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Modern logic and Philosophy

Modern logic updates and deepens our understanding of the
following core concepts of philosophy:

» Truth, Proof, Infinity, Computation, Set, Number,
Definability

» Self-reference, Incompleteness, Independence,
Decidability

» Implication, Consistency, Paradox, Contradiction

» Absoluteness, Knowability, Necessity, Vagueness, etc.
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The current state of research:
(1) Property of provability and truth

(2) Generalization of Incompleteness theorem to
arithmetical definable theory

(3) Self-reference-free proof of incompleteness theorem
(4) Proving Incompleteness via logical paradox
(5) The intensionality of G2 for PA
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The current state of research:
(1) Property of provability and truth

(2) Generalization of Incompleteness theorem to
arithmetical definable theory

Self-reference-free proof of incompleteness theorem

The intensionality of G2 for PA

(3)
(4) Proving Incompleteness via logical paradox
(5)
(6) Incompleteness and provability logic



Godel's incompleteness theorem

Two goals of Hilbert's program:

Completeness A proof that all true mathematical statements
can be proved in the formalism of mathematics.

Consistency A proof that no contradiction can be obtained
in the formalism of mathematics using only
"finitistic” reasoning about finite mathematical
objects.
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Godel's incompleteness theorem

Two goals of Hilbert's program:

Completeness A proof that all true mathematical statements
can be proved in the formalism of mathematics.

Consistency A proof that no contradiction can be obtained
in the formalism of mathematics using only
"finitistic” reasoning about finite mathematical
objects.

Theorem (Godel-Rosser)

(1) Gédel-Rosser first incompleteness theorem (G1): If T is
a recursively axiomatized consistent extension of PA,
then T is not complete.

(2) Godel's second incompleteness theorem (G2): If T is a
recursively axiomatized consistent extension of PA, then
the consistency of T is not provable in T.
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Definition Ve e

1. Prof={"¢": ¢ is sentence and PA + ¢}.

2. Truth={"¢": ¢ is sentence and N |= ¢} where
N=(N,+,-).

Theorem (Tarski's theorem on undefinability of truth)
Truth is not definable in 1.

Truth Prof
not definable in Ot definable in M
not arithmetic recursive eumerable
not recursive not recursive

not representable in PA | not representable in PA
productive not productive




Solovay's arithmetical completeness theorem

Definition

An arithmetic interpretation is a function that assigns to
each formula of modal logic a sentence of the language of
arithmetic.

Theorem (Solovay)

Arithmetical completeness theorem for GL For any modal
formula ¢, GL \= ¢ iff for every arithmetic
interpretation f,PA F ¢f.

Arithmetical completeness theorem for GLS For any modal
formula ¢, GLS + ¢ iff for every arithmetic
interpretation f, N = ¢f.
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theories containing PA.

> We generalize Godel's incompleteness theorem for
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Yong Cheng

» Godel’s incompleteness theorem hold for ¥;-definable
theories containing PA.

> We generalize Godel's incompleteness theorem for
arithmetically definable theories.

Theorem (Kikuchi, Kurahashi, 2017)

(1) Every ¥,y1-definable ¥ ,-sound theory is incomplete.

(2) Every consistent theory having N1 set of theorems has
a true but unprovable T, sentence.

(3) Any X ,11-definable ¥ ,-sound theory can not prove its
own %_,-soundness.



Different proofs of incompleteness theorem
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Constructive proof: directly construct the independence
sentence

Proof via diagonalization lemma
Proof via logical paradox
Proof via recursion theory

Proof via model theory
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Different proofs of incompleteness theorem

v

Constructive proof: directly construct the independence
sentence

v

Proof via diagonalization lemma

v

Proof via logical paradox

v

Proof via recursion theory

v

Proof via model theory

Question

Could we give a self-reference-free proof of Godel’s
incompleteness theorem?
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propositions” —-Godel



Incompleteness theorem and logical paradox

» Incompleteness is closely related to paradox.
> “Any epistemological antinomy could be used for a
similar proof of the existence of undecidable
propositions” —-Godel
Different proofs of incompleteness theorem via paradox:
Godel Liar Paradox
Boolos Berry's paradox
Kurahashi Yablo's Paradox
Kritchman Unexpected Examination Paradox

Cieslinski Grelling's paradox
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Definition
Let T be any recursively axiomatized consistent extension of
PA and o(x) be a formula in the same language.

1. a(x) is a numeration of T if for any n,PA - «(n) iff n
is the Godel number of some axiom of T.

2. Let a(x) be a numeration of T. Define the formula
Prf.(x,y) saying "y is the Godel number of a proof of
the formula with Godel number x from the set of all

”

sentences satisfying a(x)”.

3. Define the provability predicate Pr,(x) of a(x) as
Pr.(x) £ JyPrf,(x,y) and consistency statement
Con, as = —Pr,(L).



Drivability Conditions and G2

Let T be a recursively axiomatized consistent extension of
PA and a(x) be any X; numeration of T. Then Pr,(x)
satisfies the following properties:

D1 If T F ¢, then PA I Pro (T );

D2 If ¢ is X1 sentence, then PAF ¢ — Pr ("),

D3 PAF Pro(Tp") = (Pro(To — ¢7) —
Pro("7).
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Let T be a recursively axiomatized consistent extension of
PA and a(x) be any X; numeration of T. Then Pr,(x)
satisfies the following properties:

D1 If T+ ¢, then PA Pry(To);
D2 If ¢ is X1 sentence, then PAF ¢ — Pr ("),
D3 PAF Pr,(T¢7) — (Pro(Tp — ¢7) —
Pro(T¢T)).
Theorem (G2, Godel)

Let T be any recursively axiomatized consistent extension of
PA. If a(x) is any ¥1 numeration of T, then T ¥ Con,,.
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The intensional problem of G2 Whether G2 holds for PA
depends on the numeration of PA.

Theorem (Feferman)

There exists a My numeration m(x) of PA such that G2 fails:
PA + Con,.
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The intensional problem of G2 Whether G2 holds for PA
depends on the numeration of PA.

Theorem (Feferman)

There exists a My numeration m(x) of PA such that G2 fails:
PA - Con,.

» Whether G2 holds for PA depends on the numeration
of PA.

» D1-D3 are the sufficient condition but not the
necessary condition to show that G2 holds for PA.

» There exists a X, numeration a(x) of PA such that D2
does not hold for Pr,(x) but G2 holds for PA.



Incompleteness and provability logic

Let T be any recursively axiomatized consistent extension of
PA and a(x) be a numeration of T. The provability logic
PL,(T) is the set of all modal principles which are verifiable
in T when the modal operator [ is interpreted as Pr,(x).
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Incompleteness and provability logic

Let T be any recursively axiomatized consistent extension of
PA and a(x) be a numeration of T. The provability logic
PL,(T) is the set of all modal principles which are verifiable
in T when the modal operator [ is interpreted as Pr,(x).

Theorem (Solovay's arithmetical completeness theorem)

Let T be any recursively axiomatized consistent extension of
PA. If T is X1-sound, then for any ¥1 numeration a(x) of
T, the provability logic PL,(T) is precisely GL.
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numeration of T.



Classification of provability logic under
numeration

» The provability logic PL-(T) of a ¥, numeration 7(x)
of T is a normal modal logic.

» We could classify provability logic according to the
numeration of T.

Question
Which normal modal logic is a provability logic PL,(T) of
some ¥, numeration 7(x) of T?
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Classification of provability logic under
numeration

» The provability logic PL-(T) of a ¥, numeration 7(x)
of T is a normal modal logic.

» We could classify provability logic according to the
numeration of T.

Question
Which normal modal logic is a provability logic PL,(T) of
some ¥, numeration 7(x) of T?

Theorem (Kurahashi, 2018)

1. For any recursively axiomatized consistent extension T
of PA, there exists a o numeration a(x) of T such
that the provability logic PLy(T) is K.

2. For each n > 2, there exists a ¥, numeration 7(x) of T
such that the provability logic PL(T) coincides with
modal logic K4+ 0O(0O0"p — p) — Op.
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In this talk, | focus on the following two questions about
incompleteness:
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Motivation Understanding incompleteness: Exploring the
relationship between incompleteness,
self-reference, provability logic, logical paradox
and formal theory of truth

In this talk, | focus on the following two questions about
incompleteness:

1. Incompleteness for high order arithmetic

2. The limit of Incompleteness for subsystems of PA



Mathematical examples of G1 for PA

Godel's proof of G1 uses meta-mathematics and the
independent sentence Godel constructed (Godel's sentence)
is of meta-mathematical nature and has no real
mathematical content.
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Mathematical examples of G1 for PA

Godel's proof of G1 uses meta-mathematics and the
independent sentence Godel constructed (Godel's sentence)
is of meta-mathematical nature and has no real
mathematical content.

Question

Could we find a sentence about arithmetic with interesting
mathematical contents which is independent of PA?

Theorem (Paris-Harrington)

If PA is consistent, then there exists a sentence ¢ of
combinatorial contents such that t = ¢, but ¢ is
independent of PA.
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Definition of higher order arithmetic:

(1) Zp = ZFC™ + Every set is countable.

(2) Z3 = ZFC™ + P(w) exists + Every set is of cardinality
< .

(3) Zs = ZFC™ 4+ P(P(w)) exists + Every set is of
cardinality < ;.

Corollary

If Z» is consistent, then there is a true sentence about
analysis which is not provable in Z,.

1ZFC~ denotes ZFC with the Power Set Axiom deleted and Collection
instead of Replacement.



Fact
Many classic mathematical theorems about analysis which
are expressible in Z» are provable in Z.
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Relativized Hilbert's program to Z» Is Zo complete for
classic mathematical theorems expressible in
Z57
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Many classic mathematical theorems about analysis which
are expressible in Z» are provable in Z.

Question

Relativized Hilbert's program to Z» Is Z, complete for
classic mathematical theorems expressible in
Z57

Motivation Finding a counterexample for this question
which is expressible in Z> but not provable in
7.



Harrington's Theorem

Harrington's theorem Det(X1) implies 0% exists.

Definition

We let Harrington's Principle, HP for short, denote the
following statement: 3x € 2“Va(« is countable x-admissible
— « is an L-cardinal).
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Harrington's Theorem

Harrington's theorem Det(X1) implies 0% exists.

Definition

We let Harrington's Principle, HP for short, denote the
following statement: 3x € 2“Va(« is countable x-admissible
— « is an L-cardinal).

Harrington's proof of “Det(¥1) implies 0 exists” in ZF is
done in two steps:

First Step Det(X1) implies HP;
Second Step HP implies 0% exists.

In ZF we have

Det(¥}) & HP < 0 exists.
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The counterexample

» The first step “Det(X1) implies HP" is provable in Z5.
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The counterexample

» The first step “Det(X1) implies HP”

Question
Is “HP implies 0% exists” provable in Z7?
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The counterexample

» The first step “Det(X1) implies HP" is provable in Z5.

Question

Is “HP implies 0% exists” provable in Z7?

The counterexample | find is the sentence: “HP implies 0F
exists’:
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The counterexample

» The first step “Det(X1) implies HP" is provable in Z5.

Question

Is “HP implies 0% exists” provable in Z7?

The counterexample | find is the sentence: “HP implies 0F
exists’:

Theorem

(1) “HP implies 0f exists” is not provable in Zs.

(2) “HP implies 0% exists” is not provable in Z3.

(3) “HP implies 0% exists” is provable in Z4.

So Z,4 is the minimal system in higher order arithmetic to
show that “HP implies 0 exists”.
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Summary of results

» We find an interesting classic mathematical theorem
from set theory which is expressible in Z5 but not
provable in Zy: “HP implies 0f exists” .
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from set theory which is expressible in Z5 but not
provable in Zy: “HP implies 0f exists” .

» “HP implies 0! exists” is also not provable in Z3.
» But, in Z4, HP is equivalent to 0% exists.



Summary of results

» We find an interesting classic mathematical theorem
from set theory which is expressible in Z5 but not
provable in Zy: “HP implies 0f exists” .

» “HP implies 0 exists” is also not provable in Zs.

» But, in Z4, HP is equivalent to 0% exists.

> Hence, Z4 is the minimal system in higher order
arithmetic to show that HP implies 0f exists.
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Summary of results

» We find an interesting classic mathematical theorem
from set theory which is expressible in Z5 but not
provable in Zy: “HP implies 0f exists” .

» “HP implies 0! exists” is also not provable in Z3.
» But, in Z4, HP is equivalent to 0% exists.

> Hence, Z4 is the minimal system in higher order
arithmetic to show that HP implies 0f exists.

Theorem (joint work with Ralf Schindler)

1. Zy + HP is equiconsistent with ZFC.

2. Z3+ HP is equiconsistent with ZFC + there exists a
remarkable cardinal.
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Finding the limit of Incompleteness for
subsystems of PA

Question Exactly how much information of PA is needed
for the proof of G1 and G27

Goal Finding the limit of Incompleteness for
subsystems of PA.

> An interpretation of a theory T in a theory S is a
mapping from formulas of T to formulas of S that
maps all axioms of T to sentences provable in S.

> Let Int(S) denote the degree of interpretation of theory
S. Int(T) < Int(S) means that T is interpretable in S
but S is not interpretable in T. Int(T) = Int(S) means
that T and S are mutually interpretable.

> Interpretability can be accepted as a measure of
strength of first order theory.
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Def|n|t|on Incompleteness for

higher order
Let T be a recursively axiomatizable consistent theory. arithmetic aad the
. . . . incompleteness
1. G1 holds for T iff for any recursively axiomatizable ’
. . .. . . Yong Cheng
consistent theory S, if T is interpretable in S, then S is

undecidable.
2. T is essentially undecidable iff any recursively
axiomatizable consistent extension of T is undecidable.
3. T is essentially incomplete iff any recursively
axiomatizable consistent extension of T is imcomplete.

Proposition
Let T be a recursively axiomatizable consistent theory. The
followings are equivalent:

1. G1 holds for T.
2. T is essentially undecidable.
3. T is essentially incomplete.



Robinson’s Q

Question

Could we find a theory S with minimal degree of
interpretation such that G1 holds for S7

Definition

Let Robinson’s Q be the system consisting of the following

sentences:

1.

No o e

VxVy(Sx =Sy — x =y);
Vx(Sx # 0);

Vx(x # 0 — Jyx = Sy),
VxVy(x + 0 = x);

VxVy(x + Sy = S(x + y));

Vx(x-0=0),
VxVy(x-Sy = x -y + x).
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System R
We work on L(0,--- ,7---,+,+, <) with infinitely many
constants as names for natural numbers and with < as
primitive symbol.

Definition
Let R be the system consisting of schemes Ax1-Ax5 where
m,n € N.

Ax3 m-n=m-n;
Axd Vx(x <A—x=0V---Vx=n),
Ax5 ¥x(x <naVvn < x)

Theorem

(Albert Visser) Suppose T is an R.E. theory. Then T is
locally finite (any finite sub-theory of T has a finite model)
iff T is interpretable in R.
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1. R is a sub-theory of Q; Q is finitely axiomatizable but
R is not.
2. Q is minimal essentially undecidable; R is not minimal

essentially undecidable.
3. Int(R) < Int(Q) since Q is not interpretable in R.
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1. R is a sub-theory of Q; Q is finitely axiomatizable but
R is not.
2. Q is minimal essentially undecidable; R is not minimal
essentially undecidable.

3. Int(R) < Int(Q) since Q is not interpretable in R.

Theorem (Folklore)
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Properties of Q and R

1. R is a sub-theory of Q; Q is finitely axiomatizable but
R is not.

2. Q is minimal essentially undecidable; R is not minimal
essentially undecidable.

3. Int(R) < Int(Q) since Q is not interpretable in R.

Theorem (Folklore)
G1 holds for R.

Question
Could we find a theory S such that G1 holds for S and
Int(S) < Int(R)?

Incompleteness for
higher order
arithmetic and the
limit of
incompleteness

Yong Cheng



') Incompleteness for
System R higher order
arithmetic and the
limit of

P incompleteness
Definition

— Yong Cheng
Let R be the system consisting of schemes Q2,3, ), where
m,n € N.

Ax2 m#nifm#n;

Ax3 m-n="m-n;

’

AX ¥x(x <A+ x=0V---Vx=n).



Incompleteness for

System R higher order
arithmetic and the
limit of
incompleteness
Definition Yong Cheng
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deleting any axiom of R, then the remaining
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Definition

— Yong Cheng
Let R be the system consisting of schemes 2,3, ), where

m,n € N.
Ax2 m#nifm#n;

Ax3 m-n=m-n;
AX ¥x(x <A+ x=0V---Vx=n).

R is minimal essentially undecidable: if
deleting any axiom of R, then the remaining
sub-theory is not essentially undecidable.

Theorem

(1) G1 holds for R.
(2) R is interpretable in R, and hence Int(R) = Int(R).



Definition

(S, T) is a recursively inseparable pair if S, T C N both are
recursively enumerable and there is no recursive set X C N
such that SC X and XN T = (.
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Definition

(S, T) is a recursively inseparable pair if S, T C N both are
recursively enumerable and there is no recursive set X C N
such that SC X and XN T = (.

Theorem

For any recursively inseparable pair (S, T), there exists
theory Us 1y such that G1 holds for Uis 1y and
Int(U<5’7-)) < Int(R).
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Definition

(S, T) is a recursively inseparable pair if S, T C N both are
recursively enumerable and there is no recursive set X C N
such that SC X and XN T = (.

Theorem

For any recursively inseparable pair (S, T), there exists
theory Us 1y such that G1 holds for Uis 1y and
Int(U<5’7-)) < Int(R).

Definition
Let (S, T) be a recursively inseparable pair. Let L be the
finite language {0,S,P}. Consider the following theory
Us,)
> m#nif m=#n;
» P(n) ifnes;
» -P(n) ifneT.
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In the following, let (S, T) be an arbitrary recursively
inseparable pair.
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In the following, let (S, T) be an arbitrary recursively
inseparable pair.

Lemma
G1 holds for Us 1y.
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In the following, let (S, T) be an arbitrary recursively
inseparable pair.

Lemma
G1 holds for Us 1y.

Lemma
Us, 1y is interpretable in R.

Theorem
R is not interpretable in Us 1.
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In the following, let (S, T) be an arbitrary recursively
inseparable pair.

Lemma
G1 holds for Us 1y.

Lemma
Us, 1y is interpretable in R.

Theorem
R is not interpretable in Us 1.

Corollary
G1 holds for Uis 1y and Int(Us 1y) < Int(R).
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Model completion of the empty theory

Definition

1. A consistent theory T is said to be model complete if
for all models 2, B of T, if A € B, then A < B.
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1. A consistent theory T is said to be model complete if
for all models 2, B of T, if A € B, then A < B.

2. A theory T* is a model companion of T if T* is a
cotheory of T and T* is model complete.
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for all models 2, B of T, if A € B, then A < B.

2. A theory T* is a model companion of T if T* is a
cotheory of T and T* is model complete.

3. A theory T* is a model completion of T if T* is a
model companion of T and for every model 2 of T
with diagram Ag, T* U Ag is complete.



Model completion of the empty theory

Definition

1. A consistent theory T is said to be model complete if
for all models 2, B of T, if A € B, then A < B.

2. A theory T* is a model companion of T if T* is a
cotheory of T and T* is model complete.

3. A theory T* is a model completion of T if T* is a
model companion of T and for every model 2 of T
with diagram Ag, T* U Ag is complete.

4. Let K be a class of structures in the same language. A
model M € K is essentially closed in K if for any model
N D M such that N € IC, we have every existential
formula with parameters from M which is satisfied in N
is already satisfied in M.
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For any language L, let EC; be the model completion of the
empty L-theory. Then
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For any language L, let EC; be the model completion of the
empty L-theory. Then

Fact

(1) EC_ has elimination of quantifiers.

(2) Models of EC; are exactly the existentially closed
L-structures; in particular, every L-structure embeds in a
model of EC; .
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For any language L, let EC; be the model completion of the
empty L-theory. Then

Fact

(1) EC_ has elimination of quantifiers.

(2) Models of EC; are exactly the existentially closed
L-structures; in particular, every L-structure embeds in a
model of EC; .

Definition

Consider the following theory S in the language (€)
axiomatized by the sentences

32, %0, s Xn(Nicjcn Xi 7 X ANVY(y € 2 V¥ = X)) for
all n € w.
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Proof of the main theorem

Theorem (Emil JeRabek)

For any language L and formula ¢(Z,X,y) with

Ih(X) = Ih(y), there is a constant n with the following
property. Let M |= EC, and T € M be such that

M |= %o, ,Xn-1 \j<jcn &(U, Xi,X;). Then for every

m € w and an asymmetric relation R on {0,--- ,m— 1},
M= X0, Xm-1 N\(s.nyer ¢ Xs, Xt).
Proof.

Emil's proof uses Ramsey's theory and indiscernibility
argument.
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For any language L and formula ¢(Z,X,y) with Yeng Clients

Ih(X) = Ih(y), there is a constant n with the following
property. Let M |= EC, and T € M be such that
M = Xo, -+, Xn—1 /\,-<J-<n (U, X;,X;). Then for every

m € w and an asymmetric relation R on {0,--- ,m— 1},
M= X0, Xm-1 N\(s.nyer ¢ Xs, Xt).

Proof.

Emil's proof uses Ramsey's theory and indiscernibility
argument. O
Corollary

S is not weakly interpretable in EC; (S is not interpretable
in any consistent extension of EC; ) for any language L.



Proof of the main theorem: continued

In the following, based on Emil’s work | show that R is
interpretable in Uss 1y.
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> Since S is not weakly interpretable in EC; for any
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If R is interpretable in Uis 1y, then R is weakly interpretable
in EC, for some language L.



Proof of the main theorem: continued

In the following, based on Emil’s work | show that R is not
interpretable in Uss 1y.
» Note that S is interpretable in R.
> Since S is not weakly interpretable in EC; for any
language L, R is not weakly interpretable in EC; for any
language L.

Lemma
If R is interpretable in Uis 1y, then R is weakly interpretable
in EC, for some language L.

Corollary
R is not interpretable in Us ).
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Questions for future research

Question
Define D = {Int(S) : Int(S) < Int(R) and G1 holds for S}.
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Questions for future research

Question
Define D = {Int(S) : Int(S) < Int(R) and G1 holds for S}.

1. Is (D, <) well founded?
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1. Is (D, <) well founded?

2. Are any two elements of D comparable?



Questions for future research

Question
Define D = {Int(S) : Int(S) < Int(R) and G1 holds for S}.
1. Is (D, <) well founded?

2. Are any two elements of D comparable?

Conjecture

(D, <) is not well founded and has incomparable elements.
Question
1. For recursively inseparable pair (S, T) and (U, V), what
can we say about int(Us 1)) and int(Uy,vy)?

2. Could we find a class of recursively inseparable pair
(Sa, Ta) such that the interpretation degree of Us, T.,)
forms a descending chain?
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Thanks for your attention!

«O>» «Fr <

it
v
it

nae




