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Observation 1 - a Mismatch?
We have seen sequents Γ ` ∆:

I Γ/∆ ’understood’ as some kind of conjunction/disjunction;

I main connective of formula drives the bottom-up proof
construction.

I Which is the logical relation between premisses (subproofs) in a
branching logical rule? In LK (in all others too)

I ∨L and ∧R: ’conjunction’ of both subproofs (from the two
premisses).

I So far, always with left rules, but it escalates with more expressive
logics (linear logic) in 2-sided sequent calculus.



Observation 2 - Locality

I Recall GS1p, negation normal form;

I Local vs non-bounded rules, e.g. RC, when A is a generic formula:
non-suitable for distributed computation where information on A
may be sparse

I ’problematic rules’ should be atomic, starting from the axiom – is it
possible, while keeping the proof theory? (not as much as
expected, in sequent calculus presentations)



Starting point

Consider this Variant of GS1p:
I ∧R with multiplicative context (rather than additive, also for Cut));

I invertible ∨R (only one rule instead of two);

I constants >, ⊥ in the language (and introduces a new axiom).



Deep Inference – The Calculus of Structures

Deep Inference – a methodology in Proof Theory [4]1

Calculus of Structures – the first formalism developed in Deep Inference
(and for a logic related to process algebras [3, 2, 6])

I No main connective;

I rules applied ’deep’ inside formulae (possible because implication is
preserved under contextual closure by conjunction/disjunction);

I no branching rules (i.e. ‘branches may be re-united’ differently from
sequent calculi)

I a careful design of proof systems within the calculus of structures,
for a given logic, delivers a meaningful proof theory, with new
methods for manipulation and analysis of proofs

A number of logics, including linear and modal ones, have been covered
in this formalism. Please refer to the web site for more details - they fall
out of the scope of this short course.

1Deep inference web site: http://alessio.guglielmi.name/res/cos/

http://alessio.guglielmi.name/res/cos/


Systems KSq and SKS in CoS
I Structures (Formulae), in context notation ([...] is disjunction, (...)

is conjunction):

I Syntactic equivalence on formulae:



General Terminology

I Inference Rule ρ (premiss V, conclusion U) and instance of a deep
inference rule π, applied within a context S{ }:

I Reading: a rewrite rule, where R is redex and T is contractum,
and an implication T =⇒ R (where =⇒ is a logical implication, fro
example, classical implication in a proof system for classical logic).

I A proof system is a (finite) set of inference rules.



Derivations and Proofs

Derivation – finite sequence of instances of inferences rules in the proof
system.
Derivation within context – all inference steps happen in some context.
Proof – a derivation from premiss t.

Inference rule ρ derivable in a system S – if there exists a derivation, in
the system, from its premiss to conclusion, for all possible instances of
the rule.
Inference rule ρ admissible in a system S – for all proofs of R in S ∪ {ρ}
there exists a proof of R in S (i.e. the provability doesn’t change).



SKSg - General (non-atomic) rules

SKS - (S)ymmetric (K)lassic (S)ystem



SKSg - General rules
Up-rules are admissible.

(modulo syntactic equality, represented by =);
Duality up-/down- rules (contrapositive): T =⇒ R and R̄ =⇒ T̄
Symmetric KS: for each rule, there is also its dual (implicationally
complete)



Some Examples



Some Examples



Deduction Theorem for SKSg

Sketch of proof



A comparison with sequent rules
Interaction can be applied anywhere, not just the top of derivation

w↑ and c↑: nothing similar in GS1p



Dual derivation

Dual of a derivation – flip the derivation upside down it, replacing each
rule/connective/atom by its dual

The dual of a proof will not be a proof, rather a refutation.



From Sequent Calculus to CoS

Sketch of proof
I Translate formulae/sequents into structures of SKS;
I Structural induction on derivation ∆;
I e.g. the last rule is R∧ (similarly, for cut)

corresponds to



From Sequent Calculus to CoS – cont’d

... and since proofs are derivations of a specific form, these hold:

I Proofs (with cut) correspond to proofs in SKSg \ {c↑,w↑}
I Cut-free proofs correspond to proofs in SKSg \ {i↑, c↑,w↑}



From CoS to Sequent Calculus

(And similarly, for proofs)
Sketch of proof

I Translate structures of SKS into formulae;

I Mimic deep inference within context in the sequent calculus;

I Proceed top-down, starting from the top-most rule, by induction
on the length of the SKS derivation



From CoS to Sequent Calculus – cont’d

SKS derivation ∆ (left) and corresponding construction (right)



From CoS to Sequent Calculus – cont’d

SKS derivation ∆ (left) and corresponding construction (right)

I Proof Π exists, specific to rule ρ (T =⇒ R)



From CoS to Sequent Calculus – cont’d

SKS derivation ∆ (left) and corresponding construction (right)

I Mimic the specific instance of ρ, in context S{ } (lemma)



From CoS to Sequent Calculus – cont’d

KS derivation ∆ (left) and corresponding construction (right)

I Inductive hypothesis



From CoS to Sequent Calculus – cont’d

In particular, the up-rules will have these proofs associated:

I KSg is SKSg without up-rules;
I Up-rules are admissible for KSg

I A proof in SKSg is translated into one in GSp1 + Cut,
I Cut-elimination holds: get a cut free proof in GS1p,
I Translate back, it is a proof in KSg



From CoS to Sequent Calculus – cont’d
In particular, the up-rules will have these proofs associated:

Two proof systems S1 and S2 are said

I (weakly) equivalent – for every proof of R in S1 there is a proof of
R in S2, and viceversa;

I strongly equivalent – for every derivation from T to R in S1, there
is a derivation from T to R in S2, and viceversa;

I e.g. SKSg and KSg are equivalent but not strongly equivalent



KSg – Remarks

I Cut-free sequent system: all rules fulfill subformula property;

I Down-fragment in deep inference: premisses of rules do not have
new atoms that are not in the conclusion



KSg – Remarks

I Notion of invertible rule of sequent calculus is imported:

I .. and it is used to separate parts of the system (S′ is the cnf of S)



Locality via Atomic Rules - SKS
Objective – make interaction/weakening/contraction all atomic
In sequent calculus:
I atomic axiom may replace a general one, but making atomic a cut,

given a general system, is not a free lunch.
I GS1p (with multiplicative ∧R) does not allow contraction to be

made atomic:
` (a ∧ b), (ā ∨ b̄) ∧ (ā ∨ b̄)

In deep inference:
I Making interaction/cut and weakening (and dual) atomic is easy
I Making atomic contraction requires the medial rule (derivable in

sequent calculus, but not as a rule):



Locality via Atomic Rules - SKS



Locality via Atomic Rules - SKS and KS



Derivability of General Rules

Sketch of proof: cases for weakening, R not an atom (and dual rule)

whereas, for contraction, medial is needed in this case



Derivability of General Rules

I Therefore, KS and KSg are strongly equivalent.

I We may occasionally use general rules in KS, just as shorthand
notation.

I (Atomic) contraction is related to sharing



On Design: Extension to first order
I Structures (Formulae) extended with quantifiers:

I Syntactic equivalence on formulae are extended with

I Remark – the quantifier rules in GS1 are



SKSgq – General, first order
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SKSgq – General, first order

I u↓ – premiss implies conclusion (differently from GS1).

I n↓ – the term τ is not required to be free for x in S{R}, i.e. there
can be quantifiers in context S{ } that may capture variables in τ .

I Both rules seem more local

I Results of the propositional case are extended to the predicate
case. In particular Deduction theorem, admissibility of up-fragment
(and hence indirect proof of cut-elimination)



(S)KSq – Atomic, first order

Instances of contraction over quantified formulae – any interference
with medial towards atomic contraction?

I Two more rules are needed (and their dual ones in the symmetric
system);

I Strong equivalence on the first order KSq and KSgq



Reminder: Cut Elimination in Sequent Calculus
I Above the Cut (in a branching situation), two ’dual’ logical rules

operate on the cut formula (and its dual),

I just on their respective main connective.

I Restricting the cut rule to be atomic would help.

I This method cannot be adapted to deep inference so easily



Cut Elimination in SKS - Idea (Propositional)

I This cut-elimination procedure is inspirational: a mixture between
natural deduction and proper context rewriting

I Based mostly on works by Brünnler and Tiu, e.g. see [1].

I But it does not easily scale up to first order case.



Cut Elimination in SKS - Idea
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Cut Elimination in SKS - Idea



Lemmata for the Proof of Cut Elim’on in SKS
I Each rule ρ in SKS is derivable for i↓, i↑, s and the dual of ρ.

1–Transform the original SKS into one in KS ∪ i↑ (or atomic)

I Atomic cut is derivable for shallow atomic cut (below, left) and s:

2–Deal only with shallow atomic cut

I Any proof of T{a} in KS can be transformed into one of T{t} in KS.
Trace-replace the occurrences of a, bottom-up in a proof – e.g.

3–Generate this way the two initial copies of proofs above the cut



Cut Elimination in SKS
Start with a transformed proof: only shallow atomic cuts as up-rule.
Consider the topmost cut, and generate the two copies of the proof
above the cut (use a/t and ā/t):

Bottom-up in Π1 replace a/R – no effect if a is in the context or in s,m.
Otherwise, fix it (left) to paste it for the cut-eliminated proof (right),



Cut Elimination in SKS
Start with a transformed proof: only shallow atomic cuts as up-rule.
Consider the topmost cut, and generate the two copies of the proof
above the cut (use a/t and ā/t):

Bottom-up in Π1 replace a/R – no effect if a is in the context or in s,m.
Otherwise, fix it (left) to paste it for the cut-eliminated proof (right),



Decomposition and Normal Forms

Studying the permutability of rules in KS/SKS allows the discovery of
ways to decompose proofs/derivations.

(... various transformations, for different logics, but with some
resemblances)



Decomposition and Normal Forms
Example 1: separating cut and interaction

Example 2: separate contraction (not possible in sequent calculus).

Example 3: separate weakening in a proof.



Some Remarks

I Some of these decompositions entail elimination of cuts;

I They can be used for an interpolation theorem;

I The ’layering’ of rules application (decomposition) is informative
and may be used to guide the proof-search process;

I It can also support incremental design of extensions of the system,
with new connectives;

I Choices in the design of inference rules may impact on other
theorems, for example Herbrand’s theorem (a good overview is in
Ralph’s PhD thesis [5])

(.. just to mention a few..)



Some Proposed Activities

I Is it possible to build a derivation with premiss c and conclusion
[(a a) (b c) ā (b̄ c)] in SKS? And in KS ∪ {i ↑}?

I Are KS ∪ {i ↑} and KS ∪ {c ↑} strongly equivalent? Are they
equivalent? Are they equivalent to SKS?

I You might try and prove some of the case analyses that establish
the correspondence between derivations in GS1p+ Cut and in SKS.

I In the translation from CoS to sequent calculus, we have
mentioned (but not even sketched) the need of a lemma to mimic
the deep application of an inference rule ρ in a context S{ }. You
might like to reconstruct that proof.

I Complete the proof that c↑ is derivable in {ac↑,m}.
Deep inference web site: http://alessio.guglielmi.name/res/cos/

http://alessio.guglielmi.name/res/cos/
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