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Idea of Splitting



Cut Elimination via Splitting

I Atomic cut and locality in rules are key-features not available in
sequent calculus, in general;

I Atomicity and deep inference are key elements that allow to
re-unite branches of the sequent proof-tree (and this was used
already in the propositional proof);

I Splitting theorems are common to several different logics and work
under the same intuition: method proper of deep inference (for
example [12, 14, 19, 1, 4])

I Extends to first order classical logic (differently from previously
shown proof).

I Avoiding variable capture requires careful attention in splitting,
influencing the design of rules for quantifiers.

We will see the proof of splitting in detail, based on Brünnler’s [3] and
already anticipated by Guglielmi.



The Proof System KSgr
Structures (a positive/negative atom)
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that they allow to observe the symmetry between cut and identity axiom
and that they allow to decompose inference rules like cut and contraction
into more primitive rules [8, 5]. A less desirable feature is that proving
cut elimination becomes a significant challenge due to the loss of the main
connective, which plays a crucial role in the sequent calculus. And that is
the problem that I address in the present work.

The plan of the paper is as follows: I first introduce a deep inference
system for predicate logic, then give a cut elimination procedure for that
system and then derive Herbrand’s Theorem as a result.

2. Basic Definitions

Definition 2.1. Variables are denoted by x and y and terms are denoted
by ø , possibly subscripted. A finite sequence of terms such as ø1, . . . , øn is
denoted by ~ø . Let p be a predicate symbol of arity n. Expressions of the
form p(~ø) and their negations p(~ø) are atoms. Atoms are denoted by a, b, c
and so on. Formulas are generated by

S ::= f | t | a | [ S, S ] | (S, S ) | 9xS | 8xS ,

where f and t are the units false and true, [S1, S2 ] is a disjunction and
(S1, S2) is a conjunction. Note that units are not atoms. Formulas are
denoted by S, P , Q, R, T , U and V . A formula context, denoted by S{ },
is a formula in the language extended by the symbol { }, the empty context
or hole, with exactly one occurrence of the hole. S{R} denotes the formula
obtained by filling the hole in S{ } with R. We drop the curly braces
when they are redundant: for example, S [R, T ] is short for S{[R, T ]}. A
propositional context is a context in which the hole is not in the scope of a
quantifier.

The sequent calculus has two types of objects to deduce over, namely
formulas and sequents. The inference systems that we will see will have just
one type of objects, namely formulas. Since formulas have to play the role
of sequents it turns out that the chosen outfix notation for connectives is
more convenient than the standard infix notation.

Definition 2.2. We define S̄, the negation of the formula S, as follows:

f = t [R, T ] = (R̄, T̄ ) 9xR = 8xR̄
t = f (R, T ) = [R̄, T̄ ] 8xR = 9xR̄ p(~ø) = p(~ø) .

Syntactic equivalence: AC for ∧/∨, renaming of bound variables (to
avoid variable capture), De Morgan and units extended to quantifiers:
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Definition 2.3. An inference rule is written

S{R}
Ω
S{T}

,

where Ω is the name of the rule, S{R} is its premise and S{T} is its conclu-
sion. R and T are formulas that may contain schematic formulas, schematic
atoms and schematic contexts. An instance of an inference rule is obtained
by replacing all schematic formulas, schematic atoms and schematic contexts
by formulas, atoms and contexts, respectively. In an instance of an inference
rule the formula taking the place of R is its redex, the formula taking the
place of T is its contractum and the context taking the place of S{ } is its
context. A (deductive) system S is a set of inference rules.

An inference rule is best thought of as a rewrite rule known from term
rewriting. For example, the rule Ω from the previous definition seen top-down
corresponds to a rewrite rule R ! T .

Since formulas will have to play the role of sequents it will be convenient
to equip them with an equivalence that is usually implicit in the notion of
sequent:

Definition 2.4. The syntactic equivalence relation is the smallest congru-
ence relation on formulas induced by commutativity and associativity of
conjunction and disjunction, the capture-avoiding renaming of bound vari-
ables as well as the following equations:

[R, f ] = R [t, t] = t 9xf = f = 8xf
(R, t) = R (f, f) = f 8xt = t = 9xt .

Definition 2.5. A derivation ¢ in a certain deductive system is either a
pair of syntactically equivalent formulas or a finite nonempty sequence of
instances of inference rules in the system, where inference rules are applied
modulo the syntactic equivalence. They are written respectively as follows:

R
=

T
and

R
º
U

º0
...

Ω0
V

Ω
T

.

The topmost formula in a derivation is called the premise of the derivation,
and the formula at the bottom is called its conclusion. The length of the

KSgr extends KSg with instantiation n↓ and retraction r↓ (instead of u↓):
P{ } is a propositional context, so x does not occur therein
n↓ substitution is capture-avoiding
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rule. To maintain the same naming conventions with previous papers, the
system name should also contain a q for quantifiers, but since the presence
of the retract rule only makes sense in the presence of quantifiers, we drop
the letter q.

Definition 2.10. The dual of an inference rule is obtained by exchanging
premise and conclusion and replacing each connective by its De Morgan
dual. A system of inference rules is called symmetric if for each of its rules
it also contains the dual rule. The dual of a derivation is obtained by turning
it upside-down, replacing each atom by its negation and by replacing each
connective by its de Morgan dual and each rule name by the name of its
dual.

Example 2.11. The identity rule and its dual:

S{t}
i#

S [R, R̄]

S(R, R̄)
i"

S{f}
.

The duality between the two is well-known under the name contrapositive.

System SKSgr is the symmetric closure of KSgr, i.e. it contains each rule
from KSgr and the dual of each rule in KSgr. The collection of rules with an
up-arrow are called up-fragment, their names are the names of their duals
su±xed by “-up”. The rule i" is also called cut. Note that a symmetric
system that contains the identity rule by definition contains the cut rule as
well, so in general we can read “symmetric” as “contains cut”. The notion
of cut admissibility in deep inference is the admissibility of up-rules: in our
case the admissibility of the rules i",w", c", r" and n" for system KSgr.

S{t}
i#

S [R, R̄]

S{f}
w#

S{R}
S [R,R]

c#
S{R}

S([R, T ], U)
s

S [(R,U), T ]

S{8xP{R}}
r#

S{P{8xR}}
S{R[x/t]}

n#
S{9xR}

Figure 1. System KSgr

In the sequent calculus, the identity axiom usually can be replaced by
its atomic form without a change of derivability. The same is true for the



The Proof System KSgr - cont’d

I We can safely assume that instances of i↓ and w↓ are atomic (they
are derivable):
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identity rule and the weakening rule in our system, and by duality, also for
their duals. We define the following inference rules, atomic identity and
atomic weakening :

S{t}
ai#

S [a, ā]
and

S{f}
aw#

S{a}

The following proposition will allow us to conveniently assume that in-
stances of the rule i# and w# are atomic:

Proposition 2.12. The rules i# and w# are derivable for {ai#, s, r#, n#}
and {aw#, s}, respectively. Dually, the rules i" and w" are derivable for
{ai", s, r", n"} and {aw", s}, respectively.

Similarly to the sequent calculus, the reduction to atomic form is achieved
by inductively replacing an instance of the rule by instances on smaller
formulas, details are in [5].

Soundness, completeness and cut admissibility for system KSgr can be
obtained by translating back-and-forth between its derivations and deriva-
tions in some one-sided sequent system. A detailed proof for system KSgq
can be found in [5] and can be easily adapted for KSgr:

Theorem 2.13 (Cut Elimination). The rules i", r", w", n" and c" are ad-
missible for system KSgr. Put diÆerently, the systems SKSgr and KSgr are
equivalent.

Notice that they are not strongly equivalent, since the cut rule is clearly
not derivable in KSgr. Our main goal in the next section is now to prove
this theorem again, but this time without resorting to the sequent calculus.

3. Cut Elimination

The cut rule in the sequent calculus serves the purpose of composing proofs
(when seen top-down) and the purpose of splitting proof obligations (when
seen bottom-up). The cut rule in the calculus of structures is diÆerent. Here,
the familiar sequent calculus cut is broken into smaller pieces, as shown in
Figure 2.

Notice that the crux of the sequent calculus cut is isolated in the rule
i": when seen bottom-up it introduces a formula A out of thin air. Notice
also that the deep inference rules can be composed in a more flexible way
than rules in the sequent calculus. For example we know that A and Ā in
the sequent calculus proof will never interact because they are in diÆerent

I KSgr is equivalent to SKSgr;
I an indirect proof of cut-elimination (through sequent calculus)

exists.



Quantifiers and Splitting

Consider this:
8 Kai Brünnler

¶1

` °, A

¶2

` °, Ā
Cut

` °

;

°
(¶1,¶2)

kk
([°, A], [°, Ā])

s2
[°,°, (A, Ā)]

i"
[°,°]

c#
°

Figure 2. Dissecting a cut

branches. This is not true in the proof in the calculus of structures, because
the rule i" does not force a splitting of proof obligations. Also, the rule
i" can introduce the cut formula together with its negation anywhere deep
inside a formula, for example in such a way that an existential quantifier in
the context captures a variable in the cut formula. This also is impossible
in the sequent calculus.

This freedom in applying inference rules in the calculus of structures is
a significant challenge for cut elimination. While a proof in the sequent
calculus decomposes a formula starting from the main connective, a proof in
the calculus of structures is more like a myriad of interacting particles, atoms
and quantified formulas, swimming in a soup of propositional connectives.
During cut elimination, the sequent calculus allows to get into the crucial
situation where on one branch a logical rule applies to the main connective
of the cut formula and on the other branch the corresponding rule applies
to the dual connective of the dual cut formula. Since rules in the calculus
of structures are not restricted to main connectives, Gentzen’s technique of
permuting up the (generalised) cut does not apply. For example, one cannot
permute the cut over the switch rule.

A cut elimination procedure for the propositional fragment SKS of SKSgr
has been presented in [4]. It uses the fact that the cut rule trivially reduces
to atomic form, a standard feature of systems in the calculus of structures, in
order to give an especially simple cut elimination procedure. In particular,
it does not involve an induction on the cut rank. The problem of the greater
freedom in applying inference rules is dealt with by splitting the proof above
the cut into two separate proofs. Once this is done, the procedure is very
similar to normalisation in natural deduction. It works like Tait-style cut
elimination [15]: given a cut in the sequent calculus, as in the picture above,
the left proof ¶1 says that Ā implies ° and the right proof ¶2 says that
A implies °. To obtain a proof of ` °,° and thus of ° we take ¶1 and

I i↑ does not ’split the requirements’ arising from quantifiers.

I i↑ can introduce a cut-formulae deeply and variables may be
captured by quantifiers in the context;

I Solution – control the ’possibly offensive’ existential quantifiers for
the context, by using bigger cuts.

I Introduce the notions of splittable cut and solid cut rule.



Replacing Cuts with Others (Fit for Purpose)

Up-rules may be derived using ’bigger cuts’ with the variant si↑
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replace A by ° everywhere inside it. This process of replacement will break
the proof at certain places, but wherever that happens we can fix the proof
by plugging in ¶2. In Taits procedure, which works in the sequent calculus,
the proof breaks and has to be fixed in several cases, since rules apply to
the cut formula. The procedure in [4] is so simple because there is just one
place where the proof breaks: when the replacement reaches an identity.

The interesting question now is how this procedure for the propositional
system scales to predicate logic. This question is nontrivial, mainly because
existential quantifiers in the context of a cut prevent the splitting of the
proof above into two separate proofs. In a nutshell, the solution we adopt
here is to get rid of such existential quantifiers by trading them for bigger
cuts.

Definition 3.1. A context S{ } is splittable if the hole is not in the scope
of an existential quantifier. A splittable cut, denoted si", is a cut inside
of a splittable context. A cut is called solid if the main connective of its
cut formula is not propositional, i.e. if it is either a quantifier or if the cut
formula is atomic. The quantifier nesting of a formula is defined as follows:

qn(a) = qn(t) = qn(f) = 0
qn(8xR) = qn(9xR) = qn(R) + 1
qn([R, T ]) = qn((R, T )) = max(qn(R), qn(T )) .

Given an instance of the cut rule with cut formula A, we define its cut rank
as qn(A)+1. The cut rank of a derivation is the supremum of the cut ranks
of its cuts. For r ∏ 0 the inference rule sir" is si" with the proviso that its
cut rank is at most r.

This transformation allows us to replace up-rules by splittable cuts:

S{T}
Ω"

S{R}
;

S{T}
=

(S{T}, t)
i#

(S{T}, [S{R}, S̄{R̄}])
s
[S{R}, (S{T}, S̄{R̄})]

Ω#
[S{R}, (S{T}, S̄{T̄})]

si"
S{R}

,

so we have

Lemma 3.2. For each proof

°kk SKSgr

T
there is a proof

°kk KSgr[{si"}

T
.I Splittable cut si↑ is a cut inside a splittable context S{ }, i.e. the

hole is not in the scope of an existential qtf.

I If the cut-formula is a quantifier or an atom, we call the cut solid.
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Sketch of the Cut Elimination Proof

For each proof
−∥∥∥∥∥∥∥KSgr∪{si↑}

T
there exists a proof

−∥∥∥∥∥∥∥KSgr

T
.

1. (Splittable) cuts are replaced by (splittable) solid cuts (induction on
cut rank)
I Solid cuts involve atomic and (existential) quantified formulae;
I Existential cuts are handled first.

The topmost one is transformed by cut-reduction (induction on
maximal cut-rank). This reduces the proof above it to one whose
cut rank is at most 1.

2. Once that all cuts are in atomic form, eliminate atomic cuts.



Replacing Cuts – cont’d

How to enforce the use of solid splittable cuts?

I By ”guarding” the applicability of splittable cuts: unwanted
existentials in the context should not enter the scope of the cut.

I The ”guard” is related to the cut-rank of the
cut-formula/derivation, a measure that counts the nested
quantifiers of the cut-formula(e).

I sir ↑ proviso – cut-rank at most r (r ≥ 0).
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This transformation allows us to inductively replace splittable cuts by
solid splittable cuts:

S(R̄, T̄ , [R, T ])
sir"

S{f}
;

S(R̄, T̄ , [R, T ])
s
S(R̄, [(T̄ , T ), R])

s
S [(T̄ , T ), (R̄, R)]

sir"
S(R̄, R)

sir"
S{f}

,

so we have

Lemma 3.3. The rule sir" is derivable for solid sir" and switch.

Definition 3.4. A rule Ω is length-preserving admissible for a system S if for
every instance of Ω with premise R and conclusion T for all n the existence
of a proof of length n of R in S implies the existence of a proof of length n of
T in S. Cut-rank-preserving admissible is defined in the same way, replacing
length by cut-rank.

3.1. Splitting

During cut elimination in the sequent calculus one has access to two proofs
above the cut such that the cut formula is in the conclusion of one proof
and the dual of the cut formula is in the conclusion of the other proof. In
the calculus of structures, we just have one proof above the cut and its
conclusion contains both, the cut formula and its dual. This subsection is
devoted to gaining access to two proofs as in the sequent calculus.

In a cut-free proof of a formula S(R, T ) rules can apply in many diÆerent
chaotic ways. We now see a lemma, which tells us that for each such proof
there is one in which inference rules apply in a certain orderly fashion. In
fact, it can be split into two proofs, one containing R and one containing T :

°kk
S(R, T )

;
8~x(

°kk
[U,R] ,

°kk
[U, T ] )

s2; c#
8~x[U, (R, T )]

kk
S(R, T )

.

During cut elimination, the splitting lemma will be applied to the proof
above the cut with R being the cut formula and T being the dual cut formula.

(The instance on the left is not solid).
sir ↑ is derivable for s and for solid sir ↑ (i.e. atomic or qtf).



Replacing Cuts – cont’d

Are the new cuts ’safe’ to be used?

1. Up-rules that were admissible with usual cuts, are still admissible in
a system with si ↑ (already seen), but check that

2. the transformation does not interfere with the cut-rank (increase
in cut-rank or length of proof)

For example, in proof Π (below left):
– we can ’pull’ t upwards through all a’s we may meet, and in any place
(context /redex/contractum), this happens in other rules..
– .. apart in interaction (right), where it will vanish:
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This will make available a situation more comparable to the sequent calculus,
where a cut splits the proof.

The splitting lemma presented here is inspired by a similar one used by
Guglielmi for a substructural logic in [8]. However, the proof is very diÆerent.
Guglielmi not only splits the proof, but also the context. In the example
above this means that U is split into two formulas: one that goes into the
proof with R and another that goes into the proof with T . In classical logic
we have contraction at our disposal, which means that instead of having to
split U into two parts, which requires some work, we can simply duplicate
it. Before we state the splitting lemma, we need two more lemmas.

Lemma 3.5. The weakening-up rule w" is cut-rank-preserving admissible for
system KSgr [ {si"}.

Proof. By Proposition 2.12 we it su±ces to prove the lemma for atomic
weakening-up. Consider a proof

°
¶
kk KSgr[{si"}

T{a}
aw"

T{t}
.

Starting with the conclusion of ¶, going up in the proof, in each formula we
replace the atom a, and its copies that are produced by contractions, and
their instances that are produced by instantiations, by the unit t. Replace-
ments inside the context of any rule instance leave this rule instance intact.
Instances of all the rules in KSgr [ {si"} remain intact also in the case that
atom occurrences are replaced by t inside redex and contractum, except for
ai#. We replace them by weakenings:

S{t}
ai#

S [a, ā]
;

S{t}
=

S [t, f ]
aw# .

S [t, ā]

Lemma 3.6. The instantiation-up rule n" is length- and cut-rank-preserving
admissible for system KSgr [ {si"}.

Proof. We proceed by induction on the length of the proof in KSgr [ {si"}.
The base case is easy: if the premise of n" is syntactically equivalent to t
then so is its conclusion. To prove the induction step, consider a proof in
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Technical – permutability details

More elaborate is n↑: case analysis for rule permutability

1. Contractum of n↑ inside the context of ρ: permute rules

2. Contractum of n↑ inside a formula of redex of ρ (s, c ↓, r ↓, n ↓)
3. redex of ρ inside contractum of n ↑



Technical – permutability cont’d

For example, these are cases in situation 2., when ρ is not n↑:



Technical – permutability cont’d
In case 2. when ρ is n↑:

Assume variables are named apart;

1. no var in τ1 occurs bound in R{∀yT} (lilac);

2. no var in τ2 occurs bound in T (green);



Technical – permutability cont’d
In case 2. when ρ is n↑:

Assume variables are named apart;

1. no var in τ1 occurs bound in R{∀yT} (lilac);

2. no var in τ2 occurs bound in T (green);

Hence, the topmost = is sound ([x/τ1] can be distributed), and

τ2[x/τ1] is free for y in T[x/τ1], so n↑ is sound;

τ1 is free for x in R{T[y/τ2]}, making the lowermost = and n↓
both sound.
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Technical – permutability cont’d

In case 3. permutability may require some renaming of bound variables
(for example when ρ is r↓ or n↑).

The only critical case is the overlapping on an universal quantifier:
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KSgr [ {si"} above an instance of n". Let Ω be the inference rule above n".
We do a case analysis on the position of the redex of n" with respect to
the contractum of Ω. If the redex is inside the context of Ω then n" trivially
permutes up and the lemma follows from the induction hypothesis. Consider
the case that it is inside a schematic formula of the contractum of Ω. Then Ω
is one of s, c#, r#, n#. In the case of c# we push up n" to obtain two instances
of n" and apply the induction hypothesis twice. The case of s is trivial and so
is r#, where we possibly have to rename bound variables in order to respect
the proviso of r#. The somewhat tedious case is permuting n" up over n#,
where we have to check the variable conditions in the derivation on the right:

S{R{8yT}[x/ø1 ]}
n#

S{9xR{8yT}}
n"

S{9xR{T [y/ø2 ]}}
;

S{R{8yT}[x/ø1 ]}
=

S{R[x/ø1 ]{8yT [x/ø1 ]}}
n"

S{R[x/ø1 ]{T [x/ø1 ] [y/ø2 [x/ø1 ] ]}}
=

S{R{T [y/ø2 ]}[x/ø1 ]}
n#

S{9xR{T [y/ø2 ]}}

.

We can safely assume that diÆerently bound variables have diÆerent names,
so in particular we have that no variable from ø1 occurs bound in R{8yT}
and that no variable from ø2 occurs bound in T . From that we conclude the
validity of the equalities and the instances of n" and n#: ø2 [x/ø1 ] is free for
y in T [x/ø1 ] and ø1 is free for x in R{T [y/ø2 ]}.

Consider now the case that the contractum of Ω is inside the redex of
n". Then it clearly has to be inside the schematic formula, so n" trivially
permutes up over Ω, except when Ω = r#, when we possibly have to rename a
bound variable, and when Ω = n# when we have to check variable conditions,
but this case is dual to the one that we considered above.

The only remaining case is that the active universal quantifier in the
redex of n" matches an active universal quantifier in the contractum of Ω.
This can only happen when Ω is r# and we apply the following transformation
in order to apply the induction hypothesis:

S{8xP{R}}
r#

S{P{8xR}}
n"

S{P{R[x/ø ]}}
; S{8xP{R}}

n"
S{P{R[x/ø ]}}

.

Lemma 3.7 (Splitting). Let S{ } be a splittable context and let 8~x be the
sequence of all its universal quantifiers that have the hole in their scope.



’Splitting’ the Context

I By permutability, eventually w ↑ and n ↑ can be eliminated, in
presence of splittable cuts, with no impact on the cut rank.

I Hence, we just have to deal with KSgr ∪ {si↑}.
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Then for each proof

°
¶
kk KSgr[{si"}

S(R, T )
there are a formula U and proofs

°kk KSgr[{si"}

[U,R]
and

°kk KSgr[{si"}

[U, T ]
and a derivation

8~xU
kk {r#}

S{f}
such that the cut

ranks of both proofs are smaller than or equal to the cut rank of ¶.

Proof. Let U = S0{f}, where S0{ } is obtained from S{ } by removing all
universal quantifiers that have the hole in their scope. We obtain the proofs
and the derivation as follows:

°kk KSgr[{si"}

S(R, T )
w"

S{R}
n"

S0{R}
s§

[S0{f}, R]

,

°kk KSgr[{si"}

S(R, T )
w"

S{T}
n"

S0{T}
s§

[S0{f}, T ]

,

8~xS0{f}
kk {r#}

S{f}
,

where w" and n" are eliminated by Lemma 3.5 and Lemma 3.6.

3.2. Eliminating Atomic Cuts

The cut elimination procedure we are after will first reduce cuts to atomic
cuts and then eliminate the atomic cuts. However, I present cut reduction
after the elimination of atomic cuts. I find it interesting that quantifiers
behave like atoms and both of them behave diÆerently from propositional
connectives. So the cut reduction for quantified formulas is the same as the
elimination of an atomic cut, with just one additional di±culty: rules can
apply inside the quantified formula, while rules cannot apply inside an atom.
Since elimination of an atomic cut is the simpler case, I present it first.

Lemma 3.8 (Atomic Cut Elimination).

For each proof

°
¶
kk KSgr

T (a, ā)
si"

T{f}
there is a proof

°kk KSgr

T{f}
.

Proof. We apply the splitting lemma to ¶ in order to obtain

°
¶1

kk KSgr

[U, a]
,

°
¶2

kk KSgr

[U, ā]
and

8~xU
¢
kk {r#}

T{f}
.



’Splitting’ the Context

I In the proof, attention goes to ∀ quantifiers, and in handling those
splittable context S{ } whose hole is in the scope of a universal
quantifier

I Some cases are below



Atomic Cut Elimination
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°
¶
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si"
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there is a proof

°kk KSgr
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Proof. We apply the splitting lemma to ¶ in order to obtain

°
¶1

kk KSgr

[U, a]
,

°
¶2

kk KSgr

[U, ā]
and

8~xU
¢
kk {r#}

T{f}
.

Sketch of proof
1. - Apply splitting on Π (Π2 is a proof from a to U), to obtain
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3.2. Eliminating Atomic Cuts

The cut elimination procedure we are after will first reduce cuts to atomic
cuts and then eliminate the atomic cuts. However, I present cut reduction
after the elimination of atomic cuts. I find it interesting that quantifiers
behave like atoms and both of them behave diÆerently from propositional
connectives. So the cut reduction for quantified formulas is the same as the
elimination of an atomic cut, with just one additional di±culty: rules can
apply inside the quantified formula, while rules cannot apply inside an atom.
Since elimination of an atomic cut is the simpler case, I present it first.

Lemma 3.8 (Atomic Cut Elimination).

For each proof

°
¶
kk KSgr

T (a, ā)
si"

T{f}
there is a proof

°kk KSgr

T{f}
.

Proof. We apply the splitting lemma to ¶ in order to obtain

°
¶1

kk KSgr

[U, a]
,

°
¶2

kk KSgr

[U, ā]
and

8~xU
¢
kk {r#}

T{f}
.

2. - Bottom-up in Π1, replace a/U. Renaming in r↓ (n ↓ is absent).
Transform ai↓ (left), combine in final proof (box)
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Note that ¶2 proves that a implies U . We thus replace a inside ¶1 by
U in order to obtain a proof of [U,U ] and thus of U . Starting with the
conclusion, going up in proof ¶1, in each formula we replace the atom a,
and its copies that are produced by contractions, by the formula U .

Replacements inside the context of any rule instance leave the rule in-
stance intact. Instances of the rules s, c# and w# remain intact, also in the
case that atom occurrences are replaced inside the contractum and redex.
The same is true for r#, where we possibly have to rename the universally
bound variable in order not to violate the proviso. No replacement happens
inside the contractum of a n# rule because in ¶1 no copy of a is in the
scope of an existential quantifier. The interesting case is ai#. We replace its
instances by S{¶2}:

S{t}
ai# ;

S [a, ā]

S{t}
S{¶2} kk KSgr

S [U, ā]

.

The result of this process of substituting ¶2 into ¶1 is a proof ¶3, from
which we build °

8~x¶3
kk KSgr

8~x[U,U ]
c#

8~xU
¢
kk {r#}

T{f}

.

3.3. Cut Reduction

Cut reduction is very similar to the elimination of an atomic cut, except that
replacing a compound cut formula of the form 9xR is a bit more involved
than replacing an atom, because inference rules apply inside R. We will
accomplish this replacement by pushing up a special inference rule which
keeps track of these inference rules.

Definition 3.9. An n-context is a formula with n occurences of { }, and
a splittable n-context is an n-context in which no hole is in the scope of an
existential quantifier. Given a proof ¶ of [U,8xR] in KSgr [ {si"} and some
n ∏ 1 we define the inference rule plug¶,n as

S{9xR1} . . . {9xRn}
plug¶,n

S{U} . . . {U}
,



Cut Reduction (Existential Formulae)
Cut formula has form ∃xR – inference rules may be applied inside R.

Generalise the technique to the case of n:

I n-context – a formula with n holes { }
I splittable n-context – no hole is in the scope of an existential

quantifier.

I Given a proof Π of [U ∀xR] in KSgr ∪ {si ↑}, and n ≥ 1, define
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Note that ¶2 proves that a implies U . We thus replace a inside ¶1 by
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S{t}
S{¶2} kk KSgr

S [U, ā]

.

The result of this process of substituting ¶2 into ¶1 is a proof ¶3, from
which we build °

8~x¶3
kk KSgr

8~x[U,U ]
c#

8~xU
¢
kk {r#}

T{f}

.

3.3. Cut Reduction

Cut reduction is very similar to the elimination of an atomic cut, except that
replacing a compound cut formula of the form 9xR is a bit more involved
than replacing an atom, because inference rules apply inside R. We will
accomplish this replacement by pushing up a special inference rule which
keeps track of these inference rules.

Definition 3.9. An n-context is a formula with n occurences of { }, and
a splittable n-context is an n-context in which no hole is in the scope of an
existential quantifier. Given a proof ¶ of [U,8xR] in KSgr [ {si"} and some
n ∏ 1 we define the inference rule plug¶,n as

S{9xR1} . . . {9xRn}
plug¶,n

S{U} . . . {U}
,

where S{ } . . . { } is splittable, and cut-free ∆i from Ri to R̄ exist.

I As in the atomic case, splitting lemma is applied; the parametric
plug rule applied to each existential, in parallel.



Details of Cut Reduction (Existential Formulae)
Statement
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where S{ } . . . { } is a splittable n-context and for all i ∑ n there is a
derivation ¢i in KSgr from Ri to R̄.

Lemma 3.10 (Cut Reduction).

For each proof

°
¶
kk KSgr[{sir"}

T (8xR,9xR̄)
sir+1"

T{f}
there is a proof

°kk KSgr[{sir"}

T{f}
.

Proof. Just like in the case of an atomic cut, we apply the splitting lemma
on ¶ to obtain

°
¶1

kk KSgr[{sir"}

[U,9xR̄]
,

°
¶2

kk KSgr[{sir"}

[U,8xR]
and

8~xU
¢
kk {r#}

T{f}
.

Note that ¶2 proves that 9xR̄ implies U . The idea is thus to replace
9xR̄ inside ¶1 by U in order to obtain a proof of [U,U ] and thus of T{f}.
More formally, we will obtain a proof of T{f} by eliminating plug from

°
8~x¶1

kk KSgr[{sir"}

8~x[U,9xR̄]
plug¶2,1 8~x[U,U ]

c#
8~xU
¢
kk {r#}

T{f}

.

We push plug to the top until it disappears. Pushing it up over the
propositional rules and over r# and si" is easy: they cannot aÆect the active
existential quantifiers in the premise of plug. So either plug trivially permutes
up or, if the rule above applies inside one of the Ri, it is added to ¢i. The
interesting case is n#. We push plug up as follows:

S0{Ri [x/ø ]}
n#

S0{9xRi}
plug¶2,n S{U}

;

S0{Ri [x/ø ]}
plug¶2,n°1

S{Ri [x/ø ]}
S(¢i [x/ø ],¶

0
2)
kk KSgr[{sir"}

S(R̄[x/ø ], [U,R[x/ø ] ])
s
S [U, (R̄[x/ø ], R[x/ø ])]

sir"
S{U}

,

Sketch of proof



Details of Cut Reduction (Existential Formulae)



Herbrand Theorem and Cut Elimination

There are two forms of Herbrand theorem:

I Weak form: F quantifier free.

∃x1..∃xnF valid =⇒ ∃tij : ` F(t1,1, . . . , t1,k1)∨· · ·∨F(tn,1, . . . , tn,kn)

(in particular, we look for a cut-free proof)

I Strong form: A f.o.f A is valid iff it has a Herbrand proof.
A Herbrand proof of A consists of a prenexification A∗ of a strong
∨-expansion

I We focus on the strong form, and compare the situation in the
sequent calculus and in deep inference proof systems.



Herbrand Theorem and Cut Elimination

A is valid iff it has a Herbrand proof. – In sequent calculus:

P

A

1−→ P1

A

2−→ P2

A′

3−→ P3

A∗

; σw

P cut-free; A any formula.

1−→: P1 cut-free.
Limit contraction to propositional and existential formulae only.
(On universal formulae use new free variables to replace the quantifiers).

2−→: P2 cut-free proof of some strong ∨-expansion A′ of A (i.e. saturated of
existential formulae). Remove contraction on existential formulae, replacing
them by ∨R. Propagate the change in the rest of the proof. After this all
contractions are propositional.

3−→: Prenefixication on P2.
P3 is the Herbrand proof and the witness substitution σw can be extracted.
Quantifiers are pulled in the front in the end-sequent and correspondingly
quantifier rules are pushed downwards in the proof.
In P3 instances of ∃R deliver the terms for σw.

1. P1 cut-free, with contraction on propositional and existential
formulae only.

2. P2 cut-free. A′ is strong ∨ expansion of A (i.e. saturated with
∃-formulae). Contraction on ∃-formula is replaced with ∨R, and
the change propagated in the proof. After this step only
contraction on propositions.

3. Prenexification. Pulling quantifiers to the front causes quantifiers
rules to go downwards in the proof. P3 is the Herbrand proof; its
instances of ∃R give the terms for σw .



Herbrand Theorem – cont’d
In deep inference and using the system SKSgr we would need to

1. decompose contraction (atomic, first order case, already seen)
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4. Herbrand’s Theorem

A weak version of Herbrand’s theorem immediately follows from Gentzen’s
Mid-Sequent Theorem which in turn immediately follows from cut elimina-
tion. I will prove the strong version of Herbrand’s theorem cf. [6], which
also can be proved without di±culties by using cut elimination in the se-
quent calculus. I will tune the deductive system a bit in order to present a
factorisation of proofs from which the strong version of Herbrand’s theorem
immediately follows, in the same sense as the weak version follows from the
Mid-sequent factorisation of proofs in the sequent calculus. This is of course
impossible in the sequent calculus, since the restriction of rules to the main
connective does not allow to represent the expansion and prenexification
phase of a Herbrand proof.

In order to prove Herbrand’s theorem one needs to keep track of exis-
tentially quantified formulas that are duplicated. In our setting we do so
by decomposing contraction, i.e. we inductively replace contraction by the
following rules:

S [a, a]
ac#

S{a}
S [(R,U), (T, V )]

m
S([R, T ], [U, V ])

S [9xR,9xR]
qc#

S{9xR}
S [8xR,8xT ]

m2#
S{8x[R, T ]}

,

which are called atomic contraction, medial, contraction-quantified, and me-
dial two, respectively.

Proposition 4.1. The rule c# is derivable for {ac#,m, qc#,m2#}. Each rule
in {ac#,m, qc#,m2#} is derivable for {c#,w#}.

We define system KS as {ai#, aw#, ac#, s,m}. It is easy to check that it is
strongly equivalent to system KSg, i.e. the propositional fragment of KSgr.
For details see [5].

In order to represent the prenexification phase in a Herbrand proof, we
define a generalised retract rule:

S{Q{P{R}}}
gr#

S{P{Q{R}}}
,

where Q{ } is a sequence of quantifiers and P{ } is a propositional context
such that no variable in P{ } is bound by a quantifier inQ{ } in the premise.

2. handle prenexification, and the retract r ↓ rule would need to be
extended
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We define system KS as {ai#, aw#, ac#, s,m}. It is easy to check that it is
strongly equivalent to system KSg, i.e. the propositional fragment of KSgr.
For details see [5].

In order to represent the prenexification phase in a Herbrand proof, we
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gr#
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,

where Q{ } is a sequence of quantifiers and P{ } is a propositional context
such that no variable in P{ } is bound by a quantifier inQ{ } in the premise.

where Q{ } sequence of quantifiers, P{ } propositional context.
No variable in P{ } is bound by a quantifier in Q{ } in the premise.



Herbrand Theorem – cont’d
Each proof in SKSgr has one with the shape on the right, for some
substitution σ, propositional formula P and context Q{ } of quantifiers.
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°kk KS[
n

qc#,m2#,
n#,r#,ai"

o

S

1;

°kk KS[
n

m2#,
n#,r#,ai"

o

S0

kk qc#

S

2;

°kk KS[{n#,ai"}

Q{P}
kk gr#

S0

kk qc#

S

3;

°kk KS[{ai"}

8~xPæ
kk n#

Q{P}
kk gr#

S0

kk qc#

S

Figure 3. The proof of Herbrand’s Theorem

Theorem 4.2 (Herbrand’s Theorem). For each proof of a formula S in
system SKSgr there is a is a substitution æ, a propositional formula P , a
context Q{ } consisting only of quantifiers and a proof given in Figure 3 at
the right.

Proof. Given the proof in SKSgr, we apply Lemma 3.2 and cut elimination
to get a proof in KSgr [ {ai"}. The first phase of the procedure is su±cient
since atomic cuts make no diÆerence for Herbrand’s Theorem. By Proposi-
tion 4.1 we decompose contraction to get a proof in KS[{qc#,m2#, n#, r#, ai"}.
From here, we get the factorisation of the proof that we are after by three
phases that are shown in Figure 3.

Phase 1 We push all instances of qc# down to the bottom of the proof
starting with the bottommost instance, and proceeding by induction on the
number of instances of qc#. To push down one instance of qc# we proceed
by induction on the number of rule instances below.

Consider an instance of qc# together with one rule instance Ω 2 KS [
{m2#, n#, r#, ai"} below it. If the contractum of qc# is inside of a schema of Ω
(i.e. a subformula of the schematic context S{ } or of the schematic formulas
in the redex), then qc# trivially permutes down. Since the contractum of
qc# cannot overlap with the redex of Ω the only remaining case is that the
redex of Ω is inside of the schematic formula in the contractum of qc#. We
apply the following transformation:

S [9xT{R0},9xT{R0}]
qc#

S{9xT{R0}}
Ω
S{9xT{R}}

;
S [9xT{R0},9xT{R0}]

Ω2
S [9xT{R},9xT{R}]

qc#
S{9xT{R}}

.

0. – From the proof in SKSgr obtain the leftmost one, using the
transformations with splittable cuts. Decompose contraction.
1. – Move downwards contractions on quantifiers.
2. – Factorise S′. Construct the prenex normal form Q{P}; its proof
above contains prenex formulae only.
3. – Separate instantiations. The remaining topmost proof is
propositional (atomic cuts only).



Herbrand Theorem – cont’d

However,

I Proof systems could be specifically designed so to better support
our ability to extract Herbrand proofs.

I Ben Ralph proposes two improvements to SKSgr resulting in two
different proof systems: the resulting Herbrand proof has a
different structure.

I The improvements stem from a need to simplify the context
management, and to facilitate technical aspects in dealing with
substitution into the D.I. formalism of open deduction [13, 15].

I We just mention the scope of these (recent) works. A compact
reference is [17], full details in [18]



Herbrand Theorem – cont’d

I System KSh1: ri ↓ rules (B free for x) simulate gr ↓ and make
prenexification easier.

!

I Every proof in KSh1 can be converted to a Herbrand proof.



Herbrand Theorem – cont’d

I System KSh2: h↓ (Herbrand expander) and ∃w ↓ (existential
weakening) further help lifting to the level of the formalism the
handling of substitutions.

I This allows to tighten the relation between open deduction proofs
and expansion proof, providing a normal form of Herbrand proofs.



Herbrand’s Thm - cont’d

To recap:

I Sequent calculus does not allow to represent, in the proof of the
original formula, neither the expansion nor the prenexification: the
reason is that the rules work on the main connective.

I In contrast, in deep inference, these phases can be integrated in the
proof very smoothly.

I Herbrand Theorem and Splitting Theorem for Cut elimination
(scalable to predicate logic), both formulated entirely inside deep
inference, give to the deep inference methodology a proper status.



Some Proposed Activities

References for this part are Kai Brünnler’s [3] and Sam Buss’ [9], adn
Ben Ralph’s [17] (for Herbrand’s Theorems). Be aware that Kai reverses
the use of the wording ’redex and contractum’ of a rule, in that paper!

I One might want to try and complete the study of permutability of
some pair rules, for example n↑ −r↓ or n↑ −n↓ just to familiarize
with the method. Details are on the technical descriptions in this
group of slides.

I In the first batch of slides two sequent proofs (with cut and
cut-free) of ` ∃x.∀y(p(x) ⊃ p(y)) are given. Compare them with
the proofs in deep inference of the corresponding formula in
negation normal form ` ∃x.∀y(p̄(x) ∨ p(y))).
One can then use them as guidance to perform a cut-elimination
with splitting in deep inference, and compare and contrast with the
situation in sequent calculus. The same, again, in relation to
Herbrand theorem.



Analyticity - some Thoughts

Three properties in sequent calculus systems are considered akin

I the subformula property in rules;

I the system is cut-free;

I the system is analytic;

AND analytic proofs reduce non-determinism in proof search (also f.o.)

What would ’analyticity’ in deep inference be alike, where:

I the same connectives compose formulae, as well as derivations /
(rules applied at any depth);

I there is a duality between down- and up-rules, these latter ones
derivable by cut;

I splitting theorem implies cut elimination

I .. just to mention a few.. ?

(A compact reference is [5])



Analyticity - some observations

(Naif) – ”A rule would be analytic, if, given an instance of its conclusion,
the set of possible instances of the premiss is finite”

To the effect that this Finitary cut rule would qualify as (naif)-analytic

I the premiss is finitely generating;

I fai ↑ can replace the general cut, at a polynomial cost in size of
proofs, and

I via transformations that are local (in contrast to unbounded
copying of chunks in the sequent calculus)

BUT reducing non-determinism cannot be so easy, we should rather
exclude fai ↑ – stronger notion



Analyticity - some observations
(finitely generating rule + bounded generation driven by the conclusion)

To the effect that

I fai ↑ would not qualify as analytic;

I all the down fragment would

I .. as well as some rules of the up-fragment: c ↑ (and other linear
rules reshuffling information, in systems for other logics).



Analyticity - some observations
This notion better reflects ’common insights’ from sequent calculi –
Splitting theorems

I are formulated on the down fragment whose rules are ’analytic’;

I imply cut elimination;

I inform proof search (by reducing the proof search space),
addressing non-determinism

c ↑ is an extra asset towards complexity because

I it provides ’dagness’ (sharing);

I it supports the construction of a quasi-polynomial (nO(logn))
cut-elimination procedure for classical logic [8, 7] (related sources:
[16], [2], [11])..

I therefore, KSg ∪ {c ↑} q.p. simulates SKSg.

I KSg (analytic) outperforms analytic sequent calculus on Statman’s
tautologies (exponential speed up). With cut, it poly-simulates
Frege systems. c ↑ is used to show that just a limited depth is
indeed necessary to reach bounded Frege systems [6, 10]



Sketch - Quasi-polynomial Time
Cut-Elimination

This procedure uses Threshold Formulae

I They realise boolean threshold functions, i.e. boolean functions
that are true iff at least k out of n inputs are true [20].

I Many different ways to encode them in a formula.

I Problem: find an encoding that allows us to formulate a certain
theorem;

I The property stated by that theorem strongly depends on the
proof system that we adopt!

We can simplify the definition of threshold formulae used by Atserias et
al, to work on system SKS.



Threshold Functions - intuition

1 2 3 4 5
© © © © ©
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1 2 3 4 5⊙ © ⊙ ⊙ © at least 3 out of 5 are true



Threshold Functions - intuition

1 2 3 4 5⊙ ⊙ ⊙ ⊙ © at least 3 out of 5 are true



Threshold Functions - intuition

1 2 3 4 5⊙ ⊙ ⊙ © ⊙
at least 3 out of 5 are true



Threshold Functions - intuition

1 2 3 4 5 Set 5 to false.⊙ © ⊙ ⊙ ⊔
At least 3 out of 5 are true;
At least 3 out of the remaining 4 are true;



Threshold Functions - intuition

1 2 3 4 5 Set 5 to false.⊙ © ⊙ ⊙ ⊔
At least 3 out of 5 are true;
At least 3 out of the remaining 4 are true;

1 2 3 4 5 Set 5 to true.⊙ © ⊙ ⊙ ·⊔ At least 3 out of 5 are true;
At least 3 out of the remaining 4 are true;
At least 4 out 5 are true;



Threshold Functions - intuition

1 2 3 4 5 Set 5 to false.⊙ © ⊙ ⊙ ⊔
At least 3 out of 5 are true;
At least 3 out of the remaining 4 are true;

1 2 3 4 5 Set 5 to true.⊙ © ⊙ ⊙ ·⊔ At least 3 out of 5 are true;
At least 3 out of the remaining 4 are true;
At least 4 out 5 are true;



Intuitive use of Threshold Formulae (Splitting)

−
Π

∥∥∥∥∥∥∥

K{(a ā)}
i↑ −−−−−−−−−−−

K{f}
=⇒ ∃∆1,∆2 :

a

∆1

∥∥∥∥∥∥∥

K{f}

ā

∆2

∥∥∥∥∥∥∥

K{f}
such that

t
i↓ −−−−−−−−−−−−−−−−−−−−−−−

a

∆1

∥∥∥∥∥∥∥

K{f} ∨

ā

∆2

∥∥∥∥∥∥∥

K{f}
c↓ −−−−−−−−−−−−−−−−−−−−

K{f}

K{a ∨ {ãk}}
= −−−−−−−−−−−−−−−−−−−−−−−−−−

a

∆′
1

∥∥∥∥∥∥∥

K {a ∧

{ãk}
∆QP

∥∥∥∥∥∥∥

{ãk+1}
}

i↑ −−−−−−−−−−−−−−−−−−−−−−−−
K{f}

• ãk pseudo-complement of a at slice k: it “ behaves” as ā;
• Top a ∨ t, Bottom a ∧ f
•

ãk

∆QP

∥∥∥∥∥∥∥

ãk+1

Size of threshold formulae: quasi-polynomial growth
Size of ∆QP dominated by threshold formulae – quasi-polynomial



Threshold Formulae - a Definition

with the required atomic flow, where, by Lemma 3, the derivation Φ�σ exists and
its size is bounded by a polynomial in the size of Φ�. ��

5 Threshold Formulae

Threshold formulae realise boolean threshold functions, which are defined as
boolean functions that are true if and only if at least k of n inputs are true (see
[Weg87] for a thorough reference on threshold functions).

There are several ways of encoding threshold functions into formulae, and the
problem is to find, among them, an encoding that allows us to obtain Theorem 10.
Efficiently obtaining the property stated in Theorem 10 crucially depends also
on the proof system we adopt.

The following class of threshold formulae, which we found to work for system
SKS, is a simplification of the one adopted in [AGP02].

In the rest of this paper, whenever we have a sequence of atoms a1, . . . , an,
we will assume, without loss of generality, that n is a power of two.

Definition 6. For every n = 2m, with m ≥ 0, and k ≥ 0, we define the operator
θn
k inductively as follows:

θn
k (a1, . . . , an) =

=





t if k = 0

f if k > n

a1 if n = k = 1
�

i+j=k
0≤i,j≤n/2

�
θn/2
i (a1, . . . , an/2) ∧ θn/2

j (an/2+1, . . . , an)
�

otherwise.

For any n atoms a1, . . . , an, we call θn
k (a1, . . . , an) the threshold formula at

level k (with respect to a1, . . . , an).

The size of the threshold formulae dominates the cost of the normalisation
procedure, so, we evaluate their size.

Lemma 7. For any n = 2m, with m ≥ 0, and k ≥ 0 the size of θn
k (a1, . . . , an)

has a quasipolynomial bound in n.

Proof. We show that the size of θn
k (a1, . . . , an) is bounded by n2 logn. We reason

by induction on n; the case n = 1 trivially holds. For n > 1, we consider that
the size of θn

k (a1, . . . , an) is bounded by
�

i+j=k
0≤i≤n
0≤j≤n

2n/2
2 logn/2

.

We then have
�

i+j=k
0≤i≤n
0≤j≤n

2n/2
2 logn/2 ≤

�

i+j=n/2
0≤i≤n
0≤j≤n

2n/2
2 logn/2 ≤ (n+ 2)n/2

2 logn/2
,

For any n = sm, m, k ≥ 0 the size of Θn
k(a1, . . . , ak) has a

quasi-polynomial bound in n



Threshold Formulae - cont’d

Some examples (any n):

θ2
0(a,b) ≡ t ,

θ2
1(a,b) ≡ (θ1

1(a)∧θ1
0(b))∨ (θ

1
0(a)∧θ1

1(b))≡ (a∧ t)∨ (t∧b)

= a∨b ,

θ2
2(a,b) ≡ θ1

1(a)∧θ1
1(b)

≡ a∧b ,

θ3
0(a,b,c) ≡ t ,

θ3
1(a,b,c) ≡ (θ1

1(a)∧θ2
0(b,c))∨ (θ

1
0(a)∧θ2

1(b,c))≡ (a∧ t)∨ (t∧ [(b∧ t)∨ (t∧ c)])

= a∨b∨ c ,

θ3
2(a,b,c) ≡ (θ1

1(a)∧θ2
1(b,c))∨ (θ

1
0(a)∧θ2

2(b,c))

= (a∧ [b∨ c])∨ (b∧ c) ,

θ3
3(a,b,c) ≡ θ1

1(a)∧θ2
2(b,c)≡ (a∧ (b∧ c))

= a∧b∧ c ,

θ5
0(a,b,c,d,e) ≡ t ,

θ5
1(a,b,c,d,e) ≡ (θ2

1(a,b)∧θ3
0(c,d,e))∨ (θ

2
0(a,b)∧θ3

1(c,d,e))

= a∨b∨ c∨d ∨ e ,

θ5
2(a,b,c,d,e) ≡ (θ2

2(a,b)∧θ3
0(c,d,e))∨ (θ

2
1(a,b)∧θ3

1(c,d,e))∨ (θ
2
0(a,b)∧θ3

2(c,d,e))

= (a∧b)∨ ([a∨b]∧ [c∨d ∨ e])∨ (c∧ [d ∨ e])∨ (d ∧ e) ,

θ5
3(a,b,c,d,e) ≡ (θ2

2(a,b)∧θ3
1(c,d,e))∨ (θ

2
1(a,b)∧θ3

2(c,d,e))∨ (θ
2
0(a,b)∧θ3

3(c,d,e))

= (a∧b∧ [c∨d ∨ e])∨ ([a∨b]∧ [(c∧ [d ∨ e])∨ (d ∧ e)])∨ (c∧d ∧ e) ,

θ5
4(a,b,c,d,e) ≡ (θ2

2(a,b)∧θ3
2(c,d,e))∨ (θ

2
1(a,b)∧θ3

3(c,d,e))

= (a∧b∧ [(c∧ [d ∨ e])∨ (d ∧ e)])∨ ([a∨b]∧ c∧d ∧ e) ,

θ5
5(a,b,c,d,e) ≡ θ2

2(a,b)∧θ3
3(c,d,e)

= a∧b∧ c∧d ∧ e ,

θ5
6(a,b,c,d,e) ≡ f .

Fig. 1. Examples of threshold formulae.



Threshold Formulae - cont’d

A property of threshold functions/formulae, captured in SKS by a
specific derivation:

and since n+ 2 ≤ n2 and n/2 < n, we have

(n+ 2)n/2
2 logn/2 ≤ n2n2 logn/2 = n2 logn−2 log 2+2 = n2 logn ,

as required. ��

Lemma 8. For any n = 2m, with m ≥ 0, k ≥ 0 and 1 ≤ i ≤ n, there exists a
derivation

Γ i
k =

θn
k (a1, . . . , an){ai/f}����{aw↓,aw↑}

θn
k+1(a1, . . . , an){ai/t}

,

whose size has a quasipolynomial bound in n.

Proof. The result follows by Lemma 7 and structural induction on Definition 6.
It is worth noting that both the premiss and the conclusion of Γ i

k are logically
equivalent to θn−1

k (a1, . . . , ai−1, ai+1, . . . , an). ��

Lemma 9. Given a formula A and an atom a that occurs in A, there exist

derivations
a ∧ A{a/t}����{ac↑,s}

A
and

A����{ac↓,s}
A{a/f} ∨ a

such that their sizes are both bounded

by a polynomial in the size of A.

Proof. The result follows by induction on the number of occurrences of a in A,
and Lemma 1. ��

We now present the main result of this section. We show that, using thresh-
old functions, we are able to deduce a conjunction of disjunctions from a dis-
junction of (slightly different) conjunctions. This construction is based on (seen
top-down) contractions meeting cocontrations, and can be thought of as a gen-
eralisation of the simple sharing mechanism that allows us to deduce a ∧ · · · ∧ a
from a ∨ · · · ∨ a .

In Theorem 11 we will see how using this sharing mechanism allows us to
glue together several ‘broken’ derivations in order to build a cut-free proof.

Theorem 10. Let, for some n = 2m with m ≥ 0, a1, . . . , an be distinct atoms.
Then, for every 1 ≤ k ≤ n+ 1, there exists a derivation

Γk =

�
a1 ∧ θn

k−1(a1, . . . , an){a1/f}
�
∨ · · · ∨

�
an ∧ θn

k−1(a1, . . . , an){an/f}
�

�������SKS\{ai↓,ai↑}

[a1 ∨ θn
k (a1, . . . , an){a1/f}] ∧ · · · ∧ [an ∨ θn

k (a1, . . . , an){an/f}]
,

such that the size of Γk has a quasipolynomial bound in n.

Remarks:

I Both premiss and conclusion of Γi
k are logically equivalent to

θn−1
k (a1, . . . , ai−1, ai+1, . . . , an), pseudo-complement of ai

I (proof by usual context extraction in D.I. and by structural
induction on the threshold formulae).



Using Threshold Formulae

Use pseudo-complements of al, instead of āl, with increasing levels of k:

1. Make a disjunction between al and its pseudocomplement at level
k; propagate this pseudocomplement across instances of i↓(LEFT);

2. Increase the k-level (CENTRE);

3. For each instance of i↑ collect the conjunction between al and its
pseudocomplement at level k + 1 (dual of 1, RIGHT):
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Proposition 15. For any n > 0 and k > 0,
���✓n

k an
1

���6
���✓n
bn/2c+1 an

1

���.
Lemma 16. The size of ✓n

bn/2c+1 an
1 is nO(log n).

Proof. Observe that
���✓n

k an
1

���6
���✓n+1

k an+1
1

���. Let p = bn/2c and q = n� p and consider:
���✓n

p+1 an
1

���=Pi+ j=p+1
06i6p
06 j6q

Ä���✓p
i a p

1

���+
���✓q

j an
p+1

���
ä

6Pi+ j=p+1
06i , j6q

Ä���✓q
i aq

1

���+
���✓q

j aq
1

���
ä

6 2(q + 1)
���✓q
bq/2c+1 aq

1

��� ,

(3)

where we use Proposition 15. We show that, for h = 2/(log3� log2) and for any n > 0,
we have
���✓n
bn/2c+1 an

1

��� 6 nh log n . We reason by induction on n; the case n = 1 trivially
holds. By the inequality (3), and for n > 1, we have���✓n

bn/2c+1 an
1

���6 2(n�bn/2c+ 1)(n�bn/2c)h log(n�bn/2c)

6 n2nh log(2n/3) = nh log n�h(log3�log2)+2 = nh log n . ⇤

Theorem 17. For any k > 0 the size of ✓n
k an

1 is nO(log n).

Proof. It immediately follows from Proposition 15 and Lemma 16. ⇤

Given a threshold formula ✓n
k an

1 , we can consider, for each al such that 1 6 l 6 n,
the formulae (✓n

k an
1 ){al/f} and (✓n

k+1 an
1 ){al/t}: we call both of them, informally, ‘pseu-

docomplements’ of al . The reason for this name is that we can manage to replace, in
a given proof, all occurrences of those āl that appear in cut instances with the pseudo-
complements of al . The cut instances and their corresponding identity instances are
then removed, leaving us with derivations whose premiss and conclusion contain each
a threshold formula. Moreover, the k-level of the threshold formula in the premiss is
one less than the k-level of the threshold formula in the conclusion. This way, we ob-
tain several derivations, corresponding to increasing values of k, that we are able to stitch
together until we get a normalised proof.

All this, of course, needs clarification, but we think that it is helpful to provide a sum-
mary here of the main constructions that allow for this stitching operation. Let us read
derivations top-down; the following are the steps that we need to perform, for 0 6 k 6 n.

(1) Build
✓n

k an
1����

al _ (✓n
k an

1 ){al/f}
,

i.e., create, from a k-level threshold formula, a disjunction between al and its
pseudocomplement (✓n

k an
1 ){al/f} (Proposition 22); then replace the pseudocom-

plement into āl , for each identity instance.
(2) Increase the k-level by using the derivations

(✓n
k an

1 ){al/f}����
(✓n

k+1 an
1 ){al/t}

(Theorem 21); these are the � derivations mentioned in the introduction to this
section.
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1 ){al/f} (Proposition 22); then replace the pseudocom-

plement into āl , for each identity instance.
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1 ){al/t}

(Theorem 21); these are the � derivations mentioned in the introduction to this
section.
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(3) For each cut instance, collect the conjunction between al and its pseudocomple-
ment (✓n

k+1 an
1 ){al/t}; then build

al ^ (✓n
k+1 an

1 ){al/t}����
✓n

k+1 an
1

,

i.e., create a (k + 1)-level threshold formula (Proposition 22).
The derivations mentioned above do not require any use of identity and cut, and allow
us to move, in n + 1 steps, from ✓n

0 an
1 ⌘ t to ✓n

n+1 an
1 ⌘ f, which is the secret to success.

The constructions in 1 and 3 are deep-inference routine and introduce low complexity.
We deal now with the crucial step 2, by designing Definition 19, and then checking it
carefully, so as to get the property stated in Theorem 21.

Definition 19 is technical, but its philosophy is simple; all one has to do to build the
derivations required by Theorem 21 is:
• identify the atom occurrences that must occur in the premiss and that must not

occur in the conclusion and remove them using coweakening, and
• identify the atom occurrences that must occur in the conclusion and that must

not occur in the premiss and add them using weakening.
We have implemented Definition 19 as a program [Gug09]. It can be useful to read the
definition together with the examples in Figures 4 and 3, which have been generated by
the program.

Remark 18. Given n > 1, let p = bn/2c and q = n� p. For 0 6 k 6 q and 1 6 l 6 p,
the following derivation is well defined:

(✓p
p a p

1 ){al/f} ^ ✓q
k an

p+1
w" ���������������������������������

f
=

a1 ^ · · · ^ al�1 ^ al+1 ^ · · · ^ ap ^ ✓
q
k an

p+1
w" ������������������������������������������������������

t
^ f .

Analogously, for 0 6 k 6 p and p + 1 6 l 6 n, we can define the following derivation:

✓p
k a p

1
^ (✓q

q an
p+1){al/f}

w" ���������������������������������
f

=
✓p

k a p
1
^ ap+1 ^ · · · ^ al�1 ^ al+1 ^ · · · ^ an

w" �������������������������������������������������������
t

^ f .

Both classes of derivations are used in Definition 19.

Definition 19. Consider n > 0, distinct atoms a1, . . . , an , and let p = bn/2c and q = n�p.
• For n > 1 and 1 6 l 6 n, we define the derivations ⌥n

k ,l an
1 and �n

k ,l an
1 as follows:

⌥n
k ,l an

1 =

8>>>>>>>><
>>>>>>>>:

(✓p
p a p

1 ){al/f} ^ ✓q
k�p an

p+1
w" �������������������������������������

f
if p 6 k 6 n and l 6 p

✓p
k�q a p

1
^ (✓q

q an
p+1){al/f}

w" ������������������������������������
f

if q 6 k 6 n and p < l

f otherwise

and

�n
k ,l an

1 =

8>>>>>>><
>>>>>>>:

f
w# ����������
✓q

k an
p+1

if 0< k 6 q and l 6 p

f
w# �������
✓p

k a p
1

if 0< k 6 p and p < l

f otherwise

.

• For k > 0 and 1 6 l 6 n, we define the derivations �n
k ,l an

1 , recursively on n, as
follows:

I The derivation on the LEFT is in {s, ac↓} (slightly different
formulation may use also {aw↓}) – dual case on the RIGHT;

I The derivation in the CENTRE is in {aw↓, aw↑}



Putting Things Together

Various technical steps.. eventually the resulting cut-free form of Π is in
SKS \ {ai ↑}
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φ′0

φ

θ1...
θk

φ′
k

ψkφ

θk+1

φ

φ′n

θn

...

· · · · · ·

A

FIGURE 5. Atomic flow of a proof in cut-free form.

where  k =  {ā�1
1 /✓k{a1/f}, . . . , ā�n

n /✓k{an/f}} and where we use Proposition 22. We
define the cut-free form of ⇧ as the following proof in SKS \ {ai"}:

✓0

�0

��������2
66666666664

A _

✓1

�1

��������2
666664

A _ · · · _

✓2
...2

4A _
✓n

�n

����⇥
A_✓n+1

⇤
3
5

3
777775

3
77777777775

n·c# ����������������������������������������������������������������������� .
A



Conclusions
I Some transformations and theorems (splitting, etc) are proper of

the deep inference;
I Constructions in sequent calculus can be recast in deep inference,

with the advantage of becoming local, improving in complexity.
I Some theorems (e.g. Herbrand’s theorem) benefit from proof

systems designed on purpose - witness substitution may be lifted
to the level of the formalism.

I Finer granularity of rules generate more non-determinism in proof
search: splitting reduces the proof search space.

I A (promising) notion of analyticity combines aspects of design,
their implications on fundamental theorems and on proof search,
and are general to address various different logics.

I Further results in complexity (not seen in this course): exponential
speed up cut free sequent calculus, and re-casting Extension to
Frege systems.

I Resource awareness (linearity), locality, modularity, boundedness in
rules are all features of the methodology that contributes the
flavour of a computation-aware proof theory.



Thanks for your interest and attention :-)
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