
Introduction to Predicative Ordinal Analysis
Summary of a lecture given at the Hilbert–Bernays Summer School on Logic and Computation

2018 in Göttingen.

A preparation for the course “Introduction to Impredicative Ordinal Analysis”

Wolfram Pohlers
WWU Münster

Contents
1 Preface 2

2 A brief reminder 2
2.1 Abstract structures and logical inferences 2
2.2 Formal derivations . 3
2.3 Why ordinal analysis? . 4

3 Ordinals 6
3.1 Ordinals as equivalence classes . 6
3.2 Set theoretical ordinals . 7
3.3 Basics of ordinal arithmetic . 8

4 The verification calculus for countable structures 9

5 The standard model of arithmetic 14
5.1 Primitive recursive functions . 14
5.2 The standard structure N. 15

6 The axiom system NT 15
6.1 Peano arithmetic . 15
6.2 Pure logic . 17
6.3 The axioms of arithmetic . 18

7 The upper bound 18
7.1 Embedding of NT . 18
7.2 Cut elimination . 19
7.3 The upper bound . 19

8 The lower bound 19
8.1 Ordinal notations . 19
8.2 The well–ordering proof . 19

1

I Selected proofs and solutions 20

0.1 Remark The mark � at the end of a theorem, a lemma or an exercise is a link
to the proof/solution of the theorem, lemma or exercise. Perhaps not all links will be
present (in cases that the solution is planned to be left to the reader).

1 Preface
These are the lecture notes for a course on predicative ordinal analysis given at a
previous summer school. Athough I do not adopt all the notions of this course, I will
stick to them to a large extent. The present course, however, will go much further.
Nevertheless, I will start with a brief summary of predicative ordinal analysis and it
could be usefull to have a look at these notes.

2 A brief reminder

2.1 Abstract structures and logical inferences
In a very general setting mathematics is concerned with the study of abstract structures.
An abstract structure has the form M = (M,C ,R,F) where M is a non–void set, C
as subset of M , R a set of relations on M and F a set of functions on M . Associated
to an abstract structure is its abstract language LM = L (C,R,F) which comprises a
set C of constants for elements of M , a set R of symbols for the relations in R and a
set F of symbols for the functions in F .

In general a signature for a logical language is a triple (C,R,F) where every R ∈
R and f ∈ F carries its arity 0 < #R ∈ N and 0 < #f ∈ N.

An abstract structure M = (M,C ,R,F) interprets a signature (C,R,F) if ev-
ery constant c ∈ C has an interpretation cM ∈ M , every relation symbol R ∈ R
an interpretation RM ⊆ M#R and every function symbol f ∈ F an interpretation
fM:M#f −→ M .

We say that a signature matches the structure M if there is a symbol c ∈ C, R ∈ R
and f in F for every constant in C , every relation in R and every function in F .

The closed terms of a signature (C,R,F) are either constants or composed terms
of the form (ft1, . . . , tn) where #f = n and t1, . . . , tn are constants or previously
defined composed terms.

Atomic sentences have the form (Rt1, . . . , tn) where R is an n–ary relation sym-
bols and t1, . . . , tn are closed terms. Starting from atomic sentences we can inductively
build a logical language L (C,R,F) using the familiar boolean operations and quan-
tifications. If quantification is restricted to individuals we talk about a first order logic
L1(C,R.F). If we also allow quantifiers ranging over relations we talk about a second
order logic L2(C,R,F).

For an abstract structure M that interprets the signature of a logical language every
closed term t possesses a canonical interpretation tM ∈M .

Defining M |= (Rt1, . . . , tn) iff (tM1 , . . . , tMn) ∈ RM and continuing inductivley
according to the meaning of the logical operations we obtain a canonical satisfiability

2

relation M |= F for the sentences F in the language L (C,R,F). We say that F is
valid in M iff M |= F .

If S ∪ {F} is a set of L (C,R,F)–sentences we call S |= F a logical inference iff
for every abstract structure M that interprets (C,R,F) the fact that M |= G holds true
for all G ∈ S also implies M |= F .

An abstract structure M satisfies a set S of L (C,R,F)–sentences iff M interprets
(C,R,F) and satisfies all sentences in S.

A set S of L (C,R,F)–sentences is consistent iff there is a structure M which
satifies S.

A set S of L (C,R,F)–sentences is logically valid iff every structure which inter-
prets (C,R,F) satifies S.

2.1 Exercise Give a formal definition of tM and M |= F .

2.2 Exercise Show that S |= F iff S ∪ {¬F} is inconsistent.

2.3 Exercise Show that a set S of L (C,R,F)–sentences is consistent iff there is no
L (C,R,F)–sentence F such that S |= F ∧ ¬F .

2.2 Formal derivations
We extend a language L := L (C,R,F) by adding free individual variables, denoted
by x, y, z, x1, . . ., and free relation variables, denoted by X,Y, Z,X1, . . ., together
with their arities #X ∈ N. In forming terms individual variables are treated like con-
stants; in forming formulae relation variables are treated like relation symbols. Terms
without occurrences of free individual variables are closed, sentences are formulae in
which neither individual variables nor relation variables occur freely.

Even if a structure M interprets L there is no canonical interpretation for terms
containing free individual variables and no canonical satisfaction relation for formulae
containing free variables. Interpretation and satisfaction of terms and formulae need an
assignment Φ which assigns an element Φ(x) ∈ M to every free individual variable x
and a set Φ(X) ⊆ M#X to every relation variable X . We denote by M |= F [Φ] that
M satisfies the formula F under the assignment Φ.

We extend the definition of a logical inference to sets of L –formulae.

2.4 Definition Let S∪{F} be a set of L –formulae. Then S |= F is a logical inference
iff for every structure M that interprets L and every assignment Φ we have

M |= G[Φ] for all formulae in G ∈ S implies M |= F [Φ].

2.5 Definition Let L := L (C,R,F) be a logical language. A formal rule is a figure

P1, . . . , Pn C,

where n ≥ 0 and {P1, . . . , Pn, C} is a set of L –formulae.

A formal system S is a set of formal rules.

Given a formal system S we define formal derivability A1, . . . , Am S F inductively
by:

3

• If A1, . . . , Am S Pi for i = 1, . . . , n and P1, . . . , Pn F is a rule of S
then A1, . . . , Am S F .

A formal system S is sound if for every rule P1, . . . , Pn C in S we have
P1, . . . , Pn |= C.

2.6 Exercise (Soundness Theorem) Let S be a sound formal system. Show that
A1, . . . , An S

F entails A1, . . . , An |= F .

The following completeness theorem by Kurt Gödel is one of the most important theo-
rems of Mathematical Logic.

2.7 Theorem (Gödel’s completeness theorem) Let L1 be a first order language and
S∪{F} a set of L1–formulae. Then there is a sound formal system S such that S |= F
entails S1, . . . , Sn S

F for a finite subset {S1, . . . , Sn} of S.

There is a fraternal twin to Gödel’s completeness theorem.

2.8 Theorem (Compactness Theorem) Let L1 be a first order language and S a set of
L1–sentences. If every finite subset Si ⊆ S is consistent, then S is consistent.

2.9 Exercise Show that Gödel’s completeness theorem entails the compactness theo-
rem. (The opposite direction—though true—is much harder to show).

A formal dervationA1, . . . , An S
F in a formal system S can be viewed as a finite tree

whose root is labelled by F , whose leaves are labelled by the formulae Ai and which
is is locally correct with respect to the rules in S. This makes the correctness of a
formal proof machine–checkable, i.e., decidable. Admittedly in practice mathematical
proofs are not formalized to the point that they become machine–checkable, but they
should be formalizable in principle. This fact is responible for the intersubjectibility of
mathematical proofs.

For full second order logic there is no compactness theorem, hence also no com-
pleteness theorem. So full second order logic is, in principle, useless for mathematical
reasoning. Nevertheless there are sound formal systems for second order logic.1

2.3 Why ordinal analysis?
Gödel’s completeness theorem establishes a tool for the investigation of abstract struc-
tures. We can try to characterize a structure M by a set of first order sentences which
are characteristic for and valid in M, the axioms for M. Starting from the axioms for
M we can argue by logical inferences to ensure that everything we conclude is a theo-
rem of M. Examples for this approach are group theory, ring theory, field theory and
similar algebraic disciplines.

In setting up an axiom system for a structure M we are confronted with a couple of
problems. First we have to ensure that the set of axioms is consistent. This causes no
problems in case of groups, rings, field etc, since there are finite structures which satisfy

1These system, however, should rather be viewed as formal systems for a two sorted first order logic.

4

the finitely many axioms. The second problem is that of categoricity, i.e., the question
whether we can characterize the structure by the axioms up to isomorphism. This,
however, is in general not possible for a first order axiom system by the compactness
theorem. In the case of groups, rings etc., it is not even desirable since we know that
there are many non isomorphic groups, rings,

The situation is different when we try to axiomatize standard structures which we
believe to be familiar with. The first—and probably most important— such structure
is the structure N of natural numbers. We have (and all our mathematical ancestors
had) in some sense a clear intuition of this structure. Here it would be desirable to
have an axiomatization up to isomorphism but this is excluded by the compactness
theorem.There are categorial second order axiom systems for N but, according to the
lack of a completeness theorem for second order logic, they are mathematically useless.
So we have to resign categoricity.

There are well-established axiom system for N, e.g. the Peano axioms which we
will later introduce in detail. Since we have resigned categoricity it remains the prob-
lem of consistency. This is not so easy to solve as in the case of the group—or similar
algebraic—axioms since the standard structure N is an infinite structure. Therefore
any adequate axiomatization of N has to incorporate infinity which entails that there
exist no finite structures that satisfy these axioms (as e.g. in group theory). But N is in
some sense the simplest infinite structure. In order to build a structure which satisfies
the axioms for N we need a structure somehow above N which itself needs a consistent
axiomatization which then is likely to embrace the axioms for N.

This exposes a foundational problem. Hilbert in his programme suggested a way
to solve this problem (even aiming at solving the consistency problem for all existing
mathematics) by formalization. Since a formal proof is a finite figure it should be
likely that we can show by finitistic—i.e. purely finite combinatorical—means that
there cannot be a proof figure of a contradiction.

This hope was destroyed by Gödel’s incompleteness theorems in which he showed
that a proof of the consistency of any recursively enumerable axiom system for N has
to exceed the means of this axiom system. Especially there cannot be a consistency
proof for a recursively enumerable axiom system of N by finite combinatorics.

However, despite of Gödels incompleteness theorems Gerhard Gentzen in [?] gave
a consistency proof for the Peano axioms for N. His proof only used finitistic means
except for an application of a transfinite induction along a well–ordering of order–type
ε0. By Gödel’s incompleteness theorem it therefore follows that transfinite induction
up to ε0 cannot be provable from the Peano axioms. In a later paper [?] he showed
that conversely any ordinal less than ε0 can be represented by a well–ordering whose
well–foundedness is provable in Peano arithmetic. This was the birth of ordinally
informative proof theory. Since then we define the proof theoretic ordinal of an axiom
system T as the supremum of the order–types of well–orderings which are elementarily
definable in the language of T and whose well–foundedness is provable in T .

As we will see later the proof–theoretic ordinal of an axiom system in fact incorpo-
rates a measure for the performance of an axiom with respect to the intended standard
structure and the universe of its subsets above it.

The aim of the course is to give an introduction to ordinal analysis on the example of

5

an axiom system for N which is equivalent to the Peano axioms.

2.10 Remark (added 2019) The present course on impredicative ordinal analysis will
emphasize the fact that only additional axioms for the universe above the standard
structure can enhance the performance of an axiom system. This may lead to impred-
icative axioms systems which are the subject of the present course.

3 Ordinals
Our main tool in gauging the range of axiom systems are ordinals. Intuitively an ordinal
is the order–type of a well–ordering.

3.1 Ordinals as equivalence classes
Given two finite set M1 and M2 there are two methods to compare their size. We can
bring the elements of both sets into one–one correspondence and check on which side
there are elements left or we simply count the members and compare the numbers.
Mathematically speaking the first methods yields the definition

M1 ≤M2 :⇔ there is a f :M1
1−1−→ M2

and

M1 = M2 :⇔ M1 ≤M2 ∧ M2 ≤M1 ⇔ there is a f :M1 ←→ M2

and we call the equivalence class {N M = N} the cardinality of the set M .
Counting the elements of a set M means to order the elements of M . Orders which

are suited for counting are order–relations with the property that every non–void subset
of the field of the ordering possesses a least element (the candidate for the next element
to be counted).

3.1 Definition A binary relation≺ is a well–ordering if it is total, transitive, irreflexive
and satisfies (∀X)[X ⊆ field(≺) ∧ X 6= ∅ ⇒ (∃x ∈X)[(∀y)[y ≺ x→ y /∈ X]]].

For well–orderings ≺1 and ≺2 we define

≺1≤≺2 :⇔ (∃f)[f : field(≺1) −→ field(≺2) order preserving]

and

≺1=≺2 :⇔ ≺1≤≺2 ∧ ≺2≤≺1 .

The order–type of a well–ordering ≺ is the equivalence class

otyp(≺) := {≺∗ ≺=≺∗}.

3.2 Theorem Let ≺ a well–ordering. Then

(∀X)
[
(∀x)[(∀y)(y ≺ x→ y ∈ X)→ x ∈ X]→ (∀x∈ field(≺))(x ∈ X)

]
.

6

0 = ∅, 1 = {0}, 2 = {∅, {∅}} = {0, 1}, . . . , n+ 1 = {0, . . . , n},
ω = {0, 1, 2, . . .} ω + ω = {0, . . . , ω, ω + 1, . . .} . . .

Figure 1: Some set theoretical ordinals

Let WO(≺) abbreviate the above sentence. Then ≺ is a well–ordering iff ≺ is a total,
irreflexive and transitive ordering that satisfies WO(≺).

3.3 Exercise Prove theorem 3.1.

3.2 Set theoretical ordinals
Since the equivalence classes “cardinality” and “order–type” are proper classes and
thus no sets in a set theoretical sense is has become common to represent order–types
by set theoretical ordinals.

As a reminder: A set a is transitive if it possesses no ∈ holes, i.e., if

(∀x∈ a)(∀y ∈ x)[y ∈ a].

3.4 Definition An ordinal is a transitive set that is well–ordered by the ∈–relation.
Let On be the class of all set theoretical ordinals. We define

α < β :⇔ α ∈ On ∧ β ∈ On ∧ α ∈ β.

Clearly

β ∈ On ∧ a ⊆ β ∧ Tran(a) entail a ∈ On. (1)

Observe that by this definition a set theoretical ordinal coincides with the set of its
predecessors, i.e.,

α = {ξ ξ < α}.

3.5 Theorem (Transfinite Induction) If (∀ξ < η)F (ξ) entails F (η) for any ordinal η
then we already have (∀ζ ∈On)F (ζ).

3.6 Lemma β ∈ On , Tran(a) and a (β imply a ∈ β. �

3.7 Lemma In presence of the foundation scheme an ordinal is a hereditarily transi-
tive set. �

3.8 Definition An ordinal κ is a cardinal iff (∀f)(∀ξ)[f :κ ←→ ξ ⇒ κ ≤ ξ] where
we generally agree that lower case Greek letters are supposed to vary over ordinals.

3.9 Definition An ordinal λ is a limit ordinal iff (∀ξ < λ)(∃η < λ)[ξ < η].

7

3.10 Definition For a set M of ordinals let supM = min {ξ (∀η ∈M)[η ≤ ξ]} =⋃
M .

Recall that
⋃
M := {x (∃y ∈M)[x ∈ y]}.

3.11 Lemma If α is an ordinal then α ∪ {α} is again an ordinal satisfying
(∀α < ξ)[α ∪ {α} ≤ ξ]. We call α ∪ {α} the successor of α often denoted by α′.

3.12 Lemma An ordinal λ 6= 0 is a limit ordinal iff supλ = λ. If α is not a limit
ordinal then (supα)′ = α. Let Lim denote the class of limit ordinals.

There are three types of ordinals: 0, successor ordinals α′ and limit ordinals.

3.13 Definition Let ω := min Lim. Then ω ∈ Lim ∧ (∀η < ω)[η /∈ Lim]. An ordinal
ξ is finite iff ξ < ω.

3.14 Theorem Every finite ordinal and ω are cardinals.

3.15 Definition Let ≺ be a well–ordering and x ∈ field(≺). Then we define

otyp≺(x) := sup {(otyp≺(y))′ y ≺ x}

and

otyp(≺) := sup {otyp≺(x) x ∈ field(≺)}.

This definition coincides with the first—informal—definition in so far that otyp(≺) is
a representative of the equivalence class otyp(≺).

3.16 Definition Let M be a class of ordinals. Then otyp(M) := otyp(<�M). The
inverse function enM : otyp(M) −→ M satisfying enM (otyp<(x)) = x is the enu-
merating function of M .

Observe that ω is the order–type of the natural numbers in their canonical ordering.

3.3 Basics of ordinal arithmetic
3.17 Definition (Ordinal addition) Let

α+ 0 := α
α+ β′ := (α+ β)′

and
α+ λ := sup {α+ ξ ξ < λ}.

3.18 Definition (Ordinal multiplication) Let
α · 0 := 0
α · β′ := (α · β) + α
α · λ := sup {α · ξ ξ < λ} for limit ordinals λ.

8

3.19 Definition (Ordinal exponentiation) Let
α0 := {0} (= 1)
αβ
′

:= (αβ) · α
αλ := sup {αξ ξ < λ}.

3.20 Definition An ordinal α is additively indecomposable if ξ, η < α entail ξ + η <
α.

3.21 Lemma The function λξ.(α + ξ) is the enumerating function of the class M =
{ξ α ≤ ξ}. Hence ξ < η iff α+ ξ < α+ η. �

3.22 Lemma The function λξ.(ωξ) is the enumerating function of the class of addi-
tively indecomposable ordinals. Hence ξ < η iff ωξ < ωη . �

3.23 Definition Let ε0 := min {ξ ωξ = ξ}.

3.24 Lemma Put ω(0)(α) := α and ω(n+1)(α) := ωω
(n)(α). Then ε0 = sup {ω(n)(0) n ∈ ω}.

For any ordinal ξ < ε0 we get ε0 = sup {ω(n)(ξ) n ∈ ω}. �

3.25 Remark By ε–numbers we refer to ordinals that are closed under ω–powers, i.e.
for which α < ε entails also ωα < ε.

3.26 Exercise Prove Lemmata 3.21 , 3.22 and 3.24.

3.27 Exercise Show that ξ < α implies ξ + α = α for additively indecomposable
ordinals α. �

3.28 Exercise (Cantor normal form) Show that for every ordinal α there are additively
indecomposable ordinals α1, . . . , αn such that α = α1 + · · · + αn and α1 ≥ α2 ≥
· · · ≥ αn. �

3.29 Exercise Show that for any ε–number ε we have 2ε = ωε = ε.

4 The verification calculus for countable structures
Let M = (M,C ,R,F) be an abstract structures with countable domain M . We will
in future tacitly presume that equality = and inequality 6= are among the relations R.
Moreover we assume that with each relation in R also its complement belongs the R.

4.1 Definition We define the closed terms and sentences of L1(M) inductively by the
following clauses.

• For every element m ∈M the constant m is a closed term.

• If t1, . . . , tn are closed terms of L1(M) and f is a symbol for an n–ary function
in F then (ft1, . . . , tn) is a closed L1(M) term.

• If t1, . . . , tn are closed L1(M)–terms and R is a symbol for a relation in R then
(Rt1, . . . , tn) is an (atomic) sentence of L1(M).

9

• If A and B are sentences of L1(M) then (A ∧ B) and (A ∨ B) are sentences
of L1(M).

• IfF (z) is an L1(M)–sentence then (∀x)F (x) and (∃x)F (x) are L1(M)–sentences.

Observe the pecularity—which we introduce for technical reasons—that there is no
negation symbol in our language. This beomes superfluous by the requiremant that for
every relation in R we also have its complement in R. Therefore we have for every
symbolR for a relation in R also a symbol R̆ for its complement. This makes negation
definable.

4.2 Definition (Inductive definition of ¬F)

• It is ¬(Rt1, . . . , tn) ≡ (R̆t1, . . . , tn) and ¬(R̆t1, . . . , tn) ≡ (Rt1, . . . , tn).

• It is ¬(A ∧ B) ≡ (¬A ∨ ¬B) and ¬(A ∨ B) ≡ (¬A ∧ ¬B).

• It is ¬(∀x)F (x) ≡ (∃x)[¬F (x)] and ¬(∃x)F (x) ≡ (∀x)[¬F (x)].

For every L1(M)–sentence F we introduce a characteristic sequence CS(F) which
should be viewed as the collection of all the sentences that suffice to verify F . If all
the sentences in CS(F) are needed to verify F we say that F is of conjunction type,
denoted by F ∈

∧
–type , if already some of the sentences in CS(F) suffices we say

that F is of disjunction type, written as F ∈
∨

–type .

4.3 Definition We define

• CS(F) is the empty sequence if F is an atomic sentence.

• CS(A ∧ B) = CS(A ∨ B) = 〈A,B〉.

• CS((∀x)F (x)) = CS((∃x)F (x)) =
〈
F (z) z ∈M

〉
where we assume a fixed

enumeration of the countable set M .

In most cases the order in the sequence CS(F) is unimportant. Therefore we mostly
neglect the order and identify CS(F) with the set of its members. So we write sloppily
∅ for the empty sequence and briefly G ∈ CS(F) to denote that G is a member of the
sequence.

4.4 Definition The
∧

–type of L1(M) comprises

• All the atomic sentences (Rt1, . . . , tn) such that M |= (Rt1, . . . , tn).

• All L1(M)–sentences of the form (A ∧ B).

• All L1(M)–sentences of the form (∀x)F (x).

Dually the
∨

–type of L (M) comprises

• All the atomic sentences (Rt1, . . . , tn) such that M 6|= (Rt1, . . . , tn).

• All L1(M)–sentences of the form (A ∨ B).

10

• All L1(M)–sentences of the form (∃x)F (x).

4.5 Observation Let F be an L1(M)–sentence.

If F ∈
∧

–type we have M |= F iff M |= G for all G ∈ CS(F).

If F ∈
∨

–type we have M |= F iff there is a G ∈ CS(F) such that M |= G.

4.6 Definition (The verification calculus for L1(M).) Let ∆ be a finite set of L1(M)–
sentences. We inductively define the verification calculus M

α
∆, where α denotes

an ordinal.

(
∧

) If F ∈
∧

–type ∩∆ and M
αG

∆ ∪ {G} and αG < α holds true for all G ∈
CS(F) then we conclude M

α
∆.

(
∨

) If F ∈
∨

–type ∩∆ and M
α0

∆ ∪ {G} holds true for some G ∈ CS(F) then
we obtain M

α
∆ for all α > α0.

4.7 Theorem The verification calculus is sound, i.e.
If M

α {F1, . . . , Fn} for some ordinal α then M |= F1 ∨ · · · ∨ Fn .

The verification calculus is complete, i.e.
If M |= F for an L1(M)–sentence F then there is an ordinal α such that M

α
F . �

To simplify notations let us from now on assume that the functions in F contain a
sufficently strong coding and decoding functions. We extend the first order language
L1(M) to the language L (M) by adding a set variable, i.e. a unary relation variable
X and extend Definition 4.1 by the additional clause

• If t is a closed L1(M)–term then t ∈ X and t /∈ X are L (M)–formulae.

The satisfaction relation M |= F is no longer defined for fomulae F containing the set
variable X . To obtain a satisfaction relation also for L (M)–formulae we define

• M |= F iff M |= F [Φ] for all assignments Φ such that Φ(X) ⊆M .

This means that we treat L (M)–formulae which contain the set variable semantically
as Π1

1–formulae in full second order semantics. For that reason we refer to them as
pseudo Π1

1–sentences.
To define negation also for the language L (M) we have to extend Definition 4.2

by the addional rule

• It is ¬(t ∈ X) ≡ (t /∈ X) and ¬(t /∈ X) ≡ (t ∈ X).

We clearly cannot verify atomic formulae of the form t ∈ X and t /∈ X . Therefore we
extend Definition 4.3 by the clause

• CS(t ∈ X) = CS(t /∈ X) = ∅

11

We keep Definition 4.4 of
∧

–type and
∨

–type under the agreement that atomic for-
mulae (t ∈ X) and (t /∈ X) belong neither to

∧
–type nor to

∨
–type .

We now extend the verification calculus M
α

∆ as defined in Definition 4.6 to the
canonical semi–formal system M

α

ρ ∆ for the language L (M). For the definition of
the semi–formal system we assume that every L (M)–formula possesses a complexity
rnk(F) which is an ordinal such that rnk(G) < rnk(F) holds true for all G ∈ CS(F).

4.8 Definition Let ∆ be a finite set of L (M)–formulae. The canonical semi–formal
system M

α

ρ ∆ for the language L (M) M is given by the following rules.

(X) If {(t ∈ X), (x /∈ X)} ⊆ ∆ and M |= (s = t) then M
α

ρ ∆ holds true for all
ordinals α and ρ.

(
∧

) If F ∈ ∆ ∪
∧

–type , M
αG
ρ ∆ ∪ {G} and αG < α hold true for all G ∈

CS(F) then we also have M
α

ρ ∆ .

(
∨

) If F ∈ ∆ ∪
∨

–type and M
α0

ρ ∆ ∪ {G} for some G ∈ CS(F) then we obtain

M
α

ρ ∆ for all α > α0.

(Cut) If M
α0

ρ ∆ ∪ {F} , M
α0

ρ ∆ ∪ {¬F} and rnk(F) < ρ then we have M
α

ρ ∆
for all ordinals α > α0.

We call the formulae (s ∈ X), (t /∈ X) and F in the above inference rules the main–
formulae of the corresponding inference. A (cut) has no main–formula but the cut
formula F .

4.9 Lemma For every L (M)–formula and finite set ∆ of L (M)–formulae we have

M
2·rnk(f)

0
∆ ∪ {F,¬F} . �

4.10 Theorem (L (M)–soundness) Assume M
α

ρ {F1, . . . , Fn} for L (M)–fomulae
Fi i = {1, . . . , n}. Then M |= (F1 ∨ · · · ∨ Fn). �

4.11 Theorem (L (M)–completeness) Assume M |= (∀X)F (X) for an L (M)–
fomula F (X). Then there is a countable ordinal α such that M

α

0
F (X) . �

4.12 Definition For a Π1
1–sentence (∀X)F (X) we define its truth–complexity

tc((∀X)F (X)) :=

{
min {α M

α

0
F (X) } if this exists

ω1 otherwise

where ω1 denotes the first uncountable ordinal. The truth complexity of a pseudo Π1
1–

sentence F (X) is the truth–complexity of the corresponding Π1
1–sentence (∀X)F (X).

For a countable structure M we define its Π1
1–ordinal

πM := sup {tc(F) F ∈ L (M) and M |= F}.

12

4.13 Remark The Π1
1–ordinal of a countable structure M has many counterparts in

abstract recursion theory. E.g. it coincides with the supremum of the order–types of
well–orderings that are elementarily definable in M , with the closure ordinal of the
structure M in the sense of [?] and also other characteristic ordinals. 2

4.14 Observation
a) If X does not occur in F and M |= F then tc(F) ≤ rnk(F).
b) We have M |= (∀X)F (X) for an L (M)–formula F (X) iff tc((∀X)F (X)) < ω1.

4.15 Definition Let T be an axiom system for a countable structure M. Then we
define the Π1

1–ordinal of the axiom system T as the ordinal

πM(T) := sup {tc(F) F ∈ L (M) and T |= F}.

The distance between πM(T) and πM can be viewed as a measure for the performance
of the axiom system T .

4.16 Theorem An axiom system T for a countable structure M is consistent iff πM(T) ≤
πM.

Since Gentzen ([?]) we define the proof theoretic ordinal |T | of an axiom system T
as the supremum of the order–types of well–orderings which are definable in T and
whose well–foundedness is provable in T . More precisely let Wf(≺, X) denote the
L (M)–formula such that WO(≺) ≡ (∀X)Wf(≺, X).

4.17 Definition Let T be an axiom system for a structure M then

|T | := {otyp(≺) ≺ is definable in L1(M) and T Wf(≺, X)}.

4.18 Lemma Let ≺ be a well–ordering which is L1(M)–definable in a countable
structure M. Then M

α

0
{¬(∀x)[(∀y)[y ≺ x→ y ∈ X]→ x ∈ X], z ∈ X} entails

otyp≺(z) ≤ 2α. �

4.19 Theorem Let ≺ be an well–orderings which is L1(M)–definable in a structure
M. Then otyp(≺) ≤ 2tc(Wf (≺)).

4.20 Corollary Let T be an axiom system for a structure M. Then |T | ≤ 2π
M(T).

4.21 Remark Lemma 4.18 and Theorem 4.19 are reformulations of theorems which
already occur in [?]. They can be sharpened to otyp≺(z) ≤ α and thus to otyp(≺) ≤
tc(Wf(≺)), which has some impact for axiom systems whose Π1

1–ordinal is not an
ε–number.

For akzeptable structures with a sufficiently strong coding machinery we get |T | =
πM(T) for axiom systems T which prove the properties of the coding machinery.

4.22 Theorem Let T be an axiom system for a countable structure M for which πM(T)
is an ε–number. Assume that A is an L (M)–sentence with M |= A and put T ′ :=
T ∪ {A}. Then |T ′| = |T | = πM(T). �

2Cf. [?].

13

4.23 Exercise Show:

(Str)
α

ρ ∆ , α ≤ β, ρ ≤ σ,∆ ⊆ Γ ⇒ β

σ Γ .

(
∧

–Inv)
α

ρ ∆, F and F ∈
∧

–type ⇒ α

ρ ∆, G for every G ∈ CS(F).

(∨–Exp)
α

ρ ∆, F , F ∈
∨

–type and CS(F) is finite ⇒ α

ρ ∆ ∪ Γ for Γ = CS(F).

�

4.24 Exercise
a) Show that we have M

α

o F for any L (M)–sentenc F with rnk(F) = α.
b) Show that M |= s = t and M

α

ρ ∆(s) imply M
α

ρ ∆(t) .

c) Show that there is an ordinal α such that M
α

0
s 6= t,¬F (s), F (t) for all closed

terms s and t. How large is α?

5 The standard model of arithmetic
The standard structure of arithmetic in the widest sense is the structure

(N,Pow(N),NN<ω).

Since Pow(N) and NN are uncountable this is a very big structure and there is no count-
able language that might match this strucuture. We will therefore restrict ourselves to
a smaller structure be restricting the set of relations and functions and try to find a
language that matches this structure.

5.1 Primitive recursive functions
By an arithmetical function we understand a function that maps tuples of natural num-
bers to a natural number.

5.1 Definition Let PF be the smallest class of arithmetical functions which

• contains the successor function S.

• contains all n–ary constant functions Cnk (z1, . . . , zn) = k.

• contains all n–ary projection functions Pnk (x1, . . . , xn) = xk.

• is closed under substitutions, defined by

Sub(g, h1, . . . , hm)(x1, . . . , xn) = g(h1(x1, . . . , xn)) . . . (hm(x1, . . . , xn)).

• is closed under primitive recursion, defined by

Rec(g, h)(0, x1, . . . , xn) = g(x1, . . . , xn)

Rec(g, h)(Sy, x1, . . . , xn) = h(y,Rec(g, h)(y, x1, . . . , xn), x1, . . . , xn)

14

5.2 Definition An n–ary relation R ⊆ ωn is primitive recursive iff its characteristic
function χR, defined by

χR(y1, . . . , yn) =

{
1 if (y1, . . . , yn) ∈ R
0 otherwise,

is primitive recursive. Let PR denote the set of primitive recursive relations.
Cf. Figure 2 for a list of primitive–recursive functions and relations.

5.2 The standard structure N.
5.3 Definition We call the structure N = (N, {0},PR,PF) the standard structure
of elementary arithmetic.

Observe that although we do not have a constant for every natural number there is a
name for every n ∈ N. To obtain a name n for n > 0 we just apply the successor
function n-fold to 0. We call these names numerals.

5.4 Exercise Show that the primitive–recursive functions are closed under definition
by primitive recursive case distinctions. �

5.5 Exercise Show that the primitive–recursive relations are closed under all Boolean
operations, bounded quantification and substitutions with primitive–recursive func-
tions. �

5.6 Exercise Show that for any primitive–recursive function f the bounded search
function µ ≤ k. (f(x, y1, . . . , yn) = 0), defined by

µx ≤ k. (f(x, y1, . . . , yn) = 0) =

{
min {z ≤ k f(z, y1, . . . , yn) = 0} if this exists
k otherwise,

is primitive–recursive. �

5.7 Exercise Verify the open facts in Figure 2

5.8 Exercise Let ωCK1 be the first ordinal which is not the order–type of a primitive–
recursive order–relation on the natural number.

Sketch a proof of πN = ωCK1 . �

6 The axiom system NT

6.1 Peano arithmetic
The signature for the language of Peano arithmetic is P := ({0, 1}, {=, 6=}, {+, ·}).
Then N clearly interprets L (P). The non–logical axioms of Peano arithmetic com-
prise the succesor axioms

(∀x)[x+ 1 6= 0] and (∀x)(∀y)[x+ 1 = y + 1→ x = y],

15

Function/Relation Name Definition

sg(n) signum of n (case distinction) sg(0) = 0, sg(S(x)) = 1

sg(n) antisignum of n (case distinction) sg(0) = 1, sg(S(x)) = 0

a+ n addition a+ 0 = a, a+ S(n) = S(a+ n)

a · n multiplication a · 0 = 0, a · (Sn) = (a+ n) + a

a! a faculty 0! = 1, (Sa)! = a! · a

an exponentiation a0 = 1, aS(n) = an · a

Pd(n) predecessor Pd(0) = 0, Pd(S(x)) = x

a−· x arithmetical difference a−· 0 = 0, a−· S(x) = Pd(a−· x)

|a− x| absolute value (a−· x) + (x−· a)

I := {(x, x) x ∈ ω} identity χI = sg(|x− y|)

x ≤ y, x < y less than (or equal to) (∃z < y)[x+ z = y], x ≤ y ∧ x 6= y

max{a, b} maximum max{a, b} =
{
a if b ≤ a
b otherwise

x/y x divides y (∃z < S(y))[x · z = y]

Prime(x) x is a prime number x 6= 0 ∧ (∀z < S(x))[z = 1 ∨ z = x ∨ ¬(z/x)]

pn(n) Enumeration of the primes pn(n) =
{
2 if n = 0
µx < pn(n)! + 2. [Prime(x) ∧ pn(n) < x] if n > 0

〈x0, . . . , xn〉 Coded tuple =

{
0 for n = −1 (empty sequence)∏n

i=0[pn(i)S(xi)] for n ≥ 0

lh(x) length of the tuple coded by x lh(〈x0, . . . , xn〉) = n+ 1

(a)i decoding function (〈x0, . . . , xn〉)i = xi for 0 ≤ i ≤ n

Seq(s) s codes a sequence s = 0 ∨ (∀i < S(s))[¬(pn(S(i))/s) ∨ pn(i)/s]

a belongs to a finite set a ∈ {a1, . . . , an} a = a1 ∨ · · · ∨ a = an

Figure 2: Some primitive–recursive functions and relations

16

the defining equations

(∀x)[x+ 0 = x] and (∀x)(∀y)[(x+ (y + 1) = (x+ y) + 1)]

for addition and

(∀x)[x · 1 = x] and (∀x)(∀y)[(x · (y + 1)) = x · y + x]

for multiplication and the scheme

F (0) ∧ (∀x)[F (x)→ F (x+ 1)]→ (∀x)F (x)

of mathematical induction where F is an arbitrary L (P)–formula.
We will, however, give the ordinal analysis for an axiom system NT which com-

prises symbols for all primitive–recursive functions and –predicates and thus is more
expressive than Peano arithmetic. It can, however, be shown that NT is an extension
by definitions of Peano arithmetic. This is not completely trivial and rests on the fact
that Peano arithmetic proves the existence of a coding machinery. The key to such
a machinery is Gödel’s β–function whose definition bases on the Chinese remainder
theorem.

6.2 Pure logic
To fix the logical framework we introduce a Hilbert style formal system for first order
predicate logic. We presuppose familiarity with the language of first order predicate
logic with identity where we allow free second order variables in the language. Since
we aim at the language of arithmetic we restrict ourselves to unary predicate variables
and talk about set variables.

6.1 Definition The Boolean atoms of a first order formula F are the subformulae of F
which are either atomic or the outmost logic symbol of which is a quantifier.

A Boolean valuation for a first order formula F is the assignment of a truth value
to every Boolean atom of F .

The truth value of a first order formula under a Boolean valuation is computed
according to the familiar rules for the Boolean connectives.

A first order formula is Boolean valid if it is true under any Boolean valuation.

6.2 Definition The logical axioms of the Hilbert calculus are:

(BOOLE) All Boolean valid formulae

(∀) All formulae (∀x)F (x)→ F (t) for any term t

(∃) All formulae F (t)→ (∃x)F (x) for any term t

The identity axioms are

(Ref) (∀x)[x = x]

(Sym) (∀x)(∀y)[x = y → y = x]

17

(Tran) (∀x)(∀y)(∀z)[x = y ∧ y = z → x = z].

(Com) (∀x1) . . . (∀xn)(∀y1) . . . (∀yn)[
∧n
i=1xi = yi ∧ F (x1, . . . , xn)→ F (y1, . . . , yn)]

The inference rules are

(mp) A and A→ B ⇒ B.

(∀) A→ F (x) ⇒ A→ (∀x)F (x) where the eigenvariable x must not
occur in A.

(∃) F (x)→ A ⇒ (∃x)F (x)→ A where the eigenvariable x must not
occur in A.

6.3 Theorem a) A formula F is logically valid, i.e., true in any model under any
assignment, iff F .
b) A1, . . . , An |= F iff the formula A1 ∧ · · · ∧ An → F is logically valid.

6.4 Lemma a) For any Boolean valid formula F (x1, . . . , xn) there is a finite ordinal

k such that M
k

0
F (z1, . . . , zn) holds true for any countable structure M for first

order predicate logic and any tuple z1, . . . , zn of of elements of M . �

6.5 Theorem For any logically valid formula F (x1, . . . , xn) whose free individual
variables occur all in the list x1, . . . , xn there are finite ordinals m and r such that
M

m

r F (z1, . . . , zn) holds true for any structure M that interprets first order predi-
cate laogic and any tuple z1, . . . , zn of elements of M .. �

6.3 The axioms of arithmetic
6.6 Definition The non–logical axioms of NT comprise

(MATHAX) All true atomic L (N)–sentences

(MATHIND) The scheme F (0) ∧ (∀x)[F (x)→ F (S(x))] → (∀x)F (x) of math-
ematical induction, where F (z) is any L (N)–formula.

6.7 Theorem We have NT F for any L (N)–formula F iff there there are finitely
many axioms A1, . . . , An of NT such that A1 ∧ · · · ∧ An → F is logically valid.

7 The upper bound

7.1 Embedding of NT

7.1 Lemma For every natural number n and L (N)–formula F (x) we have

N
2(rnk(F)+n)

0
¬F (0),¬(∀x)[F (x)→ F (S(x))], F (n) .

�

18

7.2 Theorem (Induction Theorem) We have

N
ω+3

0
F (0) ∧ (∀x)[F (x)→ F (S(x))] → (∀x)F (x) .

7.3 Theorem (Embedding Theorem) LetF (x1, . . . , xn) be a first order formula whose
free individual variables occur all in the list x1, . . . , xn. Then NT F (x1, . . . , xn)

implies that there is a finite ordinal r such that N
ω+ω

r F (z1, . . . , zn) holds true for
every tuple z1, . . . , zn of natural numbers. �

7.2 Cut elimination
7.4 Lemma (Reduction Lemma) Assume N

α

ρ ∆ ∪ {F} and N
β

ρ Γ ∪ {¬F} and rnk(F) =

ρ for F ∈
∧

–type or F /∈
∧

–type ∪
∨

–type . Then we obtain N
α+β

ρ ∆ ∪ Γ . �

7.5 Theorem (Elimination Theorem) N
α

ρ+1
∆ implies N

ωα

ρ ∆ . �

7.3 The upper bound
7.6 Theorem If NT F for F ∈ L (N) then tc(F) < ε0. �

7.7 Corollary We have πN(NT) ≤ ε0, hence also |NT| ≤ 2ε0 = ε0.

7.8 Corollary The theory NT is consistent.

8 The lower bound

8.1 Ordinal notations
8.1 Theorem For every ordinal α less than ε0 there are ordinals α1, . . . , αn such that
α = ωα1 + · · ·+ ωαn and α > α1 ≥ α2 ≥ · · · ≥ αn.

8.2 Corollary There is is notation system α such that for every α < ε0 the nu-
meral α denotes the ordinal α. The set On = { α α < ε0} and the relation
α ≺ β :⇔ α < β are primitive–recursive.

8.2 The well–ordering proof
In the sequel we identify ordinals α and their notations. We denote members of On by
lower case Greek letters and write α < β instead of α ≺ β.

We use the following abbreviations:

α ⊆ β :⇔ (∀ξ)[ξ < α→ ξ < β] (which unabbreviated is)
⇔ α ∈ On ∧ β ∈ On ∧ (∀ξ ∈On)[ξ ≺ α→ ξ ≺ β]

Prog(X) :⇔ Prog(X,≺)

⇔ (∀ξ)[ξ ⊆ X → ξ ∈ X]

19

α ⊆ X :⇔ (∀ξ)[ξ < α→ ξ ∈ X]

α ∈ J (X) :⇔ (∀ξ)[ξ ⊆ X → ξ + ωα ⊆ X].

TI (α) :⇔ Prog(X)→ α ⊆ X.

The formula TI (α) then expresses transfinite induction up to α.

8.3 Lemma NT Prog(X)→ Prog(J (X)). �

8.4 Lemma NT TI (α) entails NT TI (ωα). �

8.5 Theorem For any ordinal α < ε0 there is a primitive–recursively definable well–
ordering ≺ of order–type α such that NT WO(≺). �

So we have ε0 ≤ |NT| ≤ 2π
N(NT) ≤ 2ε0 = ε0 which yield the next theorem.

8.6 Theorem |NT| = πN(NT) = ε0. �

8.7 Theorem There is am L (N)–sentence (∀x)F (x,X) such that N |= (∀X)(∀x)F (x,X),
NT F (n,X) for any natural number n but NT6 (∀x)F (x,X). �

Part I

Selected proofs and solutions
Section 3

1 Proof of Lemma 3.21.

We show by induction on β that for α < β there is an ordinal ξ such that α + ξ = β.
If β is a successor γ′ then α ≤ γ. If α = γ we choose ξ := 0′. If α < γ there
is by induction hypothesis a ξ0 such that γ = α + ξ0, hence β = α + ξ′0. If β is a
limit ordinal then we get for every η < β an ordinal ξη such that η = α + ξη . Hence
β = supη<β(α+ ξη) = α+ ξ for ξ = supη<β ξη . �

2 Proof of Lemma 3.22.

It follows by induction on α that ξ, η < ωα imply ξ + η < ωα. This is obvious for
α = 0. For α = β′ we obtain that ξ, η < ωα = ωβ · ω implies ξ < ωβ · n and
η < ωβ · m, hence ξ + η < ωβ · (n + m) < ωβ · ω = ωα. For α ∈ Lim the claim
follows from the induction hypothesis.

Conversely we observe that between ωα and ωα+1 all ordinals are additively de-
composable. For if ωα < ξ < ωα · ω there is an n < ω such that ωα · n ≤ ξ < ωα ·
(n+ 1). Hence ξ = ωα · n+ η for η < ωα < ξ. �

20

3 Proof of Lemma 3.24

Since α < ε0 implies ωα < ε0 we get ω(n)(ξ) < ε0 for ξ < ε0 by induction on n. For
η := sup {ω(n)(0) n ∈ ω}we thus have η ≤ ε0 and get ωη = sup {ωω

(n)(0) n ∈ ω} =

sup {ω(n+1)(0) n ∈ ω} = η. Hence ε0 ≤ η. �

4 Solution to Exercise 3.27

Since α ∈ Lim we have α ≤ ξ + α = sup {ξ + η η < α} ≤ α. �

5 Solution to Exercise 3.28

Induction on α. The claim is clear for additively indecomposable ordinals α. If α is
additively decomposable then α = ξ + η for ξ, η < α. By induction hypothesis we get
ξ =NF ξ1 + · · · + ξm and η =NF η1 + · · · + ηm. Hence α = ξ1 + · · · + ξm + η1 +
· · ·+ ηn =NF ξ1 + · · ·+ ξk + η1 + · · ·+ ηn by Exercise 3.27 for k the index such that
ξk ≥ η1 and ξk+1 < η1. �

Section 4

6 Proof of Theorem 4.10

By a straightforward induction on α we get that M
α

0
∆ implies M |=

∨
∆[Φ] for any

assignment Φ(X) ⊆M . So soundness is straightforward. �

7 Proof of Theorem 4.11 More difficult is completeness. Since there are no free indi-
vidual variables in L (M)–formulae every closed term t has a value tM =: z ∈ M .
Since M |= tM = z we may w.l.o.g. replace all terms t by the constant z for their
value.

Let ∆ be a finite sequence of L (M)–sentences. The set ∆ is reducible if it contains
a sentence in

∧
–type∪

∨
–type . The first sentence in ∆ which is in

∧
–type∪

∨
–type

is its redex R(∆). The reduct ∆r of a reducible ∆ is obtained by cancelling its redex.
We define the search tree S∆ together with a label–function δ that assigns a finite
sequence of sentences to the nodes of S∆.3

3 Observe that for the structure N the search tree S∆ is primitive–recursively defined.

21

(〈 〉) 〈 〉 ∈ S∆ and δ(〈 〉) = ∆.

Now let s ∈ S∆ and assume that δ(s) is not an instance of an X–rule.

(Irr) If δ(s) is irreducible then s_〈0〉 ∈ S∆ and δ(s_〈0〉) = δ(s).

(
∧

) If F :≡ R(δ(s)) ∈
∧

–type and CS(F) =
〈
Fi i ∈ I

〉
then s_〈i〉 ∈ S∆ and

δ(s_〈i〉) = δ(s)r, Fi.

(
∨

) If F :≡ R(δ(s)) ∈
∨

–type then s_〈0〉 ∈ S∆ and δ(s_〈0〉) = δ(s)r, G, F
where G is the first sentence in CS(F) which is not

⋃
s0⊆s δ(s0) if such a sen-

tence exists. Otherwise put δ(s_〈0〉) = δ(s)r, F .

By an easy induction on the order–type |s| in a well–founded tree S∆ we immedi-
ately get:

If S∆ is well–founded then we have
|s|
0
δ(s) for any node s ∈ S∆. (i)

If S∆ is not well–founded it contains an infinite path f . Let

δ(f) :=
⋃
n∈ω

δ(〈f(0), . . . , f(n)〉).

We define an assignment Φ(X) := {z (z /∈ X) ∈ δ(f)} and prove

M 6|= G[Φ] for all G ∈ δ(f). (ii)

by induction on rnk(G).
If G ≡ (z ∈ X) then z /∈ X cannot belong to δ(f) since f is infinite. Hence

z /∈ Φ(X). If G ≡ (z /∈ X) then z ∈ Φ(X).
If G ≡ R(z1, . . . , zk) then there is a node s = 〈f(0), . . . , f(m − 1)〉 =: f(m)

such that R(δ(s)) = G. Then G ∈
∧

–type implies that s is a leave which contradicts
the infinity of f . Hence G ∈

∨
–type which implies M 6|= G.

For non–atomic G ∈
∧

–type we have CS(G) 6= ∅. Therefore there is a H ∈
CS(F) ∩ δ(f) and M 6|= H[Φ] follows by induction hypothesis. Hence M 6|= G[Φ].

If G ∈
∨

–type then, since f is infinite, we get H ∈ δ(f) for all H ∈ CS(G).
Hence M 6|= H[Φ] for all H ∈ CS(G) which entails M 6|= G[Φ].

If we assume6 α
0
F (X) for all α < ω1 we obtain by (i) that SF (x) cannot be well–

founded. So there is by (ii) an assignment Φ such that M 6|= F (X)[Φ] which implies
M 6|= (∀X)F (X).

8 Proof of Lemma 4.18

We prove by induction on α:

M
α

0
¬Prog(X,≺), n1 /∈ X, . . . , nk /∈ X,∆ ⇒M |=

∨
∆[≺�β] (i)

for a finite set ∆ of X–positive formulae where ≺�β = {n otyp≺(x) < β} for β =
max{otyp≺(n1), . . . , otyp≺(nk)}+ 2α.

22

If the last inference in (i) affects ∆. we get the claim from the induction hypothesis,
the semantical correctness of the inference rules and the monotonicity of X–positive
sentences.

If the last inference affects

¬Prog(X,≺) ≡ (∃x)[(∀y)[y ≺ x→ y ∈ X] ∧ x /∈ X]

we have the premise

M
α0

0
¬Prog(X,≺), (∀y)[y ≺ z → y ∈ X] ∧ z /∈ X,n1 /∈ X, . . . , nk /∈ X,∆ (ii)

for some constant z and some ordinal α0 < α. By ∧–inversion we thus have

M
α0

0
¬Prog(X,≺), (∀y)[y ≺ z → y ∈ X], n1 /∈ X, . . . , nk /∈ X,∆ (iii)

and

M
α0

0
¬Prog(X,≺), z /∈ X,n1 /∈ X, . . . , nk /∈ X,∆ . (iv)

Towards a contradiction assume

M 6|=
∨

∆[≺�β].

Then we also have M 6|=
∨

∆[≺�β0] for β0 := max{otyp≺(n1), . . . , otyp≺(nk)} +
2α0 . The induction hypothesis for (iii) then yields (∀y)[y ≺ z → otyp≺(y) < β0].
i. e., otyp≺(z) ≤ β0. By induction hypothesis for (iv) we thus get M |=

∨
∆[≺�β1]

for

β1 = max{otyp≺(z), otyp≺(n1), . . . , otyp≺(nk)}+ 2α0

≤ max{otyp≺(n1), . . . , otyp≺(nk)}+ 2α0 + 2α0

= max{otyp≺(n1). . . . , otyp≺(nk)}+ 2α0+1

≤ max{otyp≺(n1), . . . , otyp≺(nk)}+ 2α.

Contradiction. Setting k = 0 and ∆ = {(∀x)[x ∈ X]} in (i) we obtain the theorem.
�

9 Proof of Theorem 4.22

From T ′ Wf(≺, X) we get T A → Wf(≺, X), Since this an L (M)–sentence
there is an ordinal α less than πM(T) such that M

α

0
{¬A ∨ Wf(≺, X)} which entails

M
α

0
{¬A,¬(∀x)[(∀y)[y ≺ x→ y ∈ X], (∀x)[x ∈ field(≺)→ x ∈ X]]}

By Lemma 4.18 we thus get M |= ¬A ∨ (∀x)[x ∈ field(≺)→ x < α]. Since M |= A

this entails otyp(≺) ≤ 2α < 2π
M(T) = πM(T). Hence |T | ≤ |T ′| ≤ πM(T) = |T |.

�

23

Section 5

10 Solution to Exercise 5.4

If

f(x1, . . . , xn) =

g1(x1, . . . , xn) if R1(x1, . . . , xn)
...
gn(x1, . . . , xn) if Rn(x1, . . . , xn)
h(x1, . . . , xn) otherwise

for pairwise disjoint primitive–recursive predicates Ri then put

f(x1, . . . , xn) = (

n∑
i=1

gi(x1, . . . , xn) · χRi(x1, . . . , xn))

+h(x1, . . . , xn) · sg(

n∑
i=1

χRi(x1, . . . , xn)).

11 Solution to Exercise 5.5

It is χ¬A := sg(χA), χ(A ∧ B) = χa · χB and for P (z, ~x) ⇔ (∀x≤ z)R(x, ~x) we
have χP (z, ~x) =

∏z
i=0 χR(i, ~x), where

∏0
i=0 f(i, ~x) = f(0, ~x) and

∏S(n)
i=0 f(i, ~x) =∏n

i=0 f(i, ~x) · f(S(n), ~x)

12 Solution to Exercise 5.6

Define F (0, y1, . . . , yn) = 0 and

F (S(k), y1, . . . , yn) =

{
F (k, n) if (∃z ≤ k)[f(z, y1, . . . , yn) = 0]
S(k) otherwise

and check that F (k, y1, . . . , yn) = µz ≤ k.(f(z, y1, . . . , yn) = 0).

13 Sketch of Exercise 5.8

N |= F for an L (N)–sentence F entails that the search tree for F is well–founded.

Hence N
|s|
F . Since the search tree is primitive–recursively definable it is |s| <

ωCK1 . So πN ≤ ωCK1 . For α < ωCK1 there is primitive–recursive well–ordering ≺
such that otyp(≺) = α. We then have N

β
Wf(≺, X) for some ordinal β < πN.

Hence N
β

0
{¬(∀x)[(∀y)[y ≺ x→ y ∈ X]→ x ∈ X], (∀x∈ field(≺))[x ∈ X]} . By

the Boundedness Theorem (Theorem 4.19) we thus get α ≤ 2β < πN. �

24

Section 6

14 Proof of Lemma 6.4

W. l. o. g. we assume that the language of first order logic is in Tait style. For a formula
F we define its Boolean decompositions

∆(F) :=

{
∆(A) ∪∆(B) if F ≡ A ∨ B
{F} otherwise

and its Boolean degree

Bdeg(F) :=
{

max{Bdeg(A),Bdeg(B)}+ 1 if F ≡ A ∧ B
0 otherwise.

For a finite set ∆ of formulae we define Bdeg(∆) as the sum of the Boolean degrees of
the formulae in ∆.
We observe:

• A formula F is Boolean valid iff
∨

∆(F) is Boolean valid.

• If Bdeg(F) = 0 and F is Boolean valid then ∆(F) = ∆0, A,¬A for a Boolean
atom A.

• If Bdeg(F) > 0 then ∆(F) = ∆0, A ∧ B for some formulae A and B. F is
Boolean valid iff

∨
(∆0, A) and

∨
(∆0, B) are Boolean valid.

The claim now follows from Lemma 4.9 by induction on Bdeg(∆(F)). �

15 Proof of Theorem 6.5.

We prove the theorem by induction on the length of a derivation in the Hilbert calculus.
IfF (x1, . . . , xn) is Boolean valid so isF (z1, . . . , zn) and we obtain

α

0
F (z1, . . . , zn)

by Lemma 6.4.
For a term t let t0 := tx1,...,xn(z1, . . . , zn) and z := tM0 . LetF ≡ (∀x)G(x1, . . . , xn, x)

andG0 :≡ Gx1,...,xn(z1, . . . , zn, x). By Lemma 4.9 we have M
α

0
¬G0(z), G0(z) for

α = 2 · rnk(F) < ω. Since M |= z = t0. this implies M
α

0
¬G0(z), G0(t0) which

by an inference (
∨

) entails M
α+2

0
¬(∀x)G0(x) ∨ G0(t0) .

Symmetrically we obtain
M

α+2

0
¬G0(t0) ∨ (∃x)G0(x) .

Since z = z is true atomic we obtain
0

0
z = z for all z ∈M hence M

1

0
(∀x)[x = x]

by (
∧

) with empty premise.
Similarly we obtain

0

0
s 6= t, t = s for all elements s, t ∈M by an inference (

∧
)

with empty premises. Hence

M
4

0
(∀x)(∀y)[x 6= y ∨ y = x]

25

by two (
∨

) and two inferences (
∧

).
Similarly we have

0

0
r 6= s, r 6= t, s = t by (

∧
) and obtain

7

0
(∀x)(∀y)(∀z)[x 6= y ∨ y 6= z ∨ x = z] by four (

∨
)– and three (

∧
)–inferences.

An easy induction on rnk(F (x)) shows
2·rnk(F)

0
s 6= t,¬F (s), F (t) . By iteration

we obtain the translation of (Com).
The embedding of the inference rules follows directly from the induction hypothe-

ses and the variable conditions in the (∀)– and (∃)–rules. �

16 Proof of Lemma 7.1 by induction on n.

Let β := 2 · rnk(F). By Lemma 4.9 we have

N
β

0
¬F (0),¬(∀x)[F (x)→ F (S(x))], F (0) . (i)

By induction hypothesis we have

N
β+2n

0
¬F (0),¬(∀x)[F (x)→ F (S(x))], F (n) (ii)

and by Lemma 4.9

N
β

0
¬F (0),¬(∀x)[F (x)→ F (S(x))],¬F (S(n)), F (S(n)) . (iii)

From (ii) and (iii) we obtain by an inference (
∧

)

N
β+2n+1

0
¬F (0),¬(∀x)[F (x)→ F (S(x))], F (n) ∧ ¬F (S(n)), F (S(n)) (iv)

and finally with an inference (
∨

).

N
β+2(n+1)

0
¬F (0),¬(∀x)[F (x)→ F (S(x))], F (S(n)) . �

17 Proof of Theorem 7.3.

If NT F (x1, . . . , xn) there are finitely many axioms A1, . . . , Am in NT such that
A1 ∧ · · · ∧ Am → F (x1, . . . , xn). By Theorem 6.5 we therefore find finite ordi-

nals α and ρ such that N
α

ρ {¬A1, . . . ,¬Am, F (z1, . . . , zn)} for any tuple z1, . . . , zn

of natural numbers. By Exercise 4.24 a) we obtain N
αi

0
{Ai} for αi = rnk(Ai) < ω

for every axiom in NT which is not an instance of the scheme of Mathematical In-
duction. For every instance Aj of Mathematical Induction we obtain N

ω+3

0
{Aj} by

Theorem 7.2. Since all the formulae in L (N) have finite rank we obtain the claim by
a series of cut. �

26

Section 7

18 Proof of Lemma 7.4

We induct on β.
If ¬F is not the main–formula of the last inference leading to N

β

ρ Γ ∪ {¬F}
then we either have N

α

ρ Γ —and obtain the claim trivially—or we have premise(s)

N
βι

ρ Γι ∪ {¬F} for βι < β and obtain by induction hypothesis

N
α+βι

ρ ∆ ∪ Γι .

This entails N
α+β

ρ ∆ ∪ Γ by the same inference.
So assume that ¬F is the main–formula of the last inference. If ρ = rnk(F) = 0

then F /∈ L1(N) since ¬F ∈
∨

–type and only atomic L1(N)–sentences in
∧

–type
are allowed as main–formulae of inferences. Therefore ¬F is a formula t ∈ X or
t /∈ X . W.l.o.g. we assume the former. Since F is the main–formula there is a formula
s /∈ X in Γ such that N |= s = t. We therefore have N

0

0
Γ ∪ {t ∈ X} . We now show

by induction on α

N
α

0
∆ ∪ Γ . (i)

If N
α

0
∆ ∪ {t /∈ X} holds according to the (X)–rule, then there is formula r ∈ X in

∆ such that N |= r = t. Hence N |= r = s and we obtain N
0

0
∆ ∪ Γ by an (X)–

rule. Otherwise we have the premises N
αι

0
∆ι ∪ {t /∈ X} and obtain N

αι

0
∆ι ∪ Γ

by induction hypothesis and finally N
α

0
∆ ∪ Γ by the same inference.

So assume ρ > 0. Since ¬F ∈
∨

–type the last inference has the form
β0

ρ Γ,¬F,¬G ⇒ β

ρ Γ,¬F (ii)

for some G ∈ CS(F) and β0 < β. Hence
α+β0

ρ ∆,Γ,¬G by induction hypothesis.

By (
∧

)–inversion and the structural rule (Str) we get
α

ρ ∆,Γ, G from the first premise

and, since rnk(G) < rnk(F) = ρ, obtain
α

ρ ∆,Γ by cut. �

19 Proof of Theorem 7.5.

We induct on α. If the last inference is not a cut of rank ρ the claim follows directly
from the induction hypothesis. If it is a cut

N
α0

ρ+1
∆ ∪ {F} , N

α0

ρ+1
∆ ∪ {¬F} ⇒ N

α

ρ+1
∆

with rnk(F) = ρ we obtain by induction hypothesis

N
ωα0

ρ ∆ ∪ {F} , N
ωα0

ρ ∆ ∪ {¬F}

27

and, since ωα0 + ωα0 < ωα, obtain N
ωα

ρ ∆ by the Reduction Lemma . �

20 Proof of Theorem 7.6

If NT F we obtain N
ω+ω

r F for r < ω. By r–fold application of the Elimination
Theorem we thus obtain N

α

0
F for α < ε0. Hence tc(F) < ε0. �

21 Proof of Corollary 8.2

For α < ε0 we define by simultaneous course–of–values recursion.
The codes:

0 = 〈0, 0〉, ωα1 + · · ·+ ωαn := 〈1, α1 , . . . , αn 〉,

The set On:

0 ∈ On

α1 � α2 � · · · � αn ⇒ ωα1 + · · ·+ ωαn ∈ On

The ≺–relation on On .

α 6= 0 ⇒ 0 ≺ α

0 6= α ≺ β ⇔ (∃z < max{lh(α), lh(β)})[0 < z

∧ (∀i < z)[(α)i = (β)i ∧ (α)z ≺ (β)z]]. �

22 Proof of Lemma 8.3

We work in NT. Under the hypotheses

Prog(X) (i)

ξ ⊆ J (X) (ii)

we want to prove ξ ∈ J (X), i.e.

(∀η)[η ⊆ X → η + ωξ ⊆ X]. (iii)

So let

η ⊆ X (iv)

ν < η + ωξ. (v)

If ν ≤ η we get ν ∈ X by (iv) and (i). So assume

η < ν < η + ωξ.

28

Then ξ 6= 0 and we get

η < ν = η + ων1 + · · ·+ ωνn < η + ωξ (vi)

with νi < ξ. Since η ∈ X by (iv) and (i) and ν1 < ξ ⊆ J (X) we get η + ων1 ∈ X
by (ii). By induction on n (which is a formal induction on lh(ν) in NT!) we finally
obtain ν ∈ X . �

23 Proof of Lemma 8.4

We work in NT. Assume Prog(X) → α ⊆ X . Substituting J (X) for X entails
Prog(J (X)) → α ⊆ J (X), hence Prog(J (X)) → ωα ⊆ X . Together with
Lemma 8.3 we thus get Prog(X)→ ωα ⊆ X . �

24 Proof of Theorem 8.5.

For α < ε0 there is a finite n such that α < ω(n)(0). We trivially have TI (0) and
obtain TI (ω(n)(0)), hence also TI (α) by n–fold application of Lemma 8.4. (This
time it is an induction from outside). �

25 Proof of Theorem 8.7

We have N |= (∀X)(∀x)[Prog(X) ∧ x ∈ On → x ∈ X] and NT Prog(X) ∧ n ∈
On → n ∈ X by (the proof of) Theorem 8.5. But NT (∀x)[Prog(X) ∧ x ∈ On →
x ∈ X] would imply otyp(≺) < ε0 by Theorem 7.6 while otyp(≺) = ε0 holds true
by the construction of the relation ≺. Contradiction! �

These handouts will be continued during the Sommer–school.

29

	Preface
	A brief reminder
	Abstract structures and logical inferences
	Formal derivations
	Why ordinal analysis?

	Ordinals
	Ordinals as equivalence classes
	Set theoretical ordinals
	Basics of ordinal arithmetic

	The verification calculus for countable structures
	The standard model of arithmetic
	Primitive recursive functions
	The standard structure N.

	The axiom system NT
	Peano arithmetic
	Pure logic
	The axioms of arithmetic

	The upper bound
	Embedding of NT
	Cut elimination
	The upper bound

	The lower bound
	Ordinal notations
	The well–ordering proof

	I Selected proofs and solutions

