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Modern logic and Philosophy

Modern logic updates and deepens our understanding of the
following core concepts of philosophy:

I Truth, Proof, Infinity, Computation, Set, Number,
Definability

I Self-reference, Incompleteness, Independence,
Decidability

I Implication, Consistency, Paradox, Contradiction

I Absoluteness, Knowability, Necessity, Vagueness, etc.
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Part One: The current state
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Outline

The current state of research:

(1) Property of provability and truth

(2) Generalization of Incompleteness theorem to
arithmetical definable theory

(3) Self-reference-free proof of incompleteness theorem

(4) Proving Incompleteness via logical paradox

(5) The intensionality of G2 for PA

(6) Incompleteness and provability logic
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Gödel’s incompleteness theorem

Two goals of Hilbert’s program:

Completeness A proof that all true mathematical statements
can be proved in the formalism of mathematics.

Consistency A proof that no contradiction can be obtained
in the formalism of mathematics using only
”finitistic” reasoning about finite mathematical
objects.

Theorem (Gödel-Rosser)

(1) Gödel-Rosser first incompleteness theorem (G1): If T is
a recursively axiomatized consistent extension of PA,
then T is not complete.

(2) Gödel’s second incompleteness theorem (G2): If T is a
recursively axiomatized consistent extension of PA, then
the consistency of T is not provable in T .
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Provability and Truth

Definition

1. Prof={pφq : φ is sentence and PA ` φ}.
2. Truth={pφq : φ is sentence and N |= φ} where

N = (N,+, ·).

Theorem (Tarski’s theorem on undefinability of truth)

Truth is not definable in N.

Truth Prof
not definable in N definable in N

not arithmetic recursive eumerable
not recursive not recursive

not representable in PA not representable in PA
productive not productive
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Solovay’s arithmetical completeness theorem

Definition
An arithmetic interpretation is a function that assigns to
each formula of modal logic a sentence of the language of
arithmetic.

Theorem (Solovay)

Arithmetical completeness theorem for GL For any modal
formula φ,GL ` φ iff for every arithmetic
interpretation f ,PA ` φf .

Arithmetical completeness theorem for GLS For any modal
formula φ,GLS ` φ iff for every arithmetic
interpretation f ,N |= φf .
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Definition

(1) We say T is Σn-definable iff there is a Σn formula α(x)
such that {n ∈ ω : N |= α(n)} = {pφq : φ ∈ T}.

(2) We say T is Σn-sound if and only if for all Σn sentences
φ, if T ` φ, then N |= φ.

I Gödel’s incompleteness theorem hold for Σ1-definable
theories containing PA.

I We generalize Gödel’s incompleteness theorem for
arithmetically definable theories.

Theorem (Kikuchi, Kurahashi, 2017)

(1) Every Σn+1-definable Σn-sound theory is incomplete.
(2) Every consistent theory having Πn+1 set of theorems has

a true but unprovable Πn sentence.
(3) Any Σn+1-definable Σn-sound theory can not prove its

own Σn-soundness.
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Different proofs of incompleteness theorem

I Constructive proof: directly construct the independence
sentence

I Proof via diagonalization lemma

I Proof via logical paradox

I Proof via recursion theory

I Proof via model theory

Question
Could we give a self-reference-free proof of Gödel’s
incompleteness theorem?
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Incompleteness theorem and logical paradox

I Incompleteness is closely related to paradox.

I “Any epistemological antinomy could be used for a
similar proof of the existence of undecidable
propositions”—-Gödel

Different proofs of incompleteness theorem via paradox:

Gödel Liar Paradox

Boolos Berry’s paradox

Kurahashi Yablo’s Paradox

Kritchman Unexpected Examination Paradox

Cieśliński Grelling’s paradox
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Numeration and provability predicate

Definition
Let T be any recursively axiomatized consistent extension of
PA and α(x) be a formula in the same language.

1. α(x) is a numeration of T if for any n,PA ` α(n) iff n
is the Gödel number of some axiom of T .

2. Let α(x) be a numeration of T . Define the formula
Prfα(x , y) saying “y is the Gödel number of a proof of
the formula with Gödel number x from the set of all
sentences satisfying α(x)”.

3. Define the provability predicate Prα(x) of α(x) as
Prα(x) , ∃yPrfα(x , y) and consistency statement
Conα as , ¬Prα(⊥).
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Drivability Conditions and G2

Let T be a recursively axiomatized consistent extension of
PA and α(x) be any Σ1 numeration of T . Then Prα(x)
satisfies the following properties:

D1 If T ` ϕ, then PA ` Prα(pϕq);

D2 If ϕ is Σ1 sentence, then PA ` ϕ→ Prα(pϕq);

D3 PA ` Prα(pϕq)→ (Prα(pϕ→ ψq)→
Prα(pψq)).

Theorem (G2, Gödel)

Let T be any recursively axiomatized consistent extension of
PA. If α(x) is any Σ1 numeration of T , then T 0 Conα.
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The intensionality of G2 for PA

The intensional problem of G2 Whether G2 holds for PA
depends on the numeration of PA.

Theorem (Feferman)

There exists a Π1 numeration π(x) of PA such that G2 fails:
PA ` Conπ.

I Whether G2 holds for PA depends on the numeration
of PA.

I D1-D3 are the sufficient condition but not the
necessary condition to show that G2 holds for PA.

I There exists a Σ2 numeration α(x) of PA such that D2
does not hold for Prα(x) but G2 holds for PA.
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Incompleteness and provability logic

Let T be any recursively axiomatized consistent extension of
PA and α(x) be a numeration of T . The provability logic
PLα(T ) is the set of all modal principles which are verifiable
in T when the modal operator � is interpreted as Prα(x).

Theorem (Solovay’s arithmetical completeness theorem)

Let T be any recursively axiomatized consistent extension of
PA. If T is Σ1-sound, then for any Σ1 numeration α(x) of
T , the provability logic PLα(T ) is precisely GL.
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Classification of provability logic under
numeration

I The provability logic PLτ (T ) of a Σn numeration τ(x)
of T is a normal modal logic.

I We could classify provability logic according to the
numeration of T .

Question
Which normal modal logic is a provability logic PLτ (T ) of
some Σn numeration τ(x) of T ?

Theorem (Kurahashi, 2018)

1. For any recursively axiomatized consistent extension T
of PA, there exists a Σ2 numeration α(x) of T such
that the provability logic PLα(T ) is K.

2. For each n ≥ 2, there exists a Σ2 numeration τ(x) of T
such that the provability logic PLτ (T ) coincides with
modal logic K +�(�np → p)→ �p.
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Part Two: Understanding incompleteness
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Research Motivation

Motivation Understanding incompleteness: Exploring the
relationship between incompleteness,
self-reference, provability logic, logical paradox
and formal theory of truth

In this talk, I focus on the following two questions about
incompleteness:

1. Incompleteness for high order arithmetic

2. The limit of Incompleteness for subsystems of PA
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Mathematical examples of G1 for PA

Gödel’s proof of G1 uses meta-mathematics and the
independent sentence Gödel constructed (Gödel’s sentence)
is of meta-mathematical nature and has no real
mathematical content.

Question
Could we find a sentence about arithmetic with interesting
mathematical contents which is independent of PA?

Theorem (Paris-Harrington)

If PA is consistent, then there exists a sentence φ of
combinatorial contents such that N |= φ, but φ is
independent of PA.



Incompleteness for
higher order

arithmetic and the
limit of

incompleteness

Yong Cheng

Mathematical examples of G1 for PA
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Incompleteness for high order arithmetic

Definition
Definition of higher order arithmetic:

(1) Z2 = ZFC−+ Every set is countable.1

(2) Z3 = ZFC− + P(ω) exists + Every set is of cardinality
≤ i1.

(3) Z4 = ZFC− + P(P(ω)) exists + Every set is of
cardinality ≤ i2.

Corollary

If Z2 is consistent, then there is a true sentence about
analysis which is not provable in Z2.

1ZFC− denotes ZFC with the Power Set Axiom deleted and Collection
instead of Replacement.
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Many classic mathematical theorems about analysis which
are expressible in Z2 are provable in Z2.

Question

Relativized Hilbert’s program to Z2 Is Z2 complete for
classic mathematical theorems expressible in
Z2?

Motivation Finding a counterexample for this question
which is expressible in Z2 but not provable in
Z2.
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Harrington’s Theorem

Harrington’s theorem Det(Σ1
1) implies 0] exists.

Definition
We let Harrington’s Principle, HP for short, denote the
following statement: ∃x ∈ 2ω∀α(α is countable x-admissible
→ α is an L-cardinal).

Harrington’s proof of “Det(Σ1
1) implies 0] exists” in ZF is

done in two steps:

First Step Det(Σ1
1) implies HP;

Second Step HP implies 0] exists.

In ZF we have

Det(Σ1
1)⇔ HP⇔ 0] exists.
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The counterexample

I The first step “Det(Σ1
1) implies HP” is provable in Z2.

Question
Is “HP implies 0] exists” provable in Z2?

The counterexample I find is the sentence: “HP implies 0]

exists”:

Theorem

(1) “HP implies 0] exists” is not provable in Z2.

(2) “HP implies 0] exists” is not provable in Z3.

(3) “HP implies 0] exists” is provable in Z4.

So Z4 is the minimal system in higher order arithmetic to
show that “HP implies 0] exists”.



Incompleteness for
higher order

arithmetic and the
limit of

incompleteness

Yong Cheng

The counterexample

I The first step “Det(Σ1
1) implies HP” is provable in Z2.

Question
Is “HP implies 0] exists” provable in Z2?

The counterexample I find is the sentence: “HP implies 0]

exists”:

Theorem

(1) “HP implies 0] exists” is not provable in Z2.

(2) “HP implies 0] exists” is not provable in Z3.

(3) “HP implies 0] exists” is provable in Z4.

So Z4 is the minimal system in higher order arithmetic to
show that “HP implies 0] exists”.



Incompleteness for
higher order

arithmetic and the
limit of

incompleteness

Yong Cheng

The counterexample

I The first step “Det(Σ1
1) implies HP” is provable in Z2.

Question
Is “HP implies 0] exists” provable in Z2?

The counterexample I find is the sentence: “HP implies 0]

exists”:

Theorem

(1) “HP implies 0] exists” is not provable in Z2.

(2) “HP implies 0] exists” is not provable in Z3.

(3) “HP implies 0] exists” is provable in Z4.

So Z4 is the minimal system in higher order arithmetic to
show that “HP implies 0] exists”.



Incompleteness for
higher order

arithmetic and the
limit of

incompleteness

Yong Cheng

The counterexample

I The first step “Det(Σ1
1) implies HP” is provable in Z2.

Question
Is “HP implies 0] exists” provable in Z2?

The counterexample I find is the sentence: “HP implies 0]

exists”:

Theorem

(1) “HP implies 0] exists” is not provable in Z2.

(2) “HP implies 0] exists” is not provable in Z3.

(3) “HP implies 0] exists” is provable in Z4.

So Z4 is the minimal system in higher order arithmetic to
show that “HP implies 0] exists”.



Incompleteness for
higher order

arithmetic and the
limit of

incompleteness

Yong Cheng

Summary of results

I We find an interesting classic mathematical theorem
from set theory which is expressible in Z2 but not
provable in Z2: “HP implies 0] exists”.

I “HP implies 0] exists” is also not provable in Z3.

I But, in Z4, HP is equivalent to 0] exists.

I Hence, Z4 is the minimal system in higher order
arithmetic to show that HP implies 0] exists.

Theorem (joint work with Ralf Schindler)

1. Z2 + HP is equiconsistent with ZFC.

2. Z3 + HP is equiconsistent with ZFC + there exists a
remarkable cardinal.
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Finding the limit of Incompleteness for
subsystems of PA

Question Exactly how much information of PA is needed
for the proof of G1 and G2?

Goal Finding the limit of Incompleteness for
subsystems of PA.

I An interpretation of a theory T in a theory S is a
mapping from formulas of T to formulas of S that
maps all axioms of T to sentences provable in S .

I Let Int(S) denote the degree of interpretation of theory
S . Int(T ) < Int(S) means that T is interpretable in S
but S is not interpretable in T . Int(T ) = Int(S) means
that T and S are mutually interpretable.

I Interpretability can be accepted as a measure of
strength of first order theory.
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Definition
Let T be a recursively axiomatizable consistent theory.

1. G1 holds for T iff for any recursively axiomatizable
consistent theory S, if T is interpretable in S, then S is
undecidable.

2. T is essentially undecidable iff any recursively
axiomatizable consistent extension of T is undecidable.

3. T is essentially incomplete iff any recursively
axiomatizable consistent extension of T is imcomplete.

Proposition

Let T be a recursively axiomatizable consistent theory. The
followings are equivalent:

1. G1 holds for T .
2. T is essentially undecidable.
3. T is essentially incomplete.
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Robinson’s Q

Question
Could we find a theory S with minimal degree of
interpretation such that G1 holds for S?

Definition
Let Robinson’s Q be the system consisting of the following
sentences:

1. ∀x∀y(Sx = Sy → x = y);

2. ∀x(Sx 6= 0);

3. ∀x(x 6= 0→ ∃yx = Sy);

4. ∀x∀y(x + 0 = x);

5. ∀x∀y(x + Sy = S(x + y));

6. ∀x(x · 0 = 0);

7. ∀x∀y(x · Sy = x · y + x).
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System R
We work on L(0, · · · , n · · · ,+, ·,≤) with infinitely many
constants as names for natural numbers and with ≤ as
primitive symbol.

Definition
Let R be the system consisting of schemes Ax1-Ax5 where
m, n ∈ N.

Ax1 m + n = m + n;
Ax2 m 6= n if m 6= n;
Ax3 m · n = m · n;
Ax4 ∀x(x ≤ n→ x = 0 ∨ · · · ∨ x = n);
Ax5 ∀x(x ≤ n ∨ n ≤ x).

Theorem
(Albert Visser) Suppose T is an R.E. theory. Then T is
locally finite (any finite sub-theory of T has a finite model)
iff T is interpretable in R.
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Properties of Q and R

1. R is a sub-theory of Q; Q is finitely axiomatizable but
R is not.

2. Q is minimal essentially undecidable; R is not minimal
essentially undecidable.

3. Int(R) < Int(Q) since Q is not interpretable in R.

Theorem (Folklore)

G1 holds for R.

Question
Could we find a theory S such that G1 holds for S and
Int(S) < Int(R)?
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System R

Definition
Let R be the system consisting of schemes Ω2,Ω3,Ω

′
4 where

m, n ∈ N.

Ax2 m 6= n if m 6= n;

Ax3 m · n = m · n;

Ax ′ ∀x(x ≤ n↔ x = 0 ∨ · · · ∨ x = n).

R is minimal essentially undecidable: if
deleting any axiom of R, then the remaining
sub-theory is not essentially undecidable.

Theorem

(1) G1 holds for R.

(2) R is interpretable in R, and hence Int(R) = Int(R).
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Definition
〈S ,T 〉 is a recursively inseparable pair if S ,T ⊆ N both are
recursively enumerable and there is no recursive set X ⊆ N
such that S ⊆ X and X ∩ T = ∅.

Theorem
For any recursively inseparable pair 〈S ,T 〉, there exists
theory U〈S ,T 〉 such that G1 holds for U〈S,T 〉 and
Int(U〈S ,T 〉) < Int(R).

Definition
Let 〈S ,T 〉 be a recursively inseparable pair. Let L be the
finite language {0,S,P}. Consider the following theory
U〈S,T 〉:

I m 6= n if m 6= n;

I P(n) if n ∈ S;

I ¬P(n) if n ∈ T .
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In the following, let 〈S ,T 〉 be an arbitrary recursively
inseparable pair.

Lemma
G1 holds for U〈S ,T 〉.

Lemma
U〈S ,T 〉 is interpretable in R.

Theorem
R is not interpretable in U〈S ,T 〉.

Corollary

G1 holds for U〈S ,T 〉 and Int(U〈S ,T 〉) < Int(R).
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Model completion of the empty theory

Definition

1. A consistent theory T is said to be model complete if
for all models A, B of T , if A j B, then A ≺ B.

2. A theory T ∗ is a model companion of T if T ∗ is a
cotheory of T and T ∗ is model complete.

3. A theory T ∗ is a model completion of T if T ∗ is a
model companion of T and for every model A of T
with diagram ∆A, T ∗ ∪∆A is complete.

4. Let K be a class of structures in the same language. A
model M ∈ K is essentially closed in K if for any model
N ⊇ M such that N ∈ K, we have every existential
formula with parameters from M which is satisfied in N
is already satisfied in M.
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For any language L, let ECL be the model completion of the
empty L-theory. Then

Fact

(1) ECL has elimination of quantifiers.

(2) Models of ECL are exactly the existentially closed
L-structures; in particular, every L-structure embeds in a
model of ECL.

Definition
Consider the following theory S in the language 〈∈〉
axiomatized by the sentences
∃z , x0, ..., xn(

∧
i<j<n xi 6= xj ∧ ∀y(y ∈ z ↔

∨
i<n y = xi )) for

all n ∈ ω.
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Proof of the main theorem

Theorem (Emil JeŘábek)

For any language L and formula φ(z , x , y) with
lh(x) = lh(y), there is a constant n with the following
property. Let M |= ECL and u ∈ M be such that
M |= x0, · · · , xn−1

∧
i<j<n φ(u, x i , x j). Then for every

m ∈ ω and an asymmetric relation R on {0, · · · ,m − 1},
M |= x0, · · · , xm−1

∧
〈s,t〉∈R φ(u, x s , x t).

Proof.
Emil’s proof uses Ramsey’s theory and indiscernibility
argument.

Corollary

S is not weakly interpretable in ECL (S is not interpretable
in any consistent extension of ECL) for any language L.
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Proof of the main theorem: continued

In the following, based on Emil’s work I show that R is not
interpretable in U〈S ,T 〉.

I Note that S is interpretable in R.

I Since S is not weakly interpretable in ECL for any
language L, R is not weakly interpretable in ECL for any
language L.

Lemma
If R is interpretable in U〈S ,T 〉, then R is weakly interpretable
in ECL for some language L.

Corollary

R is not interpretable in U〈S ,T 〉.
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Questions for future research

Question
Define D = {Int(S) : Int(S) < Int(R) and G1 holds for S}.

1. Is (D, <) well founded?

2. Are any two elements of D comparable?

Conjecture

(D, <) is not well founded and has incomparable elements.

Question

1. For recursively inseparable pair 〈S ,T 〉 and 〈U,V 〉, what
can we say about int(U〈S,T 〉) and int(U〈U,V 〉)?

2. Could we find a class of recursively inseparable pair
〈Sα,Tα〉 such that the interpretation degree of U〈Sα,Tα〉
forms a descending chain?
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Thanks for your attention!


