Incompleteness for higher order arithmetic and the limit of incompleteness

Yong Cheng

School of Philosophy Wuhan University, Wuhan, China International workshop on Proof Theory 2018, Ghent, Belgium

(中) (종) (종) (종) (종) (종)

Modern logic updates and deepens our understanding of the following core concepts of philosophy:

Incompleteness for higher order arithmetic and the limit of incompleteness

Yong Cheng

・ロ・・四・・ヨ・・ヨ・ シック

Modern logic updates and deepens our understanding of the following core concepts of philosophy:

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

 Truth, Proof, Infinity, Computation, Set, Number, Definability Incompleteness for higher order arithmetic and the limit of incompleteness

Modern logic updates and deepens our understanding of the following core concepts of philosophy:

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- Truth, Proof, Infinity, Computation, Set, Number, Definability
- Self-reference, *Incompleteness*, Independence, Decidability

Incompleteness for higher order arithmetic and the limit of incompleteness

Modern logic updates and deepens our understanding of the following core concepts of philosophy:

- Truth, Proof, Infinity, Computation, Set, Number, Definability
- Self-reference, *Incompleteness*, Independence, Decidability
- Implication, Consistency, Paradox, Contradiction

Incompleteness for higher order arithmetic and the limit of incompleteness

Modern logic updates and deepens our understanding of the following core concepts of philosophy:

- Truth, Proof, Infinity, Computation, Set, Number, Definability
- Self-reference, *Incompleteness*, Independence, Decidability
- Implication, Consistency, Paradox, Contradiction
- ► Absoluteness, Knowability, Necessity, Vagueness, etc.

Incompleteness for higher order arithmetic and the limit of incompleteness

Yong Cheng

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 - のへで

Incompleteness for higher order arithmetic and the limit of incompleteness

Yong Cheng

Part One: The current state

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ● ○ ○ ○ ○

Incompleteness for higher order arithmetic and the limit of incompleteness

Yong Cheng

The current state of research:

・ロト ・日下・・日下・・日下・今日・

Incompleteness for higher order arithmetic and the limit of incompleteness

Yong Cheng

The current state of research:

(1) Property of provability and truth

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

The current state of research:

- (1) Property of provability and truth
- (2) Generalization of Incompleteness theorem to arithmetical definable theory

Incompleteness for higher order arithmetic and the limit of incompleteness

Yong Cheng

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

The current state of research:

- (1) Property of provability and truth
- (2) Generalization of Incompleteness theorem to arithmetical definable theory
- (3) Self-reference-free proof of incompleteness theorem

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Incompleteness for higher order arithmetic and the limit of incompleteness

The current state of research:

- (1) Property of provability and truth
- (2) Generalization of Incompleteness theorem to arithmetical definable theory
- (3) Self-reference-free proof of incompleteness theorem
- (4) Proving Incompleteness via logical paradox

Incompleteness for higher order arithmetic and the limit of incompleteness

Yong Cheng

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

The current state of research:

- (1) Property of provability and truth
- (2) Generalization of Incompleteness theorem to arithmetical definable theory
- (3) Self-reference-free proof of incompleteness theorem
- (4) Proving Incompleteness via logical paradox
- (5) The intensionality of G2 for PA

Incompleteness for higher order arithmetic and the limit of incompleteness

Yong Cheng

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The current state of research:

- (1) Property of provability and truth
- (2) Generalization of Incompleteness theorem to arithmetical definable theory
- (3) Self-reference-free proof of incompleteness theorem
- (4) Proving Incompleteness via logical paradox
- (5) The intensionality of G2 for PA
- (6) Incompleteness and provability logic

Incompleteness for higher order arithmetic and the limit of incompleteness

Yong Cheng

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

Gödel's incompleteness theorem

Two goals of Hilbert's program:

Completeness A proof that all true mathematical statements can be proved in the formalism of mathematics.

Consistency A proof that no contradiction can be obtained in the formalism of mathematics using only "finitistic" reasoning about finite mathematical objects.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Incompleteness for higher order arithmetic and the limit of incompleteness

Gödel's incompleteness theorem

Two goals of Hilbert's program:

Completeness A proof that all true mathematical statements can be proved in the formalism of mathematics.

Consistency A proof that no contradiction can be obtained in the formalism of mathematics using only "finitistic" reasoning about finite mathematical objects.

Theorem (Gödel-Rosser)

- Gödel-Rosser first incompleteness theorem (G1): If T is a recursively axiomatized consistent extension of PA, then T is not complete.
- (2) Gödel's second incompleteness theorem (G2): If T is a recursively axiomatized consistent extension of PA, then the consistency of T is not provable in T.

Incompleteness for higher order arithmetic and the limit of incompleteness

Provability and Truth

Definition

- 1. **Prof**={ $\ulcorner \phi \urcorner$: ϕ is sentence and **PA** $\vdash \phi$ }.
- 2. **Truth**={ $\ulcorner \phi \urcorner$: ϕ is sentence and $\mathfrak{N} \models \phi$ } where $\mathfrak{N} = (\mathbb{N}, +, \cdot)$.

Theorem (Tarski's theorem on undefinability of truth) **Truth** *is not definable in* \mathfrak{N} .

Incompleteness for higher order arithmetic and the limit of incompleteness

Yong Cheng

Provability and Truth

Definition

- 1. **Prof**={ $\ulcorner \phi \urcorner$: ϕ is sentence and **PA** $\vdash \phi$ }.
- 2. **Truth**={ $\ulcorner \phi \urcorner$: ϕ is sentence and $\mathfrak{N} \models \phi$ } where $\mathfrak{N} = (\mathbb{N}, +, \cdot)$.

Theorem (Tarski's theorem on undefinability of truth)

Truth is not definable in \mathfrak{N} .

Truth	Prof
not definable in ${\mathfrak N}$	definable in $\mathfrak N$
not arithmetic	recursive eumerable
not recursive	not recursive
not representable in PA	not representable in PA
productive	not productive

Incompleteness for higher order arithmetic and the limit of incompleteness

Solovay's arithmetical completeness theorem

Definition

An arithmetic interpretation is a function that assigns to each formula of modal logic a sentence of the language of arithmetic.

Theorem (Solovay)

Arithmetical completeness theorem for **GL** For any modal formula ϕ , **GL** $\vdash \phi$ iff for every arithmetic interpretation f, **PA** $\vdash \phi^{f}$.

Arithmetical completeness theorem for **GLS** For any modal formula ϕ , **GLS** $\vdash \phi$ iff for every arithmetic interpretation $f, \mathfrak{N} \models \phi^{f}$. Incompleteness for higher order arithmetic and the limit of incompleteness

Definition

- (1) We say T is Σ_n -definable iff there is a Σ_n formula $\alpha(x)$ such that $\{n \in \omega : \mathfrak{N} \models \alpha(\overline{n})\} = \{\ulcorner \phi \urcorner : \phi \in T\}.$
- (2) We say T is Σ_n -sound if and only if for all Σ_n sentences ϕ , if $T \vdash \phi$, then $\mathfrak{N} \models \phi$.
 - Gödel's incompleteness theorem hold for Σ₁-definable theories containing PA.
 - We generalize Gödel's incompleteness theorem for arithmetically definable theories.

Incompleteness for higher order arithmetic and the limit of incompleteness

Yong Cheng

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - のへで

Definition

- (1) We say T is Σ_n -definable iff there is a Σ_n formula $\alpha(x)$ such that $\{n \in \omega : \mathfrak{N} \models \alpha(\overline{n})\} = \{\ulcorner \phi \urcorner : \phi \in T\}.$
- (2) We say T is Σ_n -sound if and only if for all Σ_n sentences ϕ , if $T \vdash \phi$, then $\mathfrak{N} \models \phi$.
 - Gödel's incompleteness theorem hold for Σ₁-definable theories containing PA.
 - We generalize Gödel's incompleteness theorem for arithmetically definable theories.

Theorem (Kikuchi, Kurahashi, 2017)

- (1) Every \sum_{n+1} -definable \sum_n -sound theory is incomplete.
- Every consistent theory having Π_{n+1} set of theorems has a true but unprovable Π_n sentence.
- (3) Any \sum_{n+1} -definable \sum_{n} -sound theory can not prove its own \sum_{n} -soundness.

Incompleteness for higher order arithmetic and the limit of incompleteness

Different proofs of incompleteness theorem

- Constructive proof: directly construct the independence sentence
- Proof via diagonalization lemma
- Proof via logical paradox
- Proof via recursion theory
- Proof via model theory

Incompleteness for higher order arithmetic and the limit of incompleteness

Yong Cheng

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへぐ

Different proofs of incompleteness theorem

- Constructive proof: directly construct the independence sentence
- Proof via diagonalization lemma
- Proof via logical paradox
- Proof via recursion theory
- Proof via model theory

Question

Could we give a self-reference-free proof of Gödel's incompleteness theorem?

Incompleteness for higher order arithmetic and the limit of incompleteness

Yong Cheng

・ロト・日本・日本・日本・日本・日本・日本

Incompleteness theorem and logical paradox

- Incompleteness is closely related to paradox.
- "Any epistemological antinomy could be used for a similar proof of the existence of undecidable propositions"—-Gödel

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Incompleteness for higher order arithmetic and the limit of incompleteness

Incompleteness theorem and logical paradox

Incompleteness is closely related to paradox.

 "Any epistemological antinomy could be used for a similar proof of the existence of undecidable propositions"—-Gödel

Different proofs of incompleteness theorem via paradox:

Gödel Liar Paradox

Boolos Berry's paradox

Kurahashi Yablo's Paradox

Kritchman Unexpected Examination Paradox

Cieśliński Grelling's paradox

Incompleteness for higher order arithmetic and the limit of incompleteness

Yong Cheng

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Numeration and provability predicate

Definition

Let T be any recursively axiomatized consistent extension of **PA** and $\alpha(x)$ be a formula in the same language.

- 1. $\alpha(x)$ is a numeration of T if for any $n, \mathbf{PA} \vdash \alpha(\overline{n})$ iff n is the Gödel number of some axiom of T.
- Let α(x) be a numeration of T. Define the formula Prf_α(x, y) saying "y is the Gödel number of a proof of the formula with Gödel number x from the set of all sentences satisfying α(x)".
- Define the provability predicate Pr_α(x) of α(x) as Pr_α(x) ≜ ∃yPrf_α(x, y) and consistency statement Con_α as ≜ ¬Pr_α(⊥).

Incompleteness for higher order arithmetic and the limit of incompleteness

Drivability Conditions and G2

Let T be a recursively axiomatized consistent extension of **PA** and $\alpha(x)$ be any Σ_1 numeration of T. Then $\mathbf{Pr}_{\alpha}(x)$ satisfies the following properties:

D1 If $T \vdash \varphi$, then $\mathbf{PA} \vdash \mathbf{Pr}_{\alpha}(\overline{\ulcorner \varphi \urcorner})$; D2 If φ is Σ_1 sentence, then $\mathbf{PA} \vdash \varphi \rightarrow \mathbf{Pr}_{\alpha}(\overline{\ulcorner \varphi \urcorner})$; D3 $\mathbf{PA} \vdash \mathbf{Pr}_{\alpha}(\overline{\ulcorner \varphi \urcorner}) \rightarrow (\mathbf{Pr}_{\alpha}(\overline{\ulcorner \varphi \rightarrow \psi \urcorner}) \rightarrow \mathbf{Pr}_{\alpha}(\overline{\ulcorner \psi \urcorner}))$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Incompleteness for higher order arithmetic and the limit of incompleteness

Drivability Conditions and **G2**

Let T be a recursively axiomatized consistent extension of **PA** and $\alpha(x)$ be any Σ_1 numeration of T. Then $\mathbf{Pr}_{\alpha}(x)$ satisfies the following properties:

D1 If
$$T \vdash \varphi$$
, then $\mathbf{PA} \vdash \mathbf{Pr}_{\alpha}(\overline{\ulcorner \varphi \urcorner})$;
D2 If φ is Σ_1 sentence, then $\mathbf{PA} \vdash \varphi \rightarrow \mathbf{Pr}_{\alpha}(\overline{\ulcorner \varphi \urcorner})$;
D3 $\mathbf{PA} \vdash \mathbf{Pr}_{\alpha}(\overline{\ulcorner \varphi \urcorner}) \rightarrow (\mathbf{Pr}_{\alpha}(\overline{\ulcorner \varphi \rightarrow \psi \urcorner}) \rightarrow \mathbf{Pr}_{\alpha}(\overline{\ulcorner \psi \urcorner}))$.

Theorem (G2, Gödel)

Let T be any recursively axiomatized consistent extension of **PA**. If $\alpha(x)$ is any Σ_1 numeration of T, then $T \nvDash Con_{\alpha}$.

Incompleteness for higher order arithmetic and the limit of incompleteness

The intensionality of G2 for PA

The intensional problem of G2 Whether G2 holds for PA depends on the numeration of PA.

Theorem (Feferman)

There exists a Π_1 numeration $\pi(x)$ of **PA** such that **G2** fails: **PA** \vdash **Con** $_{\pi}$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Incompleteness for higher order arithmetic and the limit of incompleteness

The intensionality of G2 for PA

The intensional problem of G2 Whether G2 holds for PA depends on the numeration of PA.

Theorem (Feferman)

There exists a Π_1 numeration $\pi(x)$ of **PA** such that **G2** fails: **PA** \vdash **Con** $_{\pi}$.

- ► Whether **G2** holds for **PA** depends on the numeration of **PA**.
- D1-D3 are the sufficient condition but not the necessary condition to show that G2 holds for PA.
- There exists a Σ₂ numeration α(x) of PA such that D2 does not hold for Pr_α(x) but G2 holds for PA.

Incompleteness for higher order arithmetic and the limit of incompleteness

Incompleteness and provability logic

Incompleteness for higher order arithmetic and the limit of incompleteness

Yong Cheng

Let T be any recursively axiomatized consistent extension of **PA** and $\alpha(x)$ be a numeration of T. The provability logic **PL**_{α}(T) is the set of all modal principles which are verifiable in T when the modal operator \Box is interpreted as **Pr**_{α}(x).

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Incompleteness and provability logic

Let T be any recursively axiomatized consistent extension of **PA** and $\alpha(x)$ be a numeration of T. The provability logic **PL**_{α}(T) is the set of all modal principles which are verifiable in T when the modal operator \Box is interpreted as **Pr**_{α}(x).

Theorem (Solovay's arithmetical completeness theorem) Let T be any recursively axiomatized consistent extension of **PA**. If T is Σ_1 -sound, then for any Σ_1 numeration $\alpha(x)$ of T, the provability logic **PL**_{α}(T) is precisely **GL**. Incompleteness for higher order arithmetic and the limit of incompleteness

Classification of provability logic under numeration

- The provability logic PL_τ(T) of a Σ_n numeration τ(x) of T is a normal modal logic.
- ► We could classify provability logic according to the numeration of *T*.

Incompleteness for higher order arithmetic and the limit of incompleteness

Yong Cheng

Classification of provability logic under numeration

- The provability logic PL_τ(T) of a Σ_n numeration τ(x) of T is a normal modal logic.
- ► We could classify provability logic according to the numeration of *T*.

Question

Which normal modal logic is a provability logic $PL_{\tau}(T)$ of some Σ_n numeration $\tau(x)$ of T?

Incompleteness for higher order arithmetic and the limit of incompleteness

Yong Cheng

・ロト・西・・日・・日・・日・

Classification of provability logic under numeration

- The provability logic PL_τ(T) of a Σ_n numeration τ(x) of T is a normal modal logic.
- ► We could classify provability logic according to the numeration of *T*.

Question

Which normal modal logic is a provability logic $PL_{\tau}(T)$ of some Σ_n numeration $\tau(x)$ of T?

Theorem (Kurahashi, 2018)

- 1. For any recursively axiomatized consistent extension T of **PA**, there exists a Σ_2 numeration $\alpha(x)$ of T such that the provability logic **PL** $_{\alpha}(T)$ is **K**.
- For each n ≥ 2, there exists a Σ₂ numeration τ(x) of T such that the provability logic PL_τ(T) coincides with modal logic K + □(□ⁿp → p) → □p.

Incompleteness for higher order arithmetic and the limit of incompleteness

Incompleteness for higher order arithmetic and the limit of incompleteness

Yong Cheng

Part Two: Understanding incompleteness

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで
Incompleteness for higher order arithmetic and the limit of incompleteness

Yong Cheng

Motivation Understanding incompleteness: Exploring the relationship between incompleteness, self-reference, provability logic, logical paradox and formal theory of truth

In this talk, I focus on the following two questions about incompleteness:

Motivation Understanding incompleteness: Exploring the relationship between incompleteness, self-reference, provability logic, logical paradox and formal theory of truth

In this talk, I focus on the following two questions about incompleteness:

1. Incompleteness for high order arithmetic

Incompleteness for higher order arithmetic and the limit of incompleteness

Motivation Understanding incompleteness: Exploring the relationship between incompleteness, self-reference, provability logic, logical paradox and formal theory of truth

In this talk, I focus on the following two questions about incompleteness:

- 1. Incompleteness for high order arithmetic
- 2. The limit of Incompleteness for subsystems of PA

Incompleteness for higher order arithmetic and the limit of incompleteness

Yong Cheng

・ロト・日本・日本・日本・日本・日本

Mathematical examples of G1 for PA

Gödel's proof of G1 uses meta-mathematics and the independent sentence Gödel constructed (Gödel's sentence) is of meta-mathematical nature and has no real mathematical content.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Incompleteness for higher order arithmetic and the limit of incompleteness

Mathematical examples of G1 for PA

Gödel's proof of G1 uses meta-mathematics and the independent sentence Gödel constructed (Gödel's sentence) is of meta-mathematical nature and has no real mathematical content.

Question

Could we find a sentence about arithmetic with interesting mathematical contents which is independent of **PA**?

Incompleteness for higher order arithmetic and the limit of incompleteness

Yong Cheng

Mathematical examples of G1 for PA

Gödel's proof of G1 uses meta-mathematics and the independent sentence Gödel constructed (Gödel's sentence) is of meta-mathematical nature and has no real mathematical content.

Question

Could we find a sentence about arithmetic with interesting mathematical contents which is independent of **PA**?

Theorem (Paris-Harrington)

If **PA** is consistent, then there exists a sentence ϕ of combinatorial contents such that $\mathfrak{N} \models \phi$, but ϕ is independent of **PA**.

Incompleteness for higher order arithmetic and the limit of incompleteness

Incompleteness for high order arithmetic

Definition

Definition of higher order arithmetic:

- (1) $Z_2 = ZFC^- + Every set is countable.^1$
- (2) $Z_3 = ZFC^- + \mathcal{P}(\omega)$ exists + Every set is of cardinality $\leq \beth_1$.
- (3) Z₄ = ZFC[−] + P(P(ω)) exists + Every set is of cardinality ≤ □₂.

Corollary

If Z_2 is consistent, then there is a true sentence about analysis which is not provable in Z_2 .

 1 ZFC⁻ denotes ZFC with the Power Set Axiom deleted and Collection instead of Replacement.

Incompleteness for higher order arithmetic and the limit of incompleteness

Incompleteness for higher order arithmetic and the limit of incompleteness

Yong Cheng

Fact

Many classic mathematical theorems about analysis which are expressible in Z_2 are provable in Z_2 .

Fact

Many classic mathematical theorems about analysis which are expressible in Z_2 are provable in Z_2 .

Question

Relativized Hilbert's program to Z_2 Is Z_2 complete for classic mathematical theorems expressible in Z_2 ?

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Incompleteness for higher order arithmetic and the limit of incompleteness

Incompleteness for higher order arithmetic and the limit of incompleteness

Yong Cheng

Fact

Many classic mathematical theorems about analysis which are expressible in Z_2 are provable in Z_2 .

Question

Relativized Hilbert's program to Z_2 Is Z_2 complete for classic mathematical theorems expressible in Z_2 ?

Harrington's theorem $Det(\Sigma_1^1)$ implies 0^{\sharp} exists.

Definition

We let Harrington's Principle, HP for short, denote the following statement: $\exists x \in 2^{\omega} \forall \alpha (\alpha \text{ is countable } x\text{-admissible} \rightarrow \alpha \text{ is an L-cardinal}).$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Incompleteness for higher order arithmetic and the limit of incompleteness

Harrington's theorem $Det(\Sigma_1^1)$ implies 0^{\sharp} exists.

Definition

We let Harrington's Principle, HP for short, denote the following statement: $\exists x \in 2^{\omega} \forall \alpha (\alpha \text{ is countable } x\text{-admissible} \rightarrow \alpha \text{ is an L-cardinal}).$

Harrington's proof of " $Det(\Sigma_1^1)$ implies 0^{\sharp} exists" in ZF is done in two steps:

Incompleteness for higher order arithmetic and the limit of incompleteness

Yong Cheng

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Harrington's theorem $Det(\Sigma_1^1)$ implies 0^{\sharp} exists.

Definition

We let Harrington's Principle, HP for short, denote the following statement: $\exists x \in 2^{\omega} \forall \alpha (\alpha \text{ is countable } x\text{-admissible} \rightarrow \alpha \text{ is an L-cardinal}).$

Harrington's proof of " $Det(\Sigma_1^1)$ implies 0^{\sharp} exists" in ZF is done in two steps:

First Step $Det(\Sigma_1^1)$ implies HP;

Incompleteness for higher order arithmetic and the limit of incompleteness

Yong Cheng

▲ロト ▲理ト ▲ヨト ▲ヨー シタの

Harrington's theorem $Det(\Sigma_1^1)$ implies 0^{\sharp} exists.

Definition

We let Harrington's Principle, HP for short, denote the following statement: $\exists x \in 2^{\omega} \forall \alpha (\alpha \text{ is countable } x\text{-admissible} \rightarrow \alpha \text{ is an L-cardinal}).$

Harrington's proof of " $Det(\Sigma_1^1)$ implies 0^{\sharp} exists" in ZF is done in two steps:

First Step $Det(\Sigma_1^1)$ implies HP;

Second Step HP implies 0^{\sharp} exists.

Incompleteness for higher order arithmetic and the limit of incompleteness

Yong Cheng

・ロト・日本・日本・日本・日本・日本

Harrington's theorem $Det(\Sigma_1^1)$ implies 0^{\sharp} exists.

Definition

We let Harrington's Principle, HP for short, denote the following statement: $\exists x \in 2^{\omega} \forall \alpha (\alpha \text{ is countable } x\text{-admissible} \rightarrow \alpha \text{ is an L-cardinal}).$

Harrington's proof of " $Det(\Sigma_1^1)$ implies 0^{\sharp} exists" in ZF is done in two steps:

First Step $Det(\Sigma_1^1)$ implies HP;

Second Step HP implies 0^{\sharp} exists.

In ZF we have

$$Det(\Sigma_1^1) \Leftrightarrow \mathsf{HP} \Leftrightarrow 0^{\sharp}$$
 exists.

Incompleteness for higher order arithmetic and the limit of incompleteness

Yong Cheng

・ロト・日本・日本・日本・日本・日本

The first step "Det(Σ₁¹) implies HP" is provable in Z₂.

Incompleteness for higher order arithmetic and the limit of incompleteness

Yong Cheng

・ロト ・母 ト ・目 ・ ・ 目 ・ うへぐ

The first step "Det(Σ₁¹) implies HP" is provable in Z₂.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Question

Is 'HP implies 0^{\sharp} exists" provable in Z₂?

Incompleteness for higher order arithmetic and the limit of incompleteness

The first step "Det(Σ₁¹) implies HP" is provable in Z₂.

Question

Is "HP implies 0^{\sharp} exists" provable in Z₂?

The counterexample I find is the sentence: "HP implies 0^{\sharp} exists":

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Incompleteness for higher order arithmetic and the limit of incompleteness

The first step "Det(Σ₁¹) implies HP" is provable in Z₂.

Question

Is "HP implies 0^{\sharp} exists" provable in Z₂?

The counterexample I find is the sentence: "HP implies 0^{\sharp} exists":

Theorem

- (1) "HP implies 0^{\sharp} exists" is not provable in Z₂.
- (2) "HP implies 0^{\sharp} exists" is not provable in Z₃.
- (3) "HP implies 0^{\sharp} exists" is provable in Z₄.

So Z_4 is the minimal system in higher order arithmetic to show that 'HP implies 0^{\sharp} exists".

Incompleteness for higher order arithmetic and the limit of incompleteness

Incompleteness for higher order arithmetic and the limit of incompleteness

Yong Cheng

 We find an interesting classic mathematical theorem from set theory which is expressible in Z₂ but not provable in Z₂: "HP implies 0[#] exists".

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Incompleteness for higher order arithmetic and the limit of incompleteness

We find an interesting classic mathematical theorem from set theory which is expressible in Z₂ but not provable in Z₂: "HP implies 0[#] exists".

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

• "HP implies 0^{\sharp} exists" is also not provable in Z₃.

Incompleteness for higher order arithmetic and the limit of incompleteness

We find an interesting classic mathematical theorem from set theory which is expressible in Z₂ but not provable in Z₂: "HP implies 0[#] exists".

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- "HP implies 0^{\sharp} exists" is also not provable in Z₃.
- But, in Z_4 , HP is equivalent to 0^{\sharp} exists.

Incompleteness for higher order arithmetic and the limit of incompleteness

- We find an interesting classic mathematical theorem from set theory which is expressible in Z₂ but not provable in Z₂: "HP implies 0[#] exists".
- "HP implies 0^{\sharp} exists" is also not provable in Z₃.
- But, in Z_4 , HP is equivalent to 0^{\sharp} exists.
- Hence, Z₄ is the minimal system in higher order arithmetic to show that HP implies 0[#] exists.

Incompleteness for higher order arithmetic and the limit of incompleteness

Yong Cheng

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

- We find an interesting classic mathematical theorem from set theory which is expressible in Z₂ but not provable in Z₂: "HP implies 0[#] exists".
- "HP implies 0[#] exists" is also not provable in Z₃.
- But, in Z_4 , HP is equivalent to 0^{\sharp} exists.
- Hence, Z₄ is the minimal system in higher order arithmetic to show that HP implies 0[#] exists.
- Theorem (joint work with Ralf Schindler)
 - 1. $Z_2 + HP$ is equiconsistent with ZFC.
 - 2. Z₃ + HP is equiconsistent with ZFC + there exists a remarkable cardinal.

Incompleteness for higher order arithmetic and the limit of incompleteness

Finding the limit of Incompleteness for subsystems of **PA**

Question Exactly how much information of **PA** is needed for the proof of **G1** and **G2**?

Goal Finding the limit of Incompleteness for subsystems of **PA**.

- An interpretation of a theory T in a theory S is a mapping from formulas of T to formulas of S that maps all axioms of T to sentences provable in S.
- Let Int(S) denote the degree of interpretation of theory S. Int(T) < Int(S) means that T is interpretable in S but S is not interpretable in T. Int(T) = Int(S) means that T and S are mutually interpretable.
- Interpretability can be accepted as a measure of strength of first order theory.

Incompleteness for higher order arithmetic and the limit of incompleteness

Definition

Let T be a recursively axiomatizable consistent theory.

- 1. **G1** holds for T iff for any recursively axiomatizable consistent theory S, if T is interpretable in S, then S is undecidable.
- 2. T is essentially undecidable iff any recursively axiomatizable consistent extension of T is undecidable.
- 3. T is essentially incomplete iff any recursively axiomatizable consistent extension of T is imcomplete.

Proposition

Let T be a recursively axiomatizable consistent theory. The followings are equivalent:

- 1. **G1** holds for T.
- 2. T is essentially undecidable.
- 3. T is essentially incomplete.

Incompleteness for higher order arithmetic and the limit of incompleteness

Yong Cheng

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

Robinson's **Q**

Question

Could we find a theory *S* with minimal degree of interpretation such that **G1** holds for *S*?

Definition

Let Robinson's \mathbf{Q} be the system consisting of the following sentences:

1.
$$\forall x \forall y (\mathbf{S}x = \mathbf{S}y \rightarrow x = y);$$

2. $\forall x (\mathbf{S}x \neq \mathbf{0});$
3. $\forall x (x \neq \mathbf{0} \rightarrow \exists yx = \mathbf{S}y);$
4. $\forall x \forall y (x + \mathbf{0} = x);$
5. $\forall x \forall y (x + \mathbf{S}y = \mathbf{S}(x + y));$
6. $\forall x (x \cdot \mathbf{0} = \mathbf{0});$
7. $\forall x \forall y (x \cdot \mathbf{S}y = x \cdot y + x).$

Incompleteness for higher order arithmetic and the limit of incompleteness

Yong Cheng

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

System R

We work on $L(\overline{0}, \dots, \overline{n}, \dots, +, \cdot, \leq)$ with infinitely many constants as names for natural numbers and with \leq as primitive symbol.

Definition

Let **R** be the system consisting of schemes $A \times 1 - A \times 5$ where $m, n \in \mathbb{N}$.

 $Ax1 \quad \overline{m} + \overline{n} = \overline{m + n};$ $Ax2 \quad \overline{m} \neq \overline{n} \text{ if } m \neq n;$ $Ax3 \quad \overline{m} \cdot \overline{n} = \overline{m \cdot n};$ $Ax4 \quad \forall x (x \leq \overline{n} \rightarrow x = \overline{0} \lor \cdots \lor x = \overline{n});$ $Ax5 \quad \forall x (x \leq \overline{n} \lor \overline{n} \leq x).$

Theorem

(Albert Visser) Suppose T is an R.E. theory. Then T is locally finite (any finite sub-theory of T has a finite model) iff T is interpretable in \mathbf{R} .

Incompleteness for higher order arithmetic and the limit of incompleteness

Properties of ${\bm Q}$ and ${\bm R}$

- R is a sub-theory of Q; Q is finitely axiomatizable but R is not.
- 2. **Q** is minimal essentially undecidable; **R** is not minimal essentially undecidable.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

3. $Int(\mathbf{R}) < Int(\mathbf{Q})$ since \mathbf{Q} is not interpretable in \mathbf{R} .

Incompleteness for higher order arithmetic and the limit of incompleteness

Properties of ${\bm Q}$ and ${\bm R}$

- R is a sub-theory of Q; Q is finitely axiomatizable but R is not.
- 2. **Q** is minimal essentially undecidable; **R** is not minimal essentially undecidable.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

3. $Int(\mathbf{R}) < Int(\mathbf{Q})$ since \mathbf{Q} is not interpretable in \mathbf{R} .

Theorem (Folklore) **G1** holds for **R**.

Incompleteness for higher order arithmetic and the limit of incompleteness

Properties of ${\bf Q}$ and ${\bf R}$

- R is a sub-theory of Q; Q is finitely axiomatizable but R is not.
- 2. **Q** is minimal essentially undecidable; **R** is not minimal essentially undecidable.
- 3. $Int(\mathbf{R}) < Int(\mathbf{Q})$ since \mathbf{Q} is not interpretable in \mathbf{R} .

Theorem (Folklore)

G1 holds for **R**.

Question

Could we find a theory S such that **G1** holds for S and $Int(S) < Int(\mathbf{R})$?

Incompleteness for higher order arithmetic and the limit of incompleteness

Yong Cheng

・ロト・日本・日本・日本・日本・日本

System $\overline{\mathbf{R}}$

Definition

Let $\overline{\mathbf{R}}$ be the system consisting of schemes $\Omega_2, \Omega_3, \Omega'_4$ where $m, n \in \mathbb{N}$.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

 $Ax2 \ \overline{m} \neq \overline{n} \ if \ m \neq n;$ $Ax3 \ \overline{m} \cdot \overline{n} = \overline{m \cdot n};$ $Ax' \ \forall x (x \le \overline{n} \leftrightarrow x = \overline{0} \lor \cdots \lor x = \overline{n}).$ Incompleteness for higher order arithmetic and the limit of incompleteness

System $\overline{\mathbf{R}}$

Definition

Let $\overline{\mathbf{R}}$ be the system consisting of schemes $\Omega_2, \Omega_3, \Omega'_4$ where $m, n \in \mathbb{N}$.

 $Ax2 \ \overline{m} \neq \overline{n} \ if \ m \neq n;$ $Ax3 \ \overline{m} \cdot \overline{n} = \overline{m \cdot n};$ $Ax' \ \forall x (x \le \overline{n} \leftrightarrow x = \overline{0} \lor \cdots \lor x = \overline{n}).$

 $\overline{\mathbf{R}}$ is minimal essentially undecidable: if deleting any axiom of $\overline{\mathbf{R}}$, then the remaining sub-theory is not essentially undecidable.

Incompleteness for higher order arithmetic and the limit of incompleteness

Yong Cheng

・ロト ・ 通 ト ・ 画 ト ・ 画 ・ 今 の ぐ

System $\overline{\mathbf{R}}$

Definition

Let $\overline{\mathbf{R}}$ be the system consisting of schemes $\Omega_2, \Omega_3, \Omega'_4$ where $m, n \in \mathbb{N}$.

 $Ax2 \ \overline{m} \neq \overline{n} \ if \ m \neq n;$ $Ax3 \ \overline{m} \cdot \overline{n} = \overline{m \cdot n};$ $Ax' \ \forall x (x \le \overline{n} \leftrightarrow x = \overline{0} \lor \cdots \lor x = \overline{n}).$

 $\overline{\mathbf{R}}$ is minimal essentially undecidable: if deleting any axiom of $\overline{\mathbf{R}}$, then the remaining sub-theory is not essentially undecidable.

Theorem

(1) **G1** holds for $\overline{\mathbf{R}}$.

(2) **R** is interpretable in $\overline{\mathbf{R}}$, and hence $Int(\overline{\mathbf{R}}) = Int(\mathbf{R})$.

Incompleteness for higher order arithmetic and the limit of incompleteness

Yong Cheng

・ロト ・四ト ・ヨト ・ヨト ・ヨー うへぐ

Definition

 $\langle S, T \rangle$ is a recursively inseparable pair if $S, T \subseteq \mathbb{N}$ both are recursively enumerable and there is no recursive set $X \subseteq \mathbb{N}$ such that $S \subseteq X$ and $X \cap T = \emptyset$.

Incompleteness for higher order arithmetic and the limit of incompleteness

Yong Cheng

####
Definition

 $\langle S, T \rangle$ is a recursively inseparable pair if $S, T \subseteq \mathbb{N}$ both are recursively enumerable and there is no recursive set $X \subseteq \mathbb{N}$ such that $S \subseteq X$ and $X \cap T = \emptyset$.

Theorem

For any recursively inseparable pair $\langle S, T \rangle$, there exists theory $U_{\langle S,T \rangle}$ such that **G1** holds for $U_{\langle S,T \rangle}$ and $Int(U_{\langle S,T \rangle}) < Int(\mathbf{R})$.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Incompleteness for higher order arithmetic and the limit of incompleteness

Definition

 $\langle S, T \rangle$ is a recursively inseparable pair if $S, T \subseteq \mathbb{N}$ both are recursively enumerable and there is no recursive set $X \subseteq \mathbb{N}$ such that $S \subseteq X$ and $X \cap T = \emptyset$.

Theorem

For any recursively inseparable pair $\langle S, T \rangle$, there exists theory $U_{\langle S,T \rangle}$ such that **G1** holds for $U_{\langle S,T \rangle}$ and $Int(U_{\langle S,T \rangle}) < Int(\mathbf{R})$.

Definition

Let $\langle S, T \rangle$ be a recursively inseparable pair. Let L be the finite language $\{0, S, P\}$. Consider the following theory $U_{\langle S, T \rangle}$:

- $\overline{m} \neq \overline{n}$ if $m \neq n$;
- $\mathbf{P}(\overline{n})$ if $n \in S$;
- ▶ $\neg \mathbf{P}(\overline{n})$ if $n \in T$.

Incompleteness for higher order arithmetic and the limit of incompleteness

Yong Cheng

・ロト ・日・・日・・日・ クタイ

Yong Cheng

In the following, let $\langle S, T \rangle$ be an arbitrary recursively inseparable pair.

くちゃく 御をえばをえばす ふしゃ

Yong Cheng

In the following, let $\langle S, T \rangle$ be an arbitrary recursively inseparable pair.

Lemma

G1 holds for $U_{\langle S,T \rangle}$.

・ロト ・母 ト ・目 ・ ・ 日 ・ うへの

Yong Cheng

In the following, let $\langle S, T \rangle$ be an arbitrary recursively inseparable pair.

Lemma

G1 holds for $U_{\langle S,T\rangle}$.

Lemma $U_{\langle S,T \rangle}$ is interpretable in **R**.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

Yong Cheng

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

In the following, let $\langle S, T \rangle$ be an arbitrary recursively inseparable pair.

Lemma

G1 holds for $U_{\langle S,T \rangle}$.

Lemma $U_{(S,T)}$ is interpretable in **R**.

Theorem

R is not interpretable in $U_{\langle S,T\rangle}$.

Yong Cheng

In the following, let $\langle S, T \rangle$ be an arbitrary recursively inseparable pair.

Lemma

G1 holds for $U_{\langle S,T\rangle}$.

Lemma $U_{\langle S,T \rangle}$ is interpretable in **R**.

Theorem

```
R is not interpretable in U_{\langle S,T\rangle}.
```

Corollary

G1 holds for $U_{(S,T)}$ and $Int(U_{(S,T)}) < Int(\mathbf{R})$.

・ロト・日本・ヨト・ヨー うへで

Definition

Incompleteness for higher order arithmetic and the limit of incompleteness

Yong Cheng

・ロト ・ 国 ト ・ 王 ト ・ 王 ・ のへぐ

Definition

1. A consistent theory T is said to be model complete if for all models $\mathfrak{A}, \mathfrak{B}$ of T, if $\mathfrak{A} \subseteq \mathfrak{B}$, then $\mathfrak{A} \prec \mathfrak{B}$.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Incompleteness for higher order arithmetic and the limit of incompleteness

Definition

1. A consistent theory T is said to be model complete if for all models \mathfrak{A} , \mathfrak{B} of T, if $\mathfrak{A} \subseteq \mathfrak{B}$, then $\mathfrak{A} \prec \mathfrak{B}$.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

2. A theory T^{*} is a model companion of T if T^{*} is a cotheory of T and T^{*} is model complete.

Incompleteness for higher order arithmetic and the limit of incompleteness

Definition

- 1. A consistent theory T is said to be model complete if for all models \mathfrak{A} , \mathfrak{B} of T, if $\mathfrak{A} \subseteq \mathfrak{B}$, then $\mathfrak{A} \prec \mathfrak{B}$.
- 2. A theory T^{*} is a model companion of T if T^{*} is a cotheory of T and T^{*} is model complete.
- A theory T* is a model completion of T if T* is a model companion of T and for every model 𝔄 of T with diagram Δ_𝔅, T* ∪ Δ_𝔅 is complete.

Incompleteness for higher order arithmetic and the limit of incompleteness

Definition

- 1. A consistent theory T is said to be model complete if for all models \mathfrak{A} , \mathfrak{B} of T, if $\mathfrak{A} \subseteq \mathfrak{B}$, then $\mathfrak{A} \prec \mathfrak{B}$.
- 2. A theory T^{*} is a model companion of T if T^{*} is a cotheory of T and T^{*} is model complete.
- A theory T* is a model completion of T if T* is a model companion of T and for every model 𝔄 of T with diagram Δ_𝔅, T* ∪ Δ_𝔅 is complete.
- 4. Let \mathcal{K} be a class of structures in the same language. A model $M \in \mathcal{K}$ is essentially closed in \mathcal{K} if for any model $N \supseteq M$ such that $N \in \mathcal{K}$, we have every existential formula with parameters from M which is satisfied in N is already satisfied in M.

Incompleteness for higher order arithmetic and the limit of incompleteness

Yong Cheng

For any language L, let EC_L be the model completion of the empty L-theory. Then

・ロト ・日下・・日下・・日下・今日・

Yong Cheng

For any language L, let EC_L be the model completion of the empty L-theory. Then

Fact

- (1) EC_L has elimination of quantifiers.
- (2) Models of EC_L are exactly the existentially closed L-structures; in particular, every L-structure embeds in a model of EC_L.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Yong Cheng

For any language L, let EC_L be the model completion of the empty L-theory. Then

Fact

- (1) EC_L has elimination of quantifiers.
- (2) Models of EC_L are exactly the existentially closed L-structures; in particular, every L-structure embeds in a model of EC_L.

Definition

Consider the following theory S in the language $\langle \in \rangle$ axiomatized by the sentences

 $\exists z, x_0, ..., x_n(\bigwedge_{i < j < n} x_i \neq x_j \land \forall y (y \in z \leftrightarrow \bigvee_{i < n} y = x_i))$ for all $n \in \omega$.

・ロト・日本・日本・日本・日本・日本・日本

Proof of the main theorem

Theorem (Emil JeŘábek)

For any language L and formula $\phi(\overline{z}, \overline{x}, \overline{y})$ with $lh(\overline{x}) = lh(\overline{y})$, there is a constant n with the following property. Let $M \models EC_L$ and $\overline{u} \in M$ be such that $M \models \overline{x}_0, \dots, \overline{x}_{n-1} \bigwedge_{i < j < n} \phi(\overline{u}, \overline{x}_i, \overline{x}_j)$. Then for every $m \in \omega$ and an asymmetric relation R on $\{0, \dots, m-1\}$, $M \models \overline{x}_0, \dots, \overline{x}_{m-1} \bigwedge_{\langle s,t \rangle \in R} \phi(\overline{u}, \overline{x}_s, \overline{x}_t)$.

Proof.

Emil's proof uses Ramsey's theory and indiscernibility argument.

Incompleteness for higher order arithmetic and the limit of incompleteness

Yong Cheng

・ロト・西ト・山田・山田・山下・

Proof of the main theorem

Theorem (Emil JeŘábek)

For any language L and formula $\phi(\overline{z}, \overline{x}, \overline{y})$ with $lh(\overline{x}) = lh(\overline{y})$, there is a constant n with the following property. Let $M \models EC_L$ and $\overline{u} \in M$ be such that $M \models \overline{x}_0, \dots, \overline{x}_{n-1} \bigwedge_{i < j < n} \phi(\overline{u}, \overline{x}_i, \overline{x}_j)$. Then for every $m \in \omega$ and an asymmetric relation R on $\{0, \dots, m-1\}$, $M \models \overline{x}_0, \dots, \overline{x}_{m-1} \bigwedge_{\langle s,t \rangle \in R} \phi(\overline{u}, \overline{x}_s, \overline{x}_t)$.

Proof.

Emil's proof uses Ramsey's theory and indiscernibility argument.

Corollary

S is not weakly interpretable in EC_L (S is not interpretable in any consistent extension of EC_L) for any language L. Incompleteness for higher order arithmetic and the limit of incompleteness

In the following, based on Emil's work I show that **R** is not interpretable in $U_{(S,T)}$.

Incompleteness for higher order arithmetic and the limit of incompleteness

Yong Cheng

・ロト・「師・・言・・言・ 「日・・日・

In the following, based on Emil's work I show that **R** is not interpretable in $U_{(S,T)}$.

- Note that *S* is interpretable in **R**.
- Since S is not weakly interpretable in EC_L for any language L, R is not weakly interpretable in EC_L for any language L.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Incompleteness for higher order arithmetic and the limit of incompleteness

In the following, based on Emil's work I show that **R** is not interpretable in $U_{(S,T)}$.

- Note that *S* is interpretable in **R**.
- Since S is not weakly interpretable in EC_L for any language L, R is not weakly interpretable in EC_L for any language L.

Lemma

If **R** is interpretable in $U_{(S,T)}$, then **R** is weakly interpretable in EC_L for some language L. Incompleteness for higher order arithmetic and the limit of incompleteness

Yong Cheng

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ■ ● ● ●

In the following, based on Emil's work I show that **R** is not interpretable in $U_{(S,T)}$.

- Note that S is interpretable in R.
- Since S is not weakly interpretable in EC_L for any language L, R is not weakly interpretable in EC_L for any language L.

Lemma

If **R** is interpretable in $U_{(S,T)}$, then **R** is weakly interpretable in EC_L for some language L.

Corollary

R is not interpretable in $U_{\langle S,T\rangle}$.

Incompleteness for higher order arithmetic and the limit of incompleteness

Yong Cheng

・ロト ・ 日下 ・ 日下 ・ 日下 ・ 今日 ト

Question

Define $\mathbf{D} = \{ Int(S) : Int(S) < Int(\mathbf{R}) \text{ and } \mathbf{G1} \text{ holds for } S \}.$

Incompleteness for higher order arithmetic and the limit of incompleteness

Yong Cheng

(日) (中) (山) (山) (山) (山) (山) (山) (山) (山)

Question Define $\mathbf{D} = \{Int(S) : Int(S) < Int(\mathbf{R}) \text{ and } \mathbf{G1} \text{ holds for } S\}.$ 1. Is $(\mathbf{D}, <)$ well founded?

Incompleteness for higher order arithmetic and the limit of incompleteness

Yong Cheng

・ロト・日本・日本・日本・日本・日本

Question

Define $\mathbf{D} = \{ Int(S) : Int(S) < Int(\mathbf{R}) \text{ and } \mathbf{G1} \text{ holds for } S \}.$

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

- 1. Is $(\mathbf{D}, <)$ well founded?
- 2. Are any two elements of **D** comparable?

Incompleteness for higher order arithmetic and the limit of incompleteness

Question

- Define $\mathbf{D} = \{ Int(S) : Int(S) < Int(\mathbf{R}) \text{ and } \mathbf{G1} \text{ holds for } S \}.$
 - 1. Is $(\mathbf{D}, <)$ well founded?
 - 2. Are any two elements of **D** comparable?

Conjecture

 $(\mathbf{D}, <)$ is not well founded and has incomparable elements.

Question

- 1. For recursively inseparable pair $\langle S, T \rangle$ and $\langle U, V \rangle$, what can we say about $int(U_{\langle S, T \rangle})$ and $int(U_{\langle U, V \rangle})$?
- 2. Could we find a class of recursively inseparable pair $\langle S_{\alpha}, T_{\alpha} \rangle$ such that the interpretation degree of $U_{\langle S_{\alpha}, T_{\alpha} \rangle}$ forms a descending chain?

Incompleteness for higher order arithmetic and the limit of incompleteness

Reference list

- Yong Cheng and Ralf Schindler, Harrington's Principle in higher order arithmetic, *The Journal of Symbolic Logic*, Volume 80,Issue 02, June 2015, pp 477-489.
- Yong Cheng, Incompleteness for higher order arithmetic: A specific example from Set Theory, Manuscript, to appear.
- Emil JeŘábek, Recursive functions and existentially closed structures, preprint, 2017.
- Visser, Albert. Why the theory R is special. In Neil Tennant (Eds.), Foundational Adventures - Essays in honour of Harvey M. Friedman (pp. 7-24) (17 p.). College Publications, 2014.

Incompleteness for higher order arithmetic and the limit of incompleteness

Yong Cheng

Thanks for your attention!

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで