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6.1202

Proof in logic is only a mechanical expedient to facilitate the recognition
of tautology, where it is complicated.

6.1203

It would be too remarkable, if one could prove a significant proposition

logically from another, and a logical proposition also. It is clear from the

beginning that the logical proof of a significant proposition and the proof

in logic must be two quite different things.
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LK

Axioms:
A→ A.

Structural inferences:

Γ1 → ∆1,A A, Γ2 → ∆2
cut

Γ1, Γ2 → ∆1,∆2

Γ→ ∆
w : l

A, Γ→ ∆
Γ→ ∆ w : r

Γ→ ∆,A

Γ1,A,B, Γ2 → ∆
ex : l

Γ1,B,A, Γ2 → ∆
Γ→ ∆1,A,B,∆2 ex : r
Γ→ ∆1,B,A,∆2

A,A, Γ→ ∆
c : l

A, Γ→ ∆

Γ→ ∆,A,A
c : r

Γ→ ∆,A
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LK

Logical inferences:

Γ→ ∆,A
¬ : l¬A, Γ→ ∆

A, Γ→ ∆ ¬ : r
Γ→ ∆,¬A

A, Γ→ ∆ B, Γ→ ∆
∨ : l

A ∨ B, Γ→ ∆

Γ→ ∆,A ∨ : r1
Γ→ ∆,A ∨ B

A, Γ→ ∆ ∧ : l1A ∧ B, Γ→ ∆

Γ→ ∆,B ∨ : r2
Γ→ ∆,A ∨ B

B, Γ→ ∆ ∧ : l2A ∧ B, Γ→ ∆
Γ→ ∆,A Γ→ ∆,B ∧ : r

Γ→ ∆,A ∧ B

Γ→ ∆,A B, Γ→ ∆
⊃: l

A ⊃ B, Γ→ ∆

A, Γ→ ∆,B ⊃: r
Γ→ ∆,A ⊃ B
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LK

C (e), Γ→ ∆
∃ : l∃xC (x), Γ→ ∆

Γ→ ∆,C (r)
∃ : r

Γ→ ∆,∃xC (x)

C (r), Γ→ ∆
∀ : l∀xC (x), Γ→ ∆

Γ→ ∆,C (e)
∀ : r

Γ→ ∆,∀xC (x)

with the usual restrictions.
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Γ1 → ∆1,A A, Γ2 → ∆2
mix

Γ1, Γ
′
2 → ∆′1,∆2

where ∆′1 is ∆1 after removing A and Γ′2 is Γ2 after removing A.
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Γ1 → ∆1,A A, Γ2 → ∆2
mix∗

Γ1, Γ
′
2 → ∆′1,∆2

where ∆′1 is ∆1 after removing only the As later contracted to the
mix formula and Γ′2 is Γ2 after removing only the As later
contracted to the mix formula.
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→ ∀x∀yP(x , y) ⊃ ∃z(P(0, z) ∧ P(z , a) ∧ P(Sz ,Sa)).

There is a proof underlying this representation by name iff a is replaced

by S2n(0).
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A second order unification problem is a finite set of equations in
the language T ∪ {Sub1, . . . ,Subm} plus free variables for elements
of T . The free variables will be called the term variables. By
introducing new term variables we can transform any such system
into an equivalent one where all equations have form

δ(ai/σ) = ρ,

where δ, σ, ρ are terms of term variables.
Suppose a unary function symbol is chosen, say S . Then we call a
numeral any term of the form Sn(t), t a free variable or t = 0,
n ∈ ω.
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Theorem
Let L contain a unary function symbol S, a constant 0 and a binary
function symbol. Let τ0 be a term variable. Then for every recursively
enumerable set X ⊆ ω there exists a second order unification problem Ω
such that Ω ∪ {τ0 = Sn(0)} has a solution iff n ∈ X .

Proof
We use Matijasevič’s theorem.

∃y1, . . . , ykDX (x , y1, . . . , yk),

where DX is a conjunction of formulas of the form

yi = u, u < ω

yi = yj + yl

yi = yj ∗ yl

yi = x

i , j , l ≤ k.
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Proof cont.

1. The equation s(τ) = τ(a/s(a)), τ term variable, has solutions
τ = Sn(a), n ∈ ω.

2. The equation τ(a/σ) = ρ plus the equations from 1. for term
variables τ, σ, ρ have solutions:

Sp(a),Sq(a),Sm(a) for p + q = m.

3. The equations

S(σ1) = σ1(a/S(a))

S(σ2) = σ2(a/S(a))

S(σ3) = σ3(b/S(b))

τ(a/σ1, b/S(b), c/a ◦ (b ◦ c)) = σ2 ◦ (σ3 ◦ τ)

with variables a, b, c and term variables σ1, σ2, σ3, τ have solutions for
σ1, σ2, σ3 of the form Sp(a),Sm(a),Sq(b) for p ∗ q = m.
The proof is non-trivial only for claim 3.
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Proof cont.

a) Assume p ∗ q = m. Then Sp(a),Sm(a),Sq(b) and the following
term are solution for the equations above

Sp(q−1)(a) ◦ (Sq−1(b) ◦ (Sp(q−2)(a) ◦ (Sq−2(b)

◦(. . . (Sp(a) ◦ (S(b) ◦ (a ◦ (b ◦ c) . . .))))))).

b) Suppose Sp(a),Sm(a),Sq(b), t are a solution. We shall proceed by
induction on the depth of t, denoted by dp(t).

(i) dp(t) = 0. Then t is c , hence σ2 is a and σ3 is b. Thus
p ∗ q = m = 0.

(ii) dp(t) > 0. Then t is t1 ◦ t2, where

t1(a/Sp(a), b/S(b), c/a ◦ (b ◦ c)) = Sm(a)

i.e. t1 = Sm−p(a) and

t2(a/Sp(a), b/S(b), c/a ◦ (b ◦ c)) = Sq(b) ◦ t.
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Proof cont.
Hence dp(t2) > 0, so t2 = t3 ◦ t4

t3(a/Sp(a), b/S(b), c/a ◦ (b ◦ c)) = Sq(b),

thus t3 = Sq−1(b). Further we have

t4(a/Sp(a), b/S(b), c/a ◦ (b ◦ c)) = t

= t1 ◦ (t3 ◦ t4) = Sm−p(a) ◦ (Sq−1(b) ◦ t4)

By the induction hypothesis, since dp(t4) < dp(t),

p ∗ (q − 1) = m − p

i.e. p ∗ q = m. We are done.
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Theorem
Let L be a language containing a unary function symbol S, a constant 0
and a binary function symbol. Then for every recursively enumerable set
X ⊆ ω there exists a sequent A→ A,P(a) and a skeleton with universal
cuts S such that n ∈ X iff A→ A,P(Sn(0)) has an LK-proof with
skeleton S.

Proof.
The argument is based on the following observation: Construct a
derivation such that P(a) ∨ P(d),P(s) ∨ P(t) occur on the right side
enforced by the end-sequent. Quantify both formulas by ∃-right (one
after the other). Afterwards infer ∃-left with eigenvariable a such that
the position of a has to be bound on the right side. The two formulas
can be constructed iff

d(a/s) = t.

Cut the description of the contracted formula F with the description of
F → A ⊃ A directly obtained from an axiom by ⊃: r and
weakening : l .
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A semi-unification problem is a set of pairs of terms
S = {(s1, t1), . . . , (sn, tn)}. A solution to S is a substitution ∆
such that there are Σ, . . . ,Σn such that
s1∆ = t1∆Σ1, . . . , sn∆ = tn∆Σn.

Example

{(x , s(y))}: ∆ = {x ← s(y ′)} but also {x ← s(0)}.
{(x , s(x))}: unsolvable.
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Theorem
Semi-unification is undecidable.
If a solution exists, then there is a most general solution.
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Theorem
For every skeleton with universal cuts it is decidable whether a
proof according to this skeleton and block-wise inference of
quantifiers for a given end-sequent exists. If there is a proof there
is a most general proof.

A(t̄) ⊃ ∃x̄A(x̄) (A,A′)
| |
A A′

| |
A(t) ⊃ ∃xA(x) A = A′σx(y)
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Theorem
For every semi-unification problem there is a linear skeleton S with
universal cuts and an end-sequent such that S with the
end-sequent can be realized by a proof with block-wise inference of
quantifiers iff the semi-unification problem is solvable.

Corollary

It is undecidable whether a linear skeleton with universal cuts can
be realized by a proof.
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Theorem
There is a procedure which transforms any proof skeleton P into a
cut-free proof skeleton P ′ with the same bottom node. If there is a
proof realizing P for a given end-sequent there is a proof realizing
P ′.

Important: mix∗ has to be employed.
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Consider P(c) ∨ P(d)→ ∃xP(x) (all trees have this formula as bottom
node), the box denotes the mix∗:

(a)
cut

∃ : left

∃ : right

axiom

∃ : right

contr : right

∨ : left

axiomaxiom

mix∗

⇓
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(b)
cut

∃ : right

axiom

contr : right

∨ : left

axiomaxiom

mix∗

⇓
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(c)
cut

∃ : right

axiom

contr : right

∨ : left

axiomaxiom

mix∗

⇓
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(d) ∨ : left

cut

∃ : right

axiom

axiom

cut

∃ : right

axiom

axiom

mix∗mix∗

⇓

24 / 39



(e) ∨ : left

∃ : right

axiom

∃ : right

axiom
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(a)− (c) cannot be realized (P(c) and P(d) are forced to be
contracted). (d) is realized by

P(c)→ P(c)

P(c)→ P(c)

P(c)→ ∃xP(x)

P(c)→ ∃xP(x)

P(d)→ P(d)

P(d)→ P(d)

P(d)→ ∃xP(x)

P(d)→ ∃xP(x)

P(c) ∨ P(d)→ ∃xP(x)

(e) is realized by

P(c)→ P(c)

P(c)→ ∃xP(x)

P(d)→ P(d)

P(d)→ ∃xP(x)

P(c) ∨ P(d)→ ∃xP(x)

26 / 39



Theorem
It is decidable for a cut-free skeleton S whether there is a proof
realizing S for a given end-sequent. If there is a proof there is a
most general proof.
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Different cut-elimination strategies correct different proof
skeleta

mix(3|1)

w : left

axiom

w : right

contr : right

∨ : left

ex(2, 3)

w : right

axiom

w : right

axiom

Q ∨ P,R → P,R

28 / 39



6.1265
Logic can always be conceived to be such that every proposition is its

own proof.
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∃xA(x) ∼ A(εxA(x))

∀xA(x) ∼ A(εx¬A(x))
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ε-translation of ∃x∃y∃zA(x , y , z) :

A(εxA(x , εyA(x , y , εz A(x , y , z)), εz A(x , εy A(x , y , εz A(x , y , z)),
z)), εy A(εx A(x , εy A(x , y , εz A(x , y , z)), εz A(x , εy A(x , y , εz
A(x , y , z)), z)), y , εz A(εx A(x , εy A(x , y , εz A(x , y , z)), εz A(x , εy
A(x , y , εz A(x , y , z)), z)), y , z)), εz A(εx A(x , εy A(x , y , εz
A(x , y , z)), εz A(x , εy A(x , y , εz A(x , y , z)), z)), εy A(εx A(x , εy
A(x , y , εz A(x , y , z)), εz A(x , εy A(x , y , εz A(x , y , z)), z)), y , εz
A(εx A(x , εy A(x , y , εz A(x , y , z)), εz A(x , εy A(x , y , εz
A(x , y , z)), z)), y , z)), z)).
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critical formulas A(t) ⊃ A(εxA(x))

The translation of a first-order proof P to epsilon calculus results
in a tautology ∧

(Ai (t) ⊃ Ai (εxAi (x)) ⊃ Pε
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Hilbert’s Ansatz (Example)

A(t) ⊃ A(εxA(x)) ∧ A(s) ⊃ A(εxA(x)) ⊃ B(x)

A(t) ⊃ B(t)

A(s) ⊃ B(s)

¬A(t) ∧ ¬A(s) ⊃ B(εxA(x))

result: B(t) ∨ B(s) ∨ B(εxA(x))
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An ε-term e is nested in an ε-term e ′ if e is a proper subterm of e ′.
An ε-term e is subordinate to an ε-term e ′ = εxA(x) if e occurs in
e ′ and x is free in e.

The rank counts the subordination levels and the degree the length
of the maximal inclusion chain.
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Theorem (extended first epsilon theorem)

An epsilon proof of the translation of an existential formula can be
stepwise transformed into a Herbrand disjunction.

Proof.
Induction according to the maximal rank and within the maximal
rank according to the maximal degree.
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Epsilon elimination is a small error tolerant device

Theorem
Every epsilon proof of the translation of an existential formula with
exactly one counter-valuation can be transformed into a
disjunction where there is also at most one counter-valuation.

Proof.
Include the disjunctive normal form (one disjunction of negated
and unnegated atoms) in the transformation process.
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Example

(A(s) ⊃ A(εxA(x)) ∧ A(t) ⊃ A(εxA(x))) ⊃ D(εxA(x))

D(x) ∼ B(x) ∨ ¬A(x) ∨ ¬A(s) ∨ ¬A(t)

the only counter valuation

A(s) = t A(t) = t A(εxA(x)) = t B(εxA(x)) = f .

Consequently,
C (εxA(x)) ⊃ (A(s) ⊃ A(εxA(x)) ∧ A(t) ⊃ A(εxA(x))) ⊃ D(εxA(x)) is a
tautology, where C (εxA(x)) is

¬A(s) ∨ ¬A(t) ∨ ¬A(εxA(x)) ∨ B(εxA(x)).

Consequently,

(A(s) ⊃ A(εxA(x)) ∧ A(t) ⊃ A(εxA(x))) ⊃ (C (εxA(x)) ⊃ D(εxA(x))) is

a tautology.
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Example

Consequently,
B(s) ∨ ¬A(s) ∨ ¬A(s) ∨ ¬A(t)∨

B(t) ∨ ¬A(t) ∨ ¬A(s) ∨ ¬A(t)∨

B(εxA(x)) ∨ ¬A(εxA(x)) ∨ ¬A(s) ∨ ¬A(t)

is valid but for the following counter valuation

f : A(s) = t A(t) = t A(εxA(x)) = t

B(s) = f B(t) = f B(εxA(x)) = f
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5.511

How can the all-embracing logic which mirrors the world use such
special catches and manipulations? Only because all these are
connected into an infinitely fine network, to the great mirror.
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