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Plan of the Course

I Purpose: Studying proofs and proofs manipulations, with an
evolutionary spirit: rethinking the traditional methodologies from
the computer science perspective;

I Focus is on aspects of design: (of formalisms and systems therein)
how it affects the structure of proofs and the proof theory.

I Scope: this course is limited to intuitionistic and classical logic only
and ultimately addresses
I Analyticity, Cut elimination, Herbrand theorem;
I The move to deep inference and its theorems;

I Activities (and readings supporting them) are proposed throughout
the slides and appear in this colour. These (extensive) slides
are compact but rich enough to qualify as course notes.



Proof Theory for and from Computer Science

Proof theory is for computer science

I a foundational tool:
it connects semantics with syntax, it is about consistent formal
system and semantics might be absent

I a means for producing practical results:
it studies finitary systems that in principle are implementable
(e.g. functional and logic programming)

I and it interacts with Category Theory that is the other major
founding tool in computing.



Proof Theory for and from Computer Science



Re-thinking the Tradition

"Traditional" proof theoretic methods

I ... are essentially linked to sequential computation (notion of main
connective), whereas we probably want to understand distributed
computation;

I ... originated within classical/intuitionistic logics, whereas we may
need different ones, typically linear and substructural logics;

I ... are too rigid when used for linear and substructural logics, for
they hide to the observer the possibility of relevant
transformations of proof theoretic interest.

"Deep inference" methods proposed to address

I linearity, atomicity, locality, sharing, analyticity and
compositionality,

I with a complexity-aware mindset,

I and extends and expands the traditional methods.



Outline for Today

Survey of Traditional Formalisms and Systems
Subformula Property and Cut Rule in Sequent Calculi
Classical as Extension of Intuitionistic
About Cut Elimination



Hilbert-Tarski (or Frege) Style - Classical

I Deduction/Proof ∆ (a tree) of theorem C (conclusion), from
hypotheses Ai (instances of axioms), built by applying inference
rules (mp and gen):

I Proof of A ⊃ A:



Axiomatic Systems - Some Interim Activities

I Is ∀x.(∀x.A ⊃ A) a theorem that can be proven in the given system?

I Another axiomatic system (propositional), with the same inference
rules:

(HT1)
(HT2)
(A ⊃ (B ⊃ C)) ⊃ (B ⊃ (A ⊃ C))
(A ⊃ B) ⊃ (¬B ⊃ ¬A)
¬¬A ⊃ A
A ⊃ ¬¬A

Do the two axiomatisations prove the same theorems? Would
more initial axiom schemes be an advantage in finding the proof?



Natural Deduction

I introduction and elimination rules for each logical connective;

I notion of proof quite informal (it will then become ’derivability’ in a
given proof system - Gentzen)

I introduction rules: give BHK explanations in terms of direct
provability
I A d.p. of A&B (A ∨ B) consists of proofs of A and B (A or B)
I A d.p of A ⊃ B consists of a proof of the B from the assumption that

there is a proof of A (and assumption then discarded, written as [.])
I A d.p of ⊥ is impossible

I Note: Some rules are just one-step, but the ’dotted’ one traverses
the deduction



Natural Deduction-cont’d

I elimination rules: obtained from introduction rules by an inversion
principle. They have propositions formed by logical constants as
major premiss, and derive their consequences.

I Prawitz’ inversion principle (’65) The conclusion of an elimination
rule with major premiss A ∗ B is already contained in the assumption
used to derive A ∗ B from the ∗I, together with the minor premiss of
the rule.
I i.e. no gain, by introducing and then eliminating a connective in

providing an explanation
I But the ∗E rule is not uniquely determined.

I Generalised inversion principleWhatever follows from the direct
grounds for deriving a proposition must follow from that proposition.



Natural Deduction-cont’d

rule combine conversion



Natural Deduction - Assumptions Management

Management is needed, when discharging assumptions (and sometimes
we must leave them open even if they could be discharged!)

I ND displays only open assumptions that are active in the rule:

I When A is part of a larger context of assumptions, passive at this
stage, that context will have to reflect that A has been discharged.



Natural Deduction - Assumptions Management

I Reading top-down, the first inference is justified because we work
with sets of assumptions, i.e. A− B = A. This is a vacuous
discharge of B

I When B = A the deduction is not even correct. Other principles
may handle this (the unique discharge principle); yet, the design is
not very nice.



Natural Deduction - Assumptions Management

I Multiple discharge of A, at one rule, but there are two separate
assumptions:

I We have to traverse the deduction to chase those locations
(non-locality in deductions)

The sequent style presentation of natural deduction by Gentzen
addresses all these problems.



Natural Deduction (sequent style presentation)
I Γ ` A sequent
I Γ finite set {x1 : A1, . . . , xn : An}, where xi are pairwise disjoint

labels (to keep track of open/closed assumptions); A, Ai formulae
I Notation: Γ, x : A stands for set-union, provided that x is a

pairwise-disjoint label from those in Γ
I Intuitionistic N⊃,∧,∨,⊥I



Natural Deduction (sequent style presentation)
I Γ ` A sequent

I Γ finite set {x1 : A1, . . . , xn : An}, where xi are pairwise disjoint
labels

I Notation: Γ, x : A stands for set-union, provided that x is a
pairwise-disjoint label from those in Γ

I Intuitionistic N⊃,∧,∨,⊥I and classical N⊃,∧,∨,⊥C (¬A .
= A ⊃ ⊥)



Example: proofs of HT1 in N⊃,∧,∨,⊥I

————————————————————————————–
N⊃,∧,∨,⊥I



Example: proof of HT3 in N⊃,∧,∨,⊥C

————————————————————————————–
N⊃,∧,∨,⊥C



Some Remarks
I Asymmetric sequents: only one formula on the right, also for

classical logic?
I ∨E is the only rule with three premises and contains a spurious C

not related to the disjunction;
I rules ⊃I and ∨E require a global view of the context to discharge

the assumptions
I .. and besides negation is treated in an indirect way



Natural Deduction – Some Interim Activities

I Consider the examples illustrated when discussing assumption
management in natural deduction. Reconstruct those cases using
sequent style presentations.

I All that is provable in NI is provable in NC . How to prove it?

I Proving A ≡ B means proving two implications. Can you prove that
(A ∨ ¬B) ≡ ¬(¬A ∧ B) in NI?

I .. and in NC?
I NI is sufficient to prove the Curry-Howard isomorphism between

Natural Deduction and simply typed lambda-calculus, isn’t?



Sequent Calculus: Intuitionistic
Drop the labelling mechanism of natural deduction, the system becomes
more symmetric
I multiset Γ (and ∆) in sequents: Γ ` A (and Γ ` ∆, classical)
I requires a contraction rule (structural) to handle multisets;
I Left/Right rules rather than Intro/Elim rules



A Glance at the Design..

———————————————————————–



A Glance at the Design..

———————————————————————–



A Glance at the Design..

———————————————————————–



A Glance at the Design..

———————————————————————–



Subformula Property and Cut rule

———————————————————————–



Subformula Property and Cut rule

I Subformula Property: only subformulae of the conclusion should
be in the premisses of a rule.

I Cut rule: no subformula property (not a finitary rule)

I Useful, when dealing with semantics or to relate different systems
for the same logic, possibly in different formalisms; bad for
automated deduction;

I Cut-elimination i.e. the cut is admissible: the other rules are
complete for the system (possible, if the system is well designed)

I Contraction is needed, or some intuitionistic theorems would not
be provable in G⊃,∧,∨,⊥I (also needed in proof of cut-elimination).



Relations among Systems

Cut-elimination holds: G⊃,∧,∨,⊥I and G⊃,∧,∨,⊥,./I prove the same
theorems



Natural Deduction in Sequent Presentation –
Some Interim Activities

I Let ¬A be a shorthand for A ⊃ ⊥. Try to prove ¬¬(A ∨ ¬A) in
G⊃,∧,∨,⊥I without using contraction.

I Full details of the translations N, N∗, G and cut elimination are
available in Gallier’s notes. Deductions in normal form correspond
to beta-reductions; now we have cut-elimination as computation.
Can you see such correspondence?

I Cut-free systems better support proof-search as computation
(provided that non-determinism is tamed and there is a nice
operational semantics). We agree on this, don’t we?



Extension to Classical (and 1st order): G⊃,∧,∨,¬,∀,∃C

Introducing more symmetries:

I Multisets also on the right side of the sequent: Γ ` ∆
.. at ’fat’ axiom

I Contraction also on the right side.
On the left is not really needed, but brings symmetry and serves to
see the extension A ∧ A ≡ A, A ∨ A ≡ A.

I Classical: Negation needs a proper treatment

I Additive cut (and in general in all branching rules)



G⊃,∧,∨,¬,∀,∃,./C



G⊃,∧,∨,¬,∀,∃,./C



G⊃,∧,∨,¬,∀,∃,./C



G⊃,∧,∨,¬,∀,∃,./C



LK./

Modify G⊃,∧,∨,¬,∀,∃,./C and accomodate more symmetries:

I Different Axiom (thin) and Cut (multiplicative), and different ∧L,∨R
I Introduce weakening rules

I Weakening and contraction rules induce idempotency on multisets:
they behave as sets A ∧ A ≡ A, A ∨ A ≡ A



LK./



LK./



LK./



LK./



Examples in G⊃,∧,∨,¬,∀,∃,./C (top) and LK./ (bottom)

LK: think ahead if contraction is needed. Contraction on any formula



Examples in LK, first order
Bottom-up, more than one rule is applicabile – how to choose?
I if more than two quantifier rules are applicable, try and apply first

one with a proviso,
I and delay application of quantifier rules otherwise, if possible



Equivalence of G⊃,∧,∨,¬,∀,∃,./C and LK./

I We need two effective procedures, to transform proofs in one
system to equivalent proofs in the other one (by structural
induction)

I E.g., base case and an inductive case to transform a proof Π in LK



Equivalence of G⊃,∧,∨,¬,∀,∃C and LK./

I ..and conversely, the base case to transform a proof Π in LK

I .. the case of a proof whose lowermost rule is a cut, with auxiliary
functions · ← · and · → · to "pad" the whole subproofs (i.e. all its
sequents, both on the left and the right) that may require some
renaming



About Cut-Elimination

I No cut-elimination means no proof theory – compositionality

I G⊃,∧,∨,¬,∀,∃C and LK./ satisfy cut-elimination: a proof with cut is
transformed into a cut-free one;

I a proof with cut is good for analysis, but a cut-free proof is related
to proof search: both proofs are needed for different purposes;

I Refer to the literature for full details on the proof of cut
elimination, we will just sketch, later on, the general idea only.

I Examples of applications of cut-elimination:
I consistency (useful when no semantics is available), interpolation,

Herbrand theorem, separation property, preservation of sign in a
derivation....

I for proof search (reduced search space), automated deduction
(oracles and interactive theorem proving),..

I Boundaries: What is the cut formula – a generic formula? An
atomic formula? (infinite choices in both cases)



About Cut-Elimination

I Syntactical proofs of c.e.: techniques based on permutability of
rules or Girard-Tait
I Provides an algorithm, and it is a "global" transformation on the

whole proof;
I the cost of the transformation is hyperexponential, sometimes

more efficient than semantical means;
I the transformed cut-free proof is usually not smaller in size;
I the only possibility if semantics is not known or is not

straightforward
I Semantical proofs of c.e. (test the truth of a sequent Γ ` ∆: try to

give an evaluation that satisfies Γ and falsifies ∆; a sequent is
formally derivable by the rules if there is no refuting evaluation)
I not constructive (i.e. no algorithm)
I implies a completeness theorem



Example proof after cut-elimination
Proof with cut, and after cut-elimination



Example: Consistency via Cut-Elimination

Prove that LK is consistent.

I Suppose LK inconsistent: then there are proofs for ` A and ` ¬A;
I they can be composed with cut as follows, proving `:

I Cut elimination holds in LK, so there exists a cut-free proof for `;

I ` is neither an axiom nor a conclusion of any rule: contradiction.



Example: Symmetries and Atomicity
The axiom of LK can be replaced by one in atomic form, a ` a
I Induction on the structure of A: the sequent of the form A ` A is

replaced by a proof

I E.g. two inductive cases are

and the other cases are similar.
I "Verifying" an axiom requires constant time.
I Similar result for weakening, but not for contraction.
I Reducing cut to atomic form would require to re-do the

cut-elimination theorem from scratch.



LK - Some Interim Activities

I Consider a proof system LK∗ obtained by modifying LK this way:
I In its sequents, Γ and ∆ are sets rather than multisets;
I it does not have any contraction nor weakening rules;
I there is no cut rule.

Can you formally prove that LK∗ and LK are equivalent proof
system (provability is preserved)? Or can you find a
counterexample?

I Complete the proof to show that the cut rule in LK can be
replaced by a cut rule on atomic formulae.



Proof of Cut Elimination - Intuition

I Study of permutability of instances of cut rules in a proof,
bottom-up, inductively.

I Requires a (complex) induction measure to guarantee termination
of the procedure. The measure takes into account
I how deep in the proof the instance of cut rule is,
I how complex the cut formula is,
I the immediate subproofs/surroundings of the instance of cut

I An easy case, when things work fine.. cut formula is B ∨ C

I Two nasty cases in the proof will eventually suggest not to work
with the cut rule itself for the proof of cut elimination, rather a
generalisation of the rule.



Proof of Cut Elimination - Intuition

I Nasty one: there is a contraction just above the cut

I .. one extra cut, a much bigger proof, requiring duplication of
contexts..



Proof of Cut Elimination - Intuition

I Nasty two: two contractions just above the cut, repeating the
Left/Right pattern

I .. the transformed proof would present again a case on contraction
just above a cut (dual of the previous nasty case). No termination.



Proof of Cut Elimination - Intuition

I Solution to handle the two nasty cases: Use a generalised cut rule
for the cut elimination proof

I Γ, nA multiset with m+ n occurrences of A, when Γ contains m
occurrences of A (m, n > 0).

I When m = n = 1 the generalised cut rule coincides with the usual
one (simulated by cut and contractions).

I The cut-elimination proof will then terminate.



Variant of LK – One Sided GS1p

I Only right side of sequents (multisets): halves the number of rules

I Negation pushed to the atoms, formulae in n.n.f (Ā rather than ¬A)
I Atomic axiom admissible (as in LK).



Variant – Invertible Rules and G3
Invertible Rule: when from the derivability of its conclusion, the
derivability of its premiss(es) follows.
I E.g. ∧L is invertible in GC but not in LK:

I A feature that can be useful for bottom-up proof search;
I G3-style systems (Ketonen ’44)

Ax−−−−−−−−−−−−−−
a,Γ ⊢∆,a

Γ ⊢∆,A A,Γ ′ ⊢∆′
cut−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ ,Γ ′ ⊢∆,∆′
⊥L −−−−−−−−−−−−−−−−−−⊥,Γ ⊢∆
Γ ,A,B ⊢∆

∧L −−−−−−−−−−−−−−−−−−
Γ ,A∧B ⊢∆

Γ ⊢∆,A Γ ⊢∆,B
∧R −−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ ⊢∆,A∧B

A,Γ ⊢∆ B ,Γ ⊢∆
∨L −−−−−−−−−−−−−−−−−−−−−−−−−−−A∨B ,Γ ⊢∆

Γ ⊢∆,A,B
∨R −−−−−−−−−−−−−−−−−−
Γ ⊢∆,A∨B

Γ ⊢A B ,Γ ⊢∆
⊃L −−−−−−−−−−−−−−−−−−−−−−A⊃ B ,Γ ⊢∆

A,Γ ⊢∆,B
⊃R −−−−−−−−−−−−−−−−−−
Γ ⊢∆,A⊃ B



Example G3c (classical)

I Variant of GC , negation defined as ¬A = A ⊃ ⊥;

I atomic check on axiom, but in contexts Γ and ∆

I additive context in logical rules; multiplicative cut

I cut-elimination holds

I invertible rules make weakening and contraction admissible

Ax −−−−−−−−
A⊢A

⊃R −−−−−−−−−−−⊢A,¬A
∨R −−−−−−−−−−−−−⊢A∨¬A

⊥L −−−−−−−−⊥ ⊢⊥
⊃L −−−−−−−−−−−−−−−−−−−−−−−−−−−−¬(A∨¬A) ⊢ ⊥
⊃R −−−−−−−−−−−−−−−−−−−−−⊢ ¬¬(A∨¬A)

Ax−−−−−−−−−−−−−−
a,Γ ⊢∆,a

Γ ⊢∆,A A,Γ ′ ⊢∆′
cut−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ ,Γ ′ ⊢∆,∆′
⊥L −−−−−−−−−−−−−−−−−−⊥,Γ ⊢∆
Γ ,A,B ⊢∆

∧L −−−−−−−−−−−−−−−−−−
Γ ,A∧B ⊢∆

Γ ⊢∆,A Γ ⊢∆,B
∧R −−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ ⊢∆,A∧B

A,Γ ⊢∆ B ,Γ ⊢∆
∨L −−−−−−−−−−−−−−−−−−−−−−−−−−−A∨B ,Γ ⊢∆

Γ ⊢∆,A,B
∨R −−−−−−−−−−−−−−−−−−
Γ ⊢∆,A∨B

Γ ⊢A B ,Γ ⊢∆
⊃L −−−−−−−−−−−−−−−−−−−−−−A⊃ B ,Γ ⊢∆

A,Γ ⊢∆,B
⊃R −−−−−−−−−−−−−−−−−−
Γ ⊢∆,A⊃ B



Conclusions and Notes

I Gallier’s coursenotes [2] available on the web (in revised version) is
the most suitable reference, for the level of detail, for many topics
presented today.

I Parts on the G3C systems may be found in traditional books, such
as Troelstra and Schwichtenberg’s book [3]. A quick tutorial on
proof theory addressing proof search is this [1]. Both references
are anyway departing very quickly from the intended focus and
scope of this specific course.

I These topics are all quite standard to be widely offered, for
example at ESSLLI. Old courses of mine at TU Dresden offer direct
links to some resources, e.g.
http://www.cs.bath.ac.uk/pb/EMCL/2012/SPAL-12/
index.html

I Some of the interim activities proposed would require more time
and are there just for the interested reader.

http://www.cs.bath.ac.uk/pb/EMCL/2012/SPAL-12/index.html
http://www.cs.bath.ac.uk/pb/EMCL/2012/SPAL-12/index.html
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