given end-sequent exists. If there is a proof there
is @ most general proof.
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Theorem

For every semi-unification problem there is a linear skeleton S with
universal cuts and an end-sequent such that S with the
end-sequent can be realized by a proof with block-wise inference of
quantifiers iff the semi-unification problem is solvable.

Corollary

It is undecidable whether a linear skeleton with universal cuts can
be realized by a proof.
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Proof.  First note that the semi-unification problem can be reduced to a semi-
unification problem {(s7,?),..., (s5,t)} with sf = £(- -f(aiy,ai,) .. .5) .. .a;,) and
t=f(--- f(t1,t2),...1,), where a;; are new free variables.

Let An(ay,...,a,) = P(t)A ((P(s}) AA P(s;)) D @), where all free variables

are among ay, ..., a, and do not occur in Q. We sketch the construction of a proof
analysis as follows:

propositional inferences

(a) Aa(ar,...,an)6 — Ag(ay, ..., an)6
(a+1) (Vz1)...(Yon)An(21, ..., 20) — Ag(ay, ..., a,)8
propositional inferences including
propositional cuts from (a+1)
®) (V21)... (Yza)A(21, .., 24) — P(1)6

(b+1) (¥21) .- (V2n)Aa (21,1 20) = (Y1) ... (Vym) R (01, . . ., ym)

S T includi

prop

propositional cuts from (a + 1)
@ P P50 () Aaler, o en) = @

p (Vp-left)-inferences, exchanges
and contractions from (c)

Vz1)...(Vz )R (21, ..., 25), (V1) . .. (VZa) Aq(z1, . .., T0) — Q
Ef; (\S’zl))A .. (Vza)An(21, ..., 20), (V21) ... (V2n)An(2z1, ..., 20) — Q
(e+1) (Vz1)...(VZa)Aa(zy, ..., 20) = Q

is obtained from (a) by (Vp:left), (b4 1) from (b) by (Vp:right),
2?:’;055’(22 11) and (d) by cut,( a)nd (e + 1) from (e) by contraction. Note that
V1) - - - (Y9m)B(y1, - - - Ym) = (Y1) ... (st)R’({l, ..., %) by the cut_rule and hence
& is forced to be a semi-unifier. The label (a+1) is ances-tor of both sxf‘les_ of thfs cut,
the skeleton is therefore not in tree form. (The length of the skeleton is linear in n.)
=]
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Theorem
There is a procedure which transforms any proof skeleton P into a
cut-free proof skeleton P’ with the same bottom node. If there is a

proof realizing P for a given end-sequent there is a proof realizing
P’

Important: mix* has to be employed.
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Consider P(c) vV P(d) — 3xP(x) (all trees have this formula as bottom
node), the box denotes the mix*:

axiom axiom
Vo left (O axiom
contr : right () (O 3: right
3: right 3: left
(a) mix* cut
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(b)

axiom

Vo left

contr : right

axiom

: right



axiom axiom

Vo left

contr : right

mix*

cut

axiom

: right
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axiom

axiom

3 right
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axiom

3 right

Vo left

axiom

3 right
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(a) — (c) cannot be realized (P(c) and P(d) are forced to be
contracted). (d) is realized by

P(c) — P(c) P(d) — P(d)
P(c) = P(c) P(c) = 3xP(x) P(d) — P(d) P(d) = 3IxP(x)
P(c) — 3IxP(x) P(d) — 3xP(x)

P(c) VvV P(d) — 3xP(x)
(e) is realized by

P(c) — P(c) P(d) — P(d)
P(c) = 3xP(x) P(d) — 3xP(x)
P(c) v P(d) — 3IxP(x)




Theorem
It is decidable for a cut-free skeleton S whether there is a proof

realizing S for a given end-sequent. If there is a proof there is a
most general proof.
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Different cut-elimination strategies correct different proof
skeleta

axiom

w : right

contr : right axiom

w : right w: left

mix(3|1)

QVP,R— PR
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6.1265
Logic can always be conceived to be such that every proposition is its
own proof.
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IxXA(x) ~ A(exA(x))
VxA(x) ~ A(ex—A(x))
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e-translation of Ix3Jy3IzA(x,y, z) :

A(exA(x, e A(x,y, 62 A(x,y, 2)), €2 A(x,e, A(X,y, €2 Alx,y,z)),
Z)) Ey ( A(X 6}/ A(X Y€z A(X,y,Z)), €z A(X,Ey A(X7y752
(X y7 )) )) y7€Z ( A(ngy A(vav‘EZ A(X,y,Z)), €z A(X7Ey
(X Y,€z (X Y,z ))7 ))7)/72))7 €z A(EX A(X,Ey A(Xay752
(x,¥:2)),€2 Alx, ey Alx,y, €2 Alx,Y,2)),2)), €y Alex A(x, ey
(x, ¥, &z (X,y,Z)), ez Alx,ey A(x,y, €2 A(x,Y,2)),2)), ¥, €z
(ex Alx,ey A(X, ¥y, €2 A(X, ¥, 2)), €2 A(x,ey, A(X, Yy, €,
(x,¥,2)),2)),y,2)),2))-

>>>>>>
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critical formulas A(t) D A(exA(x))

The translation of a first-order proof P to epsilon calculus results
in a tautology

\(Ai(t) D Ai(exAi(x)) D Pe
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Hilbert's Ansatz (Example)

A(t) D A(exA(x)) A A(s) D A(exA(x)) D B(x)

A(t) D B(t)
A(s) D B(s)
—A(t) A —A(s) D B(exA(x))

result: B(t) V B(s) V B(exA(x))

o)
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An e-term e is nested in an e-term ¢’ if e is a proper subterm of ¢’.
An e-term e is subordinate to an e-term €’ = £, A(x) if e occurs in
e’ and x is free in e.

The rank counts the subordination levels and the degree the length
of the maximal inclusion chain.
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Theorem (extended first epsilon theorem)
An epsilon proof of the translation of an existential formula can be
stepwise transformed into a Herbrand disjunction.

Proof.
Induction according to the maximal rank and within the maximal
rank according to the maximal degree. Ol
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Epsilon elimination is a small error tolerant device

Theorem

Every epsilon proof of the translation of an existential formula with
exactly one counter-valuation can be transformed into a
disjunction where there is also at most one counter-valuation.

Proof.

Include the disjunctive normal form (one disjunction of negated
and unnegated atoms) in the transformation process. 0
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Example

(A(s) D A(exA(x)) A A(t) D A(exA(x))) D D(xA(x))

D(x) ~ B(x) V =A(x) V =A(s) V 2A(t)
the only counter valuation
As)=t A(t)=t A(exA(x)) =t B(exA(x))=Tf.

Consequently,
C(exA(x)) D (A(s) D A(exA(x)) A A(t) D A(exA(x))) D D(exA(x)) is a
tautology, where C(e,A(x)) is

—A(S) V —A(t) V ~A(xA(x)) V B(exA(x)).

Consequently,
(A(s) D A(exA(x)) A A(t) D A(exA(x))) D (C(exA(x)) D D(exA(x))) is
a tautology.
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Example

Consequently,
B(S) \Y ﬁA(S) V ﬁA(s) \Vi jA(t-)\/

B(t) vV -A(t) V 2A(s) V DA(t)V
B(exA(x)) V 2A(exA(x)) V —A(s) V 2A(t)
is valid but for the following counter valuation
frA(s)=t A(t)=t A(AX)) =t

B(s)=f B(t)=f B(exA(x))=f
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5,511

How can the all-embracing logic which mirrors the world use such
special catches and manipulations? Only because all these are
connected into an infinitely fine network, to the great mirror.
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