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Idea of Splitting
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Cut Elimination via Splitting

| 2

>

Atomic cut and locality in rules are key-features not available in
sequent calculus, in general;

Atomicity and deep inference are key elements that allow to
re-unite branches of the sequent proof-tree (and this was used
already in the propositional proof);

Splitting theorems are common to several different logics and work
under the same intuition: method proper of deep inference (for
example [12, 14, 19, 1, 4])

Extends to first order classical logic (differently from previously
shown proof).

Avoiding variable capture requires careful attention in splitting,
influencing the design of rules for quantifiers.

We will see the proof of splitting in detail, based on Briinnler’s [3] and
already anticipated by Guglielmi.



The Proof System KSgr
Structures (a positive/negative atom)

Su=flt|al[S,8]](S.S)|3xS|VaS

Syntactic equivalence: AC for A/V, renaming of bound variables (to
avoid variable capture), De Morgan and units extended to quantifiers:

—[RT] VaR—3k PO=r0)
[R,f]=R t,t] =t Jaf = f = Vaf
(R,t)=R (f.f)=f Vat =t = 3at
KSgr extends KSg with instantiation n| and retraction r| (instead of u):
P{ } is a propositional context, so x does not occur therein
nJ substitution is capture-avoiding

o S{t} S{f} S[R, R]
VSRR "SRy T S(R}
SURTILU)  S(eP(RY) . S{Rx/M]) S{va[R,T]}

SSIRU)T]S{P{eR)} 7 S{3zR) " S[vzR, 32T




The Proof System KSgr - cont’d

P We can safely assume that instances of i and w are atomic (they
are derivable):

PROPOSITION 2.12. The rules il and wl are derivable for {ail,s,rl,nl}

and {awl,s}, respectively. Dually, the rules it and wt are derivable for
{ait, s, rt,n1} and {awt,s}, respectively.

> KSgr is equivalent to SKSgr;

P an indirect proof of cut-elimination (through sequent calculus)
exists.



Quantifiers and Splitting

Consider this:

(IT4,IT2) -”

m T , ([T, A]L [T, A])
~ _ [D,T, (4, 4)]
. o [T, (4, 4)]
cur A hr.4 [0,1]
FT A

P i1 does not ’split the requirements’ arising from quantifiers.

P i1 can introduce a cut-formulae deeply and variables may be
captured by quantifiers in the context;

P Solution — control the ’possibly offensive’ existential quantifiers for
the context, by using bigger cuts.

P Introduce the notions of splittable cut and solid cut rule.



Replacing Cuts with Others (Fit for Purpose)

Up-rules may be derived using ’bigger cuts’ with the variant si

S{T}

NGO
sy ST ISR STR)
S(Ry SR} (S(T}, 5(7))
L SR}, (S{7),5(T))

S(R}

> Splittable cut sit is a cut inside a splittable context ${ }, i.e. the
hole is not in the scope of an existential qtf.

P If the cut-formula is a quantifier or an atom, we call the cut solid.

For each proof l[SKSgr there is a proof l[ngrU{SiT} .



Sketch of the Cut Elimination Proof

KSgru{sit}
T

For each proof there exists a proof ”ngr.
T

I. (Splittable) cuts are replaced by (splittable) solid cuts (induction on
cut rank)
» Solid cuts involve atomic and (existential) quantified formulae;
P Existential cuts are handled first.
The topmost one is transformed by cut-reduction (induction on
maximal cut-rank). This reduces the proof above it to one whose
cut rank is at most |.

2. Once that all cuts are in atomic form, eliminate atomic cuts.



Replacing Cuts - cont’d

How to enforce the use of solid splittable cuts?

» By “guarding” the applicability of splittable cuts: unwanted
existentials in the context should not enter the scope of the cut.

P The "guard” is related to the cut-rank of the
cut-formula/derivation, a measure that counts the nested
quantifiers of the cut-formula(e).

P si. 1 proviso — cut-rank at most r (r > 0).

o SR [(T.7). R))
Smw - S SIT.T), (R, R)|
{7 iyt e

. S(R,R)

T

(The instance on the left is not solid).
sir 1" is derivable for s and for solid si, 1 (i.e. atomic or qtf).



Replacing Cuts - cont’d

Are the new cuts ’safe’ to be used?
I. Up-rules that were admissible with usual cuts, are still admissible in
a system with si 1 (already seen), but check that
2. the transformation does not interfere with the cut-rank (increase
in cut-rank or length of proof)
For example, in proof I'1 (below left):
— we can 'pull’ t upwards through all @’s we may meet, and in any place
(context /redex/contractum), this happens in other rules..
— .. apart in interaction (right), where it will vanish:

;y Tgru{siﬂ \ S{t} _ ;‘{iti]
T N Sla,a) aw) ———
{t} Slt,a]

aw?



Technical - permutability details

More elaborate is n1: case analysis for rule permutability
|. Contractum of n7 inside the context of p: permute rules
2. Contractum of n? inside a formula of redex of p (s,c |,r |, n ])

3. redex of p inside contractum of n 1

HKSgru {sit}

i = = -

R I L s e e ol —fF—1—
S{R{z/7}} L.




Technical - permutability cont’d

For example, these are cases in situation 2., when p is not n1:

S"{[S'{¥aR} S'{VzR}]}

§"{18'{VsR} §'{¥aR}]} S8 (R{a/r}} S'(VaR)}

S"{8'{VzR}}
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Technical - permutability cont’d

In case 2. when pis n:

_ S(R{(vT}{z/n]}
| S{R{T}a/n]} +_ S(Rls/n] (4Tls/n 1)
" SER(WIY  ~ _ S(Rle/nl{Tle/nlly/nle/m]]}}
SER(T(y/n]}) STRTly/)}[o/n]}

ni

S{32R{T[y/7]}}

Assume variables are named apart;
I. no var in 7| occurs bound in R{VyT} (lilac);

2. no var in 7, occurs bound in T (green);



Technical - permutability cont’d

In case 2. when pis n{:

_ S(R{vyT}{z/n]}
S{RVT}[x/m]} +_ S(RIa/n] (4Tle/n])
SEeR(WTY)  ~ | S(Rl/nl(Tl/nlly/nl/ml)
SER(T(y/n]}) STR(Tly/)}[o/n]}

" T SER{Tly/n]}

Assume variables are named apart;
I. no var in 7 occurs bound in R{VyT} (lilac);
2. no var in 7, occurs bound in T (green);
Hence, the topmost = is sound ([x/7;] can be distributed), and
T2[x/ 7] is free for y in T[x/7|], so n7 is sound;
7| is free for x in R{T[y/72]}, making the lowermost = and n
both sound.



Technical - permutability cont’d

In case 2. when pis n{:
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Assume variables are named apart;
I. no var in 7 occurs bound in R{VyT} (lilac);
2. no var in 7, occurs bound in T (green);
Hence, the topmost = is sound ([x/7;] can be distributed), and
T2[x/ 7] is free for y in T[x/7|], so n7 is sound;
7| is free for x in R{T[y/72]}, making the lowermost = and n
both sound.



Technical - permutability cont’d

In case 3. permutability may require some renaming of bound variables
(for example when pis r] or n?).

The only critical case is the overlapping on an universal quantifier:

S{¥zP{R}}
] "~ S{P{VzR}}
S{P{R[z/T]}}

. S{VaP{R}}
S{P{R[z/T]}}



’Splitting’ the Context

> By permutability, eventually w 1 and n 1 can be eliminated, in
presence of splittable cuts, with no impact on the cut rank.

> Hence, we just have to deal with KSgr U {si1}.

LEMMA 3.7 (Splitting). Let S{ } be a splittable context and let VT be the
sequence of all its universal quantifiers that have the hole in their scope.

Then for each proof HHKSgrU{SiT} there are a formula U and proofs

S(R,T)
_ _ ViU
ﬂngrU{SIT} and HKSgrU{S'T} and a derivation H {rl} such that the cut
U, R] [0, 7] st

ranks of both proofs are smaller than or equal to the cut rank of II.



’Splitting’ the Context

> In the proof, attention goes to V quantifiers, and in handling those
splittable context S{ } whose hole is in the scope of a universal
quantifier

» Some cases are below

H KSgrul {siT} ” KSgri {siT}

S(R,T) S(R,T) vES'{f}
Vs WJT sy (e
. S{R} p S'{T} S{f}

> [S'{fL R (517}, 7]




Atomic Cut Elimination

II -H KSgr
. KS
For each proof _ T(a,a) there is a proof ﬂ &
[

i) T{f}

Sketch of proof
I. - Apply splitting on [T (I'l, is a proof from a to U), to obtain

YZU
II; || KSgr ’ I ﬂ_KSgr and A H 0
[U,al (U, a] T}

2. - Bottom-up in [}, replace a/U. Renaming in r| (n | is absent).
Transform ai (left), combine in final proof (box)

Viﬂg-HKSgr
VE[U,U]
S{t} vzU
. S{t} A H {rl}
ail — S{I2} ‘ KSgr
Sla,al S[U.a) T{f}




Cut Reduction (Existential Formulae)
Cut formula has form 3xR — inference rules may be applied inside R.

Generalise the technique to the case of n:
> n-context — a formula with n holes { }

> splittable n-context — no hole is in the scope of an existential
quantifier.

> Given a proof 1 of [U VxR] in KSgr U {si 7}, and n > 1, define

S{3zR1}...{3zR,}
S{U}.. {U}

plUgH,n

where S{ } ... { } is splittable, and cut-free A; from R; to R exist.

P As in the atomic case, splitting lemma is applied; the parametric
plug rule applied to each existential, in parallel.



Details of Cut Reduction (Existential Formulae)

Statement
. H KSgrU{sirt} . ﬂ KSgr U {si,1}
For each proof T(VzR,3zR there is a proof .
(VaR, 3z R)
Sir1 T —— T{f}
T{f}
Sketch of proof
vzU
1. Apply splitting ™ [ ewuisnny : wkssoety 0, [ eu
[U,3zR] [U,VzR] T{f}
YEIL ﬂ KSgr U {sirT}
_2. Plug proof 2 v2[U, 22 R]
into proof 1. plugr, 1 —
The plug is then G|
pushed up and VU
let disappear A ” {rl}
T{f}




Details of Cut Reduction (Existential Formulae)

plug S?{ﬁ[m_/i]}

S'{Rila/7]} Tt s{Rufo/r}
"LW ~ S(ulo/r].I) || KSgru fsirt)
UBTIz,n sy S(R[z/7], U, R[z/T]])

.1 SO (Rlz/7), Rlz/)]
: s(U}

3. Rule above plug is applied inside R _i: plug is added to the
corresponding Delta. In this specific case the derivation is
instantiatied

4. Termination when plug reaches the top: vz a,)

va([U, R, R)

wp SV (R, B)
s{u}...{U} " vEU
o

all R_i are false (left), at least one is true (right)  7{f}




Herbrand Theorem and Cut Elimination

There are two forms of Herbrand theorem:

P> Weak form: F quantifier free.
3x;..3xgF valid = 3t 1= F(ty i, ... i, )V -Vt tak,)

(in particular, we look for a cut-free proof)

P Strong form: A f.o.f A is valid iff it has a Herbrand proof.
A Herbrand proof of A consists of a prenexification A* of a strong
V-expansion

P We focus on the strong form, and compare the situation in the
sequent calculus and in deep inference proof systems.



Herbrand Theorem and Cut Elimination

A is valid iff it has a Herbrand proof. — In sequent calculus:
1 2 3
N : N vv - vv — vv P Ow
A A A’ A*

P cut-free; A any formula.

I. P cut-free, with contraction on propositional and existential
formulae only.

2. P, cut-free. A" is strong \/ expansion of A (i.e. saturated with
J-formulae). Contraction on 3-formula is replaced with Vg, and
the change propagated in the proof. After this step only
contraction on propositions.

3. Prenexification. Pulling quantifiers to the front causes quantifiers
rules to go downwards in the proof. P3 is the Herbrand proof; its
instances of Jg give the terms for oy,.



Herbrand Theorem - cont’d

In deep inference and using the system SKSgr we would need to

|. decompose contraction (atomic, first order case, already seen)

o Slaal _ SIRU).(TV))
S{a} S([R, T, [U,V])

S[3zR, 3z R] S[VaxR,VzT]
) M2 S R R T}

2. handle prenexification, and the retract r | rule would need to be
extended
| stetriay)
S{P{Q{R}}}

where Q{ } sequence of quantifiers, P{ } propositional context.
No variable in P{ } is bound by a quantifier in Q{ } in the premise.



Herbrand Theorem - cont’d

Each proof in SKSgr has one with the shape on the right, for some
substitution o, propositional formula P and context Q{ } of quantifiers.

ﬂ KSu{ait}
H KSU{nJ,ait} V¥ Po

0, &

- — ”KSU e Q{P} ‘ nl
[[wsushrat s ER N lt
S ‘ qcl S’ grl

‘ qcl S’
S ‘ qcl
S

0. — From the proof in SKSgr obtain the leftmost one, using the
transformations with splittable cuts. Decompose contraction.

I. — Move downwards contractions on quantifiers.

2. — Factorise S'. Construct the prenex normal form Q{P}; its proof
above contains prenex formulae only.

3. — Separate instantiations. The remaining topmost proof is
propositional (atomic cuts only).



Herbrand Theorem - cont’d

However,

P Proof systems could be specifically designed so to better support
our ability to extract Herbrand proofs.

> Ben Ralph proposes two improvements to SKSgr resulting in two
different proof systems: the resulting Herbrand proof has a
different structure.

P The improvements stem from a need to simplify the context
management, and to facilitate technical aspects in dealing with
substitution into the D.I. formalism of open deduction [13, 15].

P We just mention the scope of these (recent) works. A compact
reference is [17], full details in [18]



Herbrand Theorem - cont’d

» System KShl: r;] rules (B free for x) simulate gr | and make
prenexification easier.

KShl =

KS +

ViAvB]  Va(AnB)  Afret)
WAV B N aAnB) " A
Az[Av b"] dx(ArB) JzAvirA
NEeAvE M EAnB) ™ 324
.|-
Ved = VzA{r <=z} 324 = :zA{r &=z}
Yavyd = YyvrdA Jxdyd = dydaeA
Vot = t=drt Yaof = = Jzf

ks

Ve B{y <t}

ol
Q{B}
I {r1i.e2) 3L 4]}
A’
Il {ael }
A

> Every proof in KShl can be converted to a Herbrand proof.



Herbrand Theorem - cont’d

> System KSh2: h| (Herbrand expander) and 3w | (existential
weakening) further help lifting to the level of the formalism the
handling of substitutions.

P This allows to tighten the relation between open deduction proofs
and expansion proof, providing a normal form of Herbrand proofs.

\J'.f'l;]. W B| JzAv _J‘I{.r: = f}
Ml hi
[vzA v B| EPy
V(A A B) f
[ Iwy
(VaA A B =
KSh2 = KS 4 (vad » B) !

t
Yed = VzA{zr <2} JzA = FzA{z < 2}
Wiy A = Yy A ledyA = JydaeA
Vet = t=drt Yof = f=dzf



Herbrand’s Thm - cont’d

To recap:

P Sequent calculus does not allow to represent, in the proof of the
original formula, neither the expansion nor the prenexification: the
reason is that the rules work on the main connective.

P In contrast, in deep inference, these phases can be integrated in the
proof very smoothly.

» Herbrand Theorem and Splitting Theorem for Cut elimination
(scalable to predicate logic), both formulated entirely inside deep
inference, give to the deep inference methodology a proper status.



Some Proposed Activities

References for this part are Kai Briinnler’s [3] and Sam Buss’ [9], adn
Ben Ralph’s [17] (for Herbrand’s Theorems). Be aware that Kai reverses
the use of the wording redex and contractum’ of a rule, in that paper!

P One might want to try and complete the study of permutability of
some pair rules, for example n1 —r] or n1 —n/| just to familiarize
with the method. Details are on the technical descriptions in this
group of slides.

P In the first batch of slides two sequent proofs (with cut and
cut-free) of - Ix.Vy(p(x) D p(y)) are given. Compare them with
the proofs in deep inference of the corresponding formula in
negation normal form = 3x.Yy(p(x) V p(y))).

One can then use them as guidance to perform a cut-elimination
with splitting in deep inference, and compare and contrast with the
situation in sequent calculus. The same, again, in relation to
Herbrand theorem.



Analyticity - some Thoughts

Three properties in sequent calculus systems are considered akin
P the subformula property in rules;
P the system is cut-free;
P the system is analytic;

AND analytic proofs reduce non-determinism in proof search (also f.0.)

What would ’analyticity’ in deep inference be alike, where:

P the same connectives compose formulae, as well as derivations /
(rules applied at any depth);

> there is a duality between down- and up-rules, these latter ones
derivable by cut;

P splitting theorem implies cut elimination
P .. just to mention a few.. ?

(A compact reference is [5])



Analyticity - some observations

(Naif) — A rule would be analytic, if, given an instance of its conclusion,
the set of possible instances of the premiss is finite”

To the effect that this Finitary cut rule would qualify as (naif)-analytic

E) M i{?}l
h{fai‘, pL) 7 f } , where p appears in K{ }.

P the premiss is finitely generating;

P fai T can replace the general cut, at a polynomial cost in size of
proofs, and

P via transformations that are local (in contrast to unbounded
copying of chunks in the sequent calculus)

BUT reducing non-determinism cannot be so easy, we should rather
exclude fai 1 — stronger notion



Analyticity - some observations
(finitely generating rule + bounded generation driven by the conclusion)

Definition 1. For every formula B, context K{ } and rule r, we define the set of premisses of

Bin K{} viar:
{3}
Kd p—
B

1. if, for every B and K{ }. the set pr(B, K{ },r) is finite, then we say that r is finitely
generating:

priB.K{ }.r) = { A

Given a rule r:

2. if, for every B, there is a natural number n such that for every context K{ } we have
lpr(B, K{ },r)| < n, then we say that r is analytic.

To the effect that
> fai 1 would not qualify as analytic;

> all the down fragment would
t f AV A AN(BVC)
i wl cl s
AV A A A (AnB)yvC
> .. as well as some rules of the up-fragment: ¢ 1 (and other linear
rules reshuffling information, in systems for other logics).



Analyticity - some observations

This notion better reflects ‘common insights’ from sequent calculi —
Splitting theorems

P are formulated on the down fragment whose rules are "analytic’;

P imply cut elimination;

» inform proof search (by reducing the proof search space),
addressing non-determinism

¢ 1 is an extra asset towards complexity because

P it provides 'dagness’ (sharing);

> it supports the construction of a quasi-polynomial (n°(/e"))
cut-elimination procedure for classical logic [8, 7] (related sources:

[rel, [21, [117)--
» therefore, KSg U {c 1} q.p. simulates SKSg.

> KSg (analytic) outperforms analytic sequent calculus on Statman’s
tautologies (exponential speed up). With cut, it poly-simulates
Frege systems. ¢ 1 is used to show that just a limited depth is
indeed necessary to reach bounded Frege systems [6, 10]



Sketch - Quasi-polynomial Time
Cut-Elimination

This procedure uses Threshold Formulae

P They realise boolean threshold functions, i.e. boolean functions
that are true iff at least k out of n inputs are true [20].

P Many different ways to encode them in a formula.

» Problem: find an encoding that allows us to formulate a certain
theorem;

P The property stated by that theorem strongly depends on the
proof system that we adopt!

We can simplify the definition of threshold formulae used by Atserias et
al, to work on system SKS.



Threshold Functions - intuition



Threshold Functions - intuition

I 2 3 4 5
O O O O O |atleast3 outof 5 are true



Threshold Functions - intuition

I 2 3 4 5
O O O O O |atleast3 outof5are true



Threshold Functions - intuition

I 2 3 4 5
O O O O @/]atleast3 outof 5are true



Threshold Functions - intuition

I 2 3 4 5 |Set5tofalse.
O O O O LU |Atleast3 outof 5 are true;

At least 3 out of the remaining 4 are true;



Threshold Functions - intuition

Set 5 to false.

| 2 3 4 5
O O O O LU |Atleast3 outof 5 are true;
At least 3 out of the remaining 4 are true;

Set 5 to true.

At least 3 out of 5 are true;

At least 3 out of the remaining 4 are true;
At least 4 out 5 are true;

o
Ow
Ow
O »
o«



Threshold Functions - intuition

Set 5 to false.

| 2 3 4 5
O O O O LU |Atleast3 outof 5 are true;
At least 3 out of the remaining 4 are true;

Set 5 to true.

At least 3 out of 5 are true;

At least 3 out of the remaining 4 are true;
At least 4 out 5 are true;

o
Ow
Ow
O »
o«



Intuitive use of Threshold Formulae (Splitting)

t
_ [ ——
o a a a a
- K{(aa)} = JA, Ay A1H A2“ such that A1H AQH
TR K{fy  KIf) KM v K(f
K{f}

K{a v {a"}}
a {a*}
s| o]
K{a A {a""'}}
K{f}

it

o a* pseudo-complement of @ at slice k: it “ behaves” as a;
e Top a Vt, Bottom a A f
[ ]
ak
A Size of threshold formulae: quasi-polynomial growth
or H Size of Agp dominated by threshold formulae — quasi-polynomial

a



Threshold Formulae - a Definition

Definition 6. For everyn = 2™, withm > 0, and k > 0, we define the operator
05 inductively as follows:

e’g(ala [ERE) an) =
t ifk=0
f ifk>n
“Yar fn=k=1
Visj=k (9?/2(617 s n2) A0 P (A 7an)) otherwise.
0<i,j<n/2
For any n atoms ai, ..., an, we call 6}(aq,...,a,) the threshold formula at
level k (with respect to ay, ..., an).
For any n = s™, m,k > 0 the size of ©](a;,...,a) hasa

quasi-polynomial bound in n



Threshold Formulae - cont’d

Some examples (any n):

83(a,b) =t
07(a,b) = (81(a) 765(b)) v (85(a) A8} (b)) = (at) v (tAD)
=avb
03(a.b) = 0}(a) A0} (b)
=anb ,
Gg(a,b,c)zt ,

8(a,b,c) = (81(a) 7 0F(b,c)) v (B (a) A8 (b,c)) = (ant) v (tA[(bA1) v (tAc)])

=avbvce

(61(a) 16(b,c)) v (8)(a) A O3 (b,c))
(@nfpvel)v(brc) |

03(a,b,c)

03(a,b,c) = 0] (a) 703 (b,c) = (an (brc))

=ahrbrc |



Threshold Formulae - cont’d

A property of threshold functions/formulae, captured in SKS by a
specific derivation:

Lemma 8. For anyn = 2", withm >0, k > 0 and 1 < i < n, there exists a
derivation

0% (as,...,an){a;/f}
H{awivaWT} )
62+1(a’17 s 7an){ai/t}

whose size has a quasipolynomial bound in n.

Remarks:

» Both premiss and conclusion of I_;( are logically equivalent to

(9,’(’*'(0| yeoyGi—1,0it],...,d,), pseudo-complement of g

P (proof by usual context extraction in D.I. and by structural
induction on the threshold formulae).



Using Threshold Formulae

Use pseudo-complements of g, instead of @j, with increasing levels of k:
I. Make a disjunction between qg; and its pseudocomplement at level
k; propagate this pseudocomplement across instances of i | (LEFT);
2. Increase the k-level (CENTRE);

3. For each instance of i1 collect the conjunction between g; and its
pseudocomplement at level k + | (dual of I, RIGHT):

07 a? (6; ){az/f} apn (07, al)ia; [t}
[ [
V(07 a7 )a,/f) G ){az/t} 0;,, a

» The derivation on the LEFT is in {s,ac]} (slightly different
formulation may use also {aw}) — dual case on the RIGHT;

» The derivation in the CENTRE is in {aw |, aw T}



Putting Things Together

Various technical steps.. eventually the resulting cut-free form of I1 is in

SKS\ {ai 1}

N
o

1
NS
]

A v

AV .. v 9:,,
A v 3,
L [A v 6n+1:|

A

n-c|



Conclusions

>

| 4

Some transformations and theorems (splitting, etc) are proper of
the deep inference;

Constructions in sequent calculus can be recast in deep inference,
with the advantage of becoming local, improving in complexity.
Some theorems (e.g. Herbrand’s theorem) benefit from proof
systems designed on purpose - witness substitution may be lifted
to the level of the formalism.

Finer granularity of rules generate more non-determinism in proof
search: splitting reduces the proof search space.

A (promising) notion of analyticity combines aspects of design,
their implications on fundamental theorems and on proof search,
and are general to address various different logics.

Further results in complexity (not seen in this course): exponential
speed up cut free sequent calculus, and re-casting Extension to
Frege systems.

Resource awareness (linearity), locality, modularity, boundedness in
rules are all features of the methodology that contributes the
flavour of a computation-aware proof theory.



Thanks for your interest and attention :-)
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