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the language of predicate logic: syntactic material

I infinite set of predicate symbols for every arity (notation
P,Q,R,H,M),

I infinite set of function symbols for every arity (notation
f , g , h),

I infinite set of constant symbols (notation a, b, c).
I variables:

I infinite set of free variables Vf ,
I infinite set of bound variables Vb.

I logical connectives: ∧, ∨, ¬, →.

I quantifiers: ∀, ∃



the language of predicate logic: syntactic material

Notation:

I α, β for free variables,

I x , y , z for bound variables.

(∀x)(H(x)→ M(x))

x : bound variable, H, M: unary predicate symbols.



the language of predicate logic: terms

terms and semi-terms:
We define the set of semi-terms inductively:

I bound and free variables are semi-terms,

I constants are semi-terms,

I if t1, . . . , tn are semi-terms and f is an n-place function
symbol then f (t1, . . . , tn) is a semi-term.

Semi-terms which do not contain bound variables are called terms.



the language of predicate logic: terms

α, β: free variables,
x , y : bound variables,
f : two-place function symbol.
a: constant symbol.

I f (α, β) is a term,

I f (x , β) is a semi-term,

I α, β, c are terms,

I x is a semi-term.



the language of predicate logic: formulas

If t1, . . . , tn are terms and P is an n-place predicate symbol then
P(t1, . . . , tn) is a an (atomic) formula.

I If A is a formula then ¬A is a formula.

I If A,B are formulas then (A→ B), (A ∧ B) and (A ∨ B) are
formulas.

I If A{x ← α} is a formula then (∀x)A, (∃x)A are formulas.

I Semi-formulas differ from formulas in containing free variables
in Vb.



the language of predicate logic: formulas

P: one-place predicate symbol.
f : two-place function symbol.

P(f (α, β)) is a formula, and so are

(∀x)P(f (x , β)), (∃y)(∀x)P(f (x , y)).

P(f (x , β)) is a semi-formula.



sequents

Let Γ and ∆ be finite (possibly empty) multisets of formulas.
S : Γ ` ∆ is called a sequent.

S : Γ ` ∆ is satisfied by νI iff there is a A ∈ Γ with νI (A) = 0 or if
there is a B ∈ ∆ with νI (B) = 1.
(for classical logic)

S : Γ ` ∆ is satisfied by νI iff νI (
∧

A∈Γ A→
∨

B∈∆ B) = 1
For Γ = ∅ the right side is identified with true, for ∆ = ∅ the left
side is identified with false.
(classical logic and intuitionistic logic)



sequents

A sequent A1, . . . ,An ` B1, . . . ,Bm is called atomic if the Ai , Bj

are atomic formulas.

If S = Γ ` ∆ and S ′ = Π ` Λ we define the composition of S and
S ′ by S ◦ S ′, where

S ◦ S ′ = Γ,Π ` ∆,Λ.

where Γ,Π stands for the multiset union of Γ and Π.

Let Γ be a multiset of formulas.
Then we write Γ− A for Γ after deletion of all occurrences of A.

Let S ,S ′ be sequents. We define S ′ v S if there exists a sequent
S ′′ s.t. S ′ ◦ S ′′ = S and call S ′ a subsequent of S .



the sequent calculus LK: axiom sets

A (possibly infinite) set A of sequents is called an axiom set if it is

I closed under substitution, i.e., for all S ∈ A and for all
substitutions θ we have Sθ ∈ A.

I If A consists only of atomic sequents we speak about an
atomic axiom set.

I Let AT be the smallest axiom set containing all sequents of
the form A ` A for arbitrary atomic formulas A. AT is called
the standard axiom set.



the sequent calculus LK: the rules

I inference rules of LK work on sequents.

I logical rules

I structural rules

A and B denote formulas, Γ,∆,Π,Λ multisets of formulas.

In the rules we distinguish

I introducing or auxiliary formulas (in the premises) and

I introduced or principal formulas in the conclusion.

I notation: mark the auxiliary formulas occurrences by + and
the principal ones by ?.



the sequent calculus LK: the logical rules

I ∧-introduction:

A+, Γ ` ∆

(A ∧ B)?, Γ ` ∆
∧ : l1

B+, Γ ` ∆

(A ∧ B)?, Γ ` ∆
∧ : l2

Γ ` ∆,A+ Γ ` ∆,B+

Γ ` ∆, (A ∧ B)?
∧ : r

I ∨-introduction:

A+, Γ ` ∆ B+, Γ ` ∆

(A ∨ B)?, Γ ` ∆
∨ : l

Γ ` ∆,A+

Γ ` ∆, (A ∨ B)?
∨ : r1

Γ ` ∆,B+

Γ ` ∆, (A ∨ B)?
∨ : r2

I →-introduction:

Γ ` ∆,A+ B+,Π ` Λ

(A→ B)?, Γ,Π ` ∆,Λ
→ : l

A+, Γ ` ∆,B+

Γ ` ∆, (A→ B)?
→ : r

I ¬-introduction:

Γ ` ∆,A+

¬A?, Γ ` ∆
¬ : l

A+, Γ ` ∆

Γ ` ∆,¬A?
¬ : r



the sequent calculus LK: the logical rules

I ∀-introduction:

A{x ← t}+, Γ ` ∆

(∀x)A?, Γ ` ∆
∀ : l

where t is an arbitrary term.

Γ ` ∆,A{x ← α}+

Γ ` ∆, (∀x)A?
∀ : r

where α is a free variable which may not occur in Γ,∆,A.
α is called an eigenvariable.

I The logical rules for ∃-introduction (variable conditions for
∃ : l as for ∀ : r , similarly for ∃ : r and ∀ : l):

A{x ← α}+, Γ ` ∆

(∃x)A?, Γ ` ∆
∃ : l

Γ ` ∆,A{x ← t}+

Γ ` ∆, (∃x)A?
∃ : r



the sequent calculus LK: the structural rules

I weakening:

Γ ` ∆
Γ ` ∆,A?

w : r Γ ` ∆
A?, Γ ` ∆

w : l

I contraction:

A+,A+, Γ ` ∆

A?, Γ ` ∆
c : l

Γ ` ∆,A+,A+

Γ ` ∆,A?
c : r



the sequent calculus LK: the structural rules

I The cut rule:

Γ ` ∆,Ak Al ,Π ` Λ

Γ,Π ` ∆,Λ
cut(A)

where k , l ≥ 1 and Ak denotes A, . . . ,A k-times.

I the mix rule: Π and ∆ do not contain A.



LK-proofs

An LK-derivation is defined as a

I finite directed labeled tree,

I nodes are labeled by sequents (via the function Seq),

I edges labeled by the corresponding rule applications.

I label of the root is called the end-sequent.

I Sequents occurring at the leaves are called initial sequents or
axioms.

I An LK-proof ϕ of S is an LK-derivation with end-sequent S
from the set of standard axioms. If S is of the form ` A for a
formula A we also say that ϕ is a proof of A.



LK-proofs

Let ϕ be the LK-derivation

ν1 : P(a) ` P(a)

ν2 : (∀x)P(x) ` P(a)
∀ : l

ν3 : P(a) ` Q(a)

ν4 : P(a) ` (∃x)Q(x)
∃ : r

ν5 : (∀x)P(x) ` (∃x)Q(x)
cut

ν6 : ` (∀x)P(x)→ (∃x)Q(x)
→ : r

I The νi denote the nodes in ϕ.

I The leaf nodes are ν1 and ν3,

I the root is ν6.

I Seq(ν2) = (∀x)P(x) ` P(a).



LK-proofs

prove the sentence

(H(s) ∧ (∀x)(H(x)→ M(x)))→ M(s) in LK.

H(s) ` H(s) M(s) ` M(s)

H(s)→M(s),H(s) ` M(s)
→ : l

(∀x)(H(x)→ M(x)),H(s) ` M(s)
∀ : l

H(s)∧(∀x)(H(x)→ M(x)),H(s) ` M(s)
∧ : l2

H(s)∧(∀x)(H(x)→ M(x)),H(s) ∧ (∀x)(H(x)→ M(x)) ` M(s)
∧ : l1

H(s) ∧ (∀x)(H(x)→ M(x)) ` M(s)
c : l

` (H(s) ∧ (∀x)(H(x)→ M(x)))→M(s)
→ : r



on the role of contraction

In the proof of

(P(a) ∧ (∀x)(P(x)→ P(f (x))))→ P(f (f (a)))

we need two copies of the formula (∀x)(P(x)→ P(f (x))):

P(a) ` P(a) P(f (a)) ` P(f (a))

P(a)→ P(f (a)),P(a) ` P(f (a))
→ : l

P(f (f (a))) ` P(f (f (a)))

P(f (a))→ P(f (f (a))),P(a)→ P(f (a)),P(a) ` P(f (f (a)))
→ : l

(∀x)(P(x)→ P(f (x))),P(a)→ P(f (a)),P(a) ` P(f (f (a)))
∀ : l

(∀x)(P(x)→ P(f (x))), (∀x)(P(x)→ P(f (x))),P(a) ` P(f (f (a)))
∀ : l

(∀x)(P(x)→ P(f (x))),P(a) ` P(f (f (a)))
c : l

` (P(a) ∧ (∀x)(P(x)→ P(f (x))))→ P(f (f (a)))
∗



the role of cut

proof with cut:

Pa ` Pa Qa ` Qa
Pa,Pa→ Qa ` Qa

→ : l

Pa,Pa→ Qa ` ∃x .Qx
∃ : r

Pa,∀x(Px → Qx) ` ∃x .Qx
∀ : l

Qα ` Qα Rα ` Rα
Qα,Qα→ Rα ` Rα

→ : l

Qα,Qα→ Rα ` ∃x .Rx
∃ : r

Qα,∀x(Qx → Rx) ` ∃x .Rx
∀ : l

∃x .Qx ,∀x(Qx → Rx) ` ∃x .Rx
∃ : l

Pa,∀x(Px → Qx),∀x(Qx → Rx) ` ∃x .Rx
cut

proof without cut:

etc .
Pa,Pa→ Qa,Qa→ Ra ` Ra

Pa,Pa→ Qa,Qa→ Ra `` ∃x .Rx
∃ : r

Pa,Pa→ Qa,∀x(Qx → Rx) ` ∃x .Rx
∀ : l

Pa, ∀x(Px → Qx),∀x(Qx → Rx) ` ∃x .Rx
∀ : l



cut-elimination: the Hauptsatz

Gerhard Gentzen, 1935:
Every sequent provable in LK is also provable without the cut rule.

I proof by double induction on rank and grade.

I stricly speaking the method eliminates mix.

I Proofs with cut-rules and proofs with mix rules polynomially
simulate each other.



grade of a cut

Let ψ be a cut-derivation of the form

(ψ1)
Γ1 ` ∆1

(ψ2)
Γ2 ` ∆2

Γ1, Γ
∗
2 ` ∆∗1,∆2

cut(A)

I then we define the grade of ψ as comp(A) - the logical
complexity of A.

I We write cut(A) for the mix on A: ∆∗1, Γ
∗
2 do not contain A.



rank of a cut

Let ψ be a cut-derivation of the form

(ψ1)
Γ1 ` ∆1

(ψ2)
Γ2 ` ∆2

Γ1, Γ
∗
2 ` ∆∗1,∆2

cut(A)

I µ be the root node of ψ1,

I ν be the root node of ψ2.

I An A-right path in ψ1 is a path in ψ1 of the form
µ, µ1, . . . , µn s.t. A occurs in the consequents of all Seq(µi )
(note that A clearly occurs in ∆1).

I an A-left path in ψ2 is a path in ψ2 of the form ν, ν1, . . . , νm
s.t. A occurs in the antecedents of all Seq(νj).



rank of a cut

Let ψ be a cut-derivation of the form

(ψ1)
Γ1 ` ∆1

(ψ2)
Γ2 ` ∆2

Γ1, Γ
∗
2 ` ∆∗1,∆2

cut(A)

I Let P1 be the set of all A-right paths in ψ1 and
I P2 be the set of all A-left paths in ψ2.

Then we define the left-rank of ψ (rankl(ψ))
and the right-rank of ψ (rankr (ψ)) as

rankl(ψ) = max{lp(π) | π ∈ P1}+ 1,

rankr (ψ) = max{lp(π) | π ∈ P2}+ 1.

The rank of ψ is the sum of right-rank and left-rank, i.e.

rank(ψ) = rankl(ψ) + rankr (ψ).



principle of Gentzen’s proof

given proof ϕ.

I select an uppermost cut-derivation ψ in ϕ;

I if rank(ψ) = 2 select a grade reduction rule;

I if rank(ψ) > 2 select a rank reduction rule;
I after this reduction either

I the grade is reduced, but the rank may increase,
I the rank is reduced, but the grade does not increase.

induction on tupel odering on IN× IN s.t.

(i , j) < (k, l) iff either i < k or i = k and j < l .



Cut Reduction Rules

If a cut-derivation ψ is transformed to ψ′ then we define

ψ > ψ′

where ψ =

(ρ)
Γ ` ∆

(σ)
Π ` Λ

Γ,Π∗ ` ∆∗,Λ
cut



Cut Reduction Rules

3.11. rank = 2.

The last inferences in ρ, σ are logical ones and the cut-formula is
the principal formula of these inferences:

3.113.31.

(ρ1)
Γ ` ∆,A

(ρ2)
Γ ` ∆,B

Γ ` ∆,A ∧ B
∧ : r

(σ′)
A,Π ` Λ

A ∧ B,Π ` Λ
∧ : l

Γ,Π ` ∆,Λ
cut(A ∧ B)

transforms to
(ρ1)

Γ ` ∆,A
(σ′)

A,Π ` Λ

Γ,Π∗ ` ∆∗,Λ
cut(A)

Γ,Π ` ∆,Λ
w :∗

For the other form of ∧ : l the transformation is straightforward.



Cut Reduction Rules

3.113.33.

(ρ′[α])
Γ ` ∆,B{x ← α}

Γ ` ∆, (∀x)B
∀ : r

(σ′)
B{x ← t},Π ` Λ

(∀x)B,Π ` Λ
∀ : l

Γ,Π ` ∆,Λ
cut((∀x)B)

transforms to

(ρ′[t])
Γ ` ∆,B{x ← t}

(σ′)
B{x ← t},Π ` Λ

Γ,Π∗ ` ∆∗,Λ
cut(B{x ← t})

Γ,Π ` ∆,Λ
w :∗

3.113.34. The last inferences in ρ, σ are ∃ : r , ∃ : l : symmetric to
3.113.33.



Cut Reduction Rules: rank reduction

3.12. rank > 2:

3.121. right-rank > 1:



Cut Reduction Rules: rank reduction

3.121.1. The cut formula occurs in Γ.

(ρ)
Γ ` ∆

(σ)
Π ` Λ

Γ,Π∗ ` ∆∗,Λ
cut(A)

transforms to
(σ)

Π ` Λ
Γ,Π∗ ` ∆∗,Λ

s∗



Cut Reduction Rules: rank reduction

3.121.2. The cut formula does not occur in Γ.

3.121.21. Let ξ be one of the rules w : l or c : l ; then

(ρ)
Γ ` ∆

(σ′)
Σ ` Λ
Π ` Λ

ξ

Γ,Π∗ ` ∆∗,Λ
cut(A)

transforms to
(ρ)

Γ ` ∆
(σ′)

Σ ` Λ
Γ,Σ∗ ` ∆∗,Λ

cut(A)

Γ,Π∗ ` ∆∗,Λ
s∗

Note that the sequence of structural rules s∗ may be empty, i.e. it
can be skipped if the sequent does not change.



Cut Reduction Rules: rank reduction

3.121.22. Let ξ be an arbitrary unary rule (different from
c : l ,w : l) and let C ∗ be empty if C = A and C otherwise. The
formulas B and C may be equal or different or simply nonexisting
(in case ξ is a right rule). Let us assume that ψ is of the form

(ρ)
Γ ` ∆

(σ′)
B,Π ` Σ

C ,Π ` Λ
ξ

Γ,C ∗,Π∗ ` ∆∗,Λ
cut(A)

Let τ be the proof

(ρ)
Γ ` ∆

(σ′)
B,Π ` Σ

Γ,B∗,Π∗ ` ∆∗,Σ
cut(A)

Γ,B,Π∗ ` ∆∗,Σ
s∗

Γ,C ,Π∗ ` ∆∗,Λ
ξ + s∗



Cut Reduction Rules: rank reduction

3.121.221. A 6= C , including the case that ξ is a right rule and
B,C do not exist at all: then ψ transforms to τ .

3.121.222. A = C and A 6= B: in this case C is the principal
formula of ξ. Then ψ transforms to

(ρ)
Γ ` ∆

(τ)
Γ,A,Π∗ ` ∆∗,Λ

Γ, Γ∗,Π∗ ` ∆∗,∆∗,Λ
cut(A)

Γ,Π∗ ` ∆∗,Λ
s∗

3.121.223. A = B = C . Then Σ 6= Λ and ψ transforms to

(ρ)
Γ ` ∆

(σ′)
A,Π ` Σ

Γ,Π∗ ` ∆∗,Σ
cut(A)

Γ,Π∗ ` ∆∗,Λ
ξ



Cut Reduction Rules: rank reduction, a special case

(ρ)
Γ ` ∆, (∀x)A(x)

(σ′)
A(t), (∀x)A(x),Π ` Λ

(∀x)A(x), (∀x)A(x),Π ` Λ
∀ : l

Γ,Π ` ∆,Λ
cut

(ρ)
Γ ` ∆, (∀x)A(x)

(ρ)
Γ ` ∆, (∀x)A(x)

(σ′)
A(t), (∀x)A(x),Π ` Λ

Γ,A(t),Π ` ∆,Λ
cut

(∀x)A(x), Γ,Π ` ∆,Λ
∀ : l + ∗

Γ,Π ` ∆,Λ
cut + ∗



Cut Reduction Rules: rank reduction

3.121.23. The last inference in σ is binary:

3.121.231. The case ∧ : r . Here

(ρ)
Π ` Λ

(σ1)
Γ ` ∆,B

(σ2)
Γ ` ∆,C

Γ ` ∆,B ∧ C
∧ : r

Π, Γ∗ ` Λ∗,∆,B ∧ C
cut(A)

transforms to

(ρ)
Π ` Λ

(σ1)
Γ ` ∆,B

Π, Γ∗ ` Λ∗,∆,B
cut(A)

(ρ)
Π ` Λ

(σ2)
Γ ` ∆,C

Π, Γ∗ ` Λ∗,∆,C
cut(A)

Π, Γ∗,` Λ∗,∆,B ∧ C
∧ : r



Cut Reduction Rules: rank reduction

3.121.232. The case ∨ : l . Then ψ is of the form

(ρ)
Π ` Λ

(σ1)
B, Γ ` ∆

(σ2)
C , Γ ` ∆

B ∨ C , Γ ` ∆
∨ : l

Π, (B ∨ C )∗, Γ∗ ` Λ∗,∆
cut(A)

(B ∨ C )∗ is empty if A = B ∨ C and B ∨ C otherwise.
We first define the proof τ :

(ρ)
Π ` Λ

(σ1)
B, Γ ` ∆

B∗,Π, Γ∗ ` Λ∗,∆
cut(A)

B,Π, Γ∗ ` Λ∗,∆
x

(ρ)
Π ` Λ

(σ2)
C , Γ ` ∆

C ∗,Π, Γ∗ ` Λ∗,∆
cut(A)

C ,Π, Γ∗ ` Λ∗,∆
x

B ∨ C ,Π, Γ∗ ` Λ∗,∆
∨ : l

Note that, in case A = B or A = C , the inference x is w : l ;
otherwise x is the identical transformation and can be dropped.
If (B ∨ C )∗ = B ∨ C then ψ transforms to τ .



Cut Reduction Rules: rank reduction

If (B ∨ C )∗ is empty (i.e. B ∨ C = A) then we transform ψ to

(ρ)
Π ` Λ τ

Π,Π∗, Γ∗ ` Λ∗,Λ∗,∆
cut(A)

Π, Γ∗ ` Λ∗,∆
c :∗



Cut Reduction Rules: rank reduction

3.121.233. The last inference in ψ2 is →: l . Then ψ is of the
form:

(ψ1)
Π ` Σ

(χ1)
Γ ` Θ,B

(χ2)
C ,∆ ` Λ

B → C , Γ,∆ ` Θ,Λ
→: l

Π, (B → C )∗, Γ∗,∆∗ ` Σ∗,Θ,Λ
cut(A)

As in 3.121.232 (B → C )∗ = B → C for B → C 6= A and
(B → C )∗ empty otherwise.
3.121.233.1. A occurs in Γ and in ∆. Again we define a proof τ :

(ψ1)
Π ` Σ

(χ1)
Γ ` Θ,B

Π, Γ∗ ` Σ∗,Θ,B
cut(A)

(ψ1)
Π ` Σ

(χ2)
C ,∆ ` Λ

C ∗,Π,∆∗ ` Σ∗,Λ
cut(A)

C ,Π,∆∗ ` Σ∗,Λ
x

B → C ,Π, Γ∗,Π,∆∗ ` Σ∗,Θ,Σ∗,Λ
→: l

If (B → C )∗ = B → C then, as in 3.121.232, ψ is transformed to
τ + some additional contractions. Otherwise additional cut with A.



Cut Reduction Rules: rank reduction

3.121.233.2 A occurs in ∆, but not in Γ. As in 3.121.233.1 we
define a proof τ :

(χ1)
Γ ` Θ,B

(ψ1)
Π ` Σ

(χ2)
C ,∆ ` Λ

C ∗,Π,∆∗ ` Σ∗,Λ
cut(A)

C ,Π,∆∗ ` Σ∗,Λ
x

B → C , Γ,Π,∆∗ ` Θ,Σ∗,Λ
→: l

Again we distinguish the cases B → C = A and B → C 6= A and
define the transformation of ψ exactly like in 3.121.233.1.



Example of a Gentzen reduction

P(a) ` P(a)

(∀x)P(x) ` P(a)
∀ : l

P(b) ` P(b)

(∀x)P(x) ` P(b)
∀ : l

(∀x)P(x) ` P(a) ∧ P(b)
∧ : r

P(a) ` P(a)

P(a) ∧ P(b) ` P(a)
∧ : l

P(a) ∧ P(b) ` (∃x)P(x)
∃ : r

(∀x)P(x) ` (∃x)P(x)
cut

rank = 3, grade = 1.
reduce to rank = 2, grade = 1:

P(a) ` P(a)

(∀x)P(x) ` P(a)
∀ : l

P(b) ` P(b)

(∀x)P(x) ` P(b)
∀ : l

(∀x)P(x) ` P(a) ∧ P(b)
∧ : r

P(a) ` P(a)

P(a) ∧ P(b) ` P(a)
∧ : l

(∀x)P(x) ` P(a)
cut

(∀x)P(x) ` (∃x)P(x)
∃ : r



Example of a Gentzen reduction

P(a) ` P(a)

(∀x)P(x) ` P(a)
∀ : l

P(b) ` P(b)

(∀x)P(x) ` P(b)
∀ : l

(∀x)P(x) ` P(a) ∧ P(b)
∧ : r

P(a) ` P(a)

P(a) ∧ P(b) ` P(a)
∧ : l

(∀x)P(x) ` P(a)
cut

(∀x)P(x) ` (∃x)P(x)
∃ : r

rank = 2, grade = 1. Reduce to grade = 0, rank = 3:

P(a) ` P(a)

(∀x)P(x) ` P(a)
∀ : l

P(a) ` P(a)

(∀x)P(x) ` P(a)
cut

(∀x)P(x) ` (∃x)P(x)
∃ : r



Example of a Gentzen reduction

grade = 0, rank = 3:

P(a) ` P(a)

(∀x)P(x) ` P(a)
∀ : l

P(a) ` P(a)

(∀x)P(x) ` P(a)
cut

(∀x)P(x) ` (∃x)P(x)
∃ : r

eliminate cut with axiom:

P(a) ` P(a)

(∀x)P(x) ` P(a)
∀ : l

(∀x)P(x) ` (∃x)P(x)
∃ : r



An application of cut-elimination: Herbrand’s theorem

instantiation sequent:

Let S be a sequent of the form

(∀x̄1)F1, . . . , (∀x̄n)Fn ` (∃ȳ1)G1, . . . , (∃ȳm)Gm,

where ∀x̄i stands for (∀x1,i ) . . . (∀xki ,i ) and Fi ,Gj are
quantifier-free. Let Fi = F ′i ,1, . . .F

′
i ,ki

and Gj = G ′j ,1, . . .G
′
j ,lj

, where

the F ′i ,m are instances of Fi , the G ′j ,r instances of the Gj . Then a
sequent of the form

S∗ : F1,F2, . . .Fn ` G1, . . .Gm

is called an instantiation sequent of S



instantiation sequents: examples

S = (∀x)P(x) ` P(a) ∧ P(b).

P(a) ` P(a) ∧ P(b),
P(b) ` P(a) ∧ P(b),
P(a),P(b) ` P(a) ∧ P(b)
are instantiation sequents of S .

S1 = P(a), (∀x)(P(x)→ P(f (x)) ` (∃y)P(f (f (y)))

P(a),P(a)→ P(f (a)),P(f (a))→ P(f (f (a))) ` P(f (f (a)))

is an instantiation sequent of S1.



an application of cut-elimination: Herbrand’s theorem

Let ϕ be an LK-proof of a sequent S of the form

(∀x̄1)F1, . . . , (∀x̄n)Fn ` (∃ȳ1)G1, . . . , (∃ȳm)Gm,

where ∀x̄i stands for (∀x1,i ) . . . (∀xki ,i ) and Fi ,Gj are
quantifier-free. Then there exists an instantiation sequent S∗ of S
which is LK-provable. S∗ is called a Herbrand sequent of S .

proof (given in Gentzen’s midsequent theorem) by

I cut-elimination on ϕ yielding a proof ψ,

I construction of S∗ via ψ by induction on the number of
inferences in ψ and by permuting the order of inferences

full cut-elimination is not necessary: quantifier-free cuts are
admitted!



construction of a Herbrand sequent

given a proof ϕ without quantified cuts of

S : (∀x̄1)F1, . . . , (∀x̄n)Fn ` (∃ȳ1)G1, . . . , (∃ȳm)Gm.

I collect all instances F ′i , G ′j appearing in ϕ,

I construct an instantiation sequent S∗ of S with these
instances.

I then S∗ is a Herbrand sequent.



construction of a Herbrand sequent: example

proof:

P(a) ` P(a) P(f (a)) ` P(f (a))

P(a), P(a) → P(f (a)) ` P(f (a))
→ : l

P(a), (∀x)(P(x) → P(f (x))) ` P(f (a))
∀ : l

P(f (a)) ` P(f (a)) P(f (f (a))) ` P(f (f (a)))

P(f (a)), P(f (a)) → P(f (f (a))) ` P(f (f (a)))
→ : l

P(f (a)), (∀x)(P(x) → P(f (x))) ` P(f (f (a)))
∀ : l

P(a), (∀x)(P(x) → P(f (x))), (∀x)(P(x) → P(f (x))) ` P(f (f (a)))
cut

P(a), (∀x)(P(x) → P(f (x))) ` P(f (f (a)))
c : l

extracted Herbrand sequent:

P(a),P(a)→ P(f (a)),P(f (a))→ P(f (f (a))) ` P(f (f (a))).



an application of cut-elimination: interpolation

Theorem.
Let Π1,Π2 ` Γ1, Γ2 be any partition of the derivable sequent
Π ` Γ. There is an interpolant I containing only function symbols
and predicate symbols both in P1, Γ1 (P2, Γ2).

Proof.
Lemma of Maehara.



an application of cut-elimination: generalization of proofs



an application of cut-elimination: generalization of proofs

Definition
The skeleton of an LK-proof is a tree of names of rule applications.

` ∀x∀yP(x , y)→ ∃z(P(0, z) ∧ P(z , a) ∧ P(Sz ,Sa)).

There is a proof underlying this representation by name iff a is replaced

by S2n(0).



an application of cut-elimination: generalization of proofs

Theorem.
For every skeleton S and every parametrized end-sequent λ~xS(~x)
there is a most general term-minimal proof of S(~t) if there is any
proof of the same skeleton of S(~t ′ for some ~t ′.

Corollary.

If ` A(s(n(0))) is shortly derivable for sufficiently big n then
` ∀xA(s(n(x))) is derivable.



the calculus LJ

LJ is defined exactly as LK, only that |∆| ≤ 1 in Γ ` ∆.

Same Hauptsatz, same proof.

Proposition

` A is derivable in LJ if A is derivable in intuitionistic logic.

Corollary

Intuitionistic propositional logic is decidable.



the calculus LJ

A ` A ∨ : r1
A ` A ∨ ¬A ¬ : l¬(A ∨ ¬A),A ¬ : r

¬(A ∨ ¬A) ` ¬A
∨ : r2¬(A ∨ ¬A) ` A ∨ ¬A
¬ : l¬(A ∨ ¬A),¬(A ∨ ¬A) `
c : l¬(A ∨ ¬A) ` ¬ : r

` ¬¬(A ∨ ¬A)



n-valued logics

Represented by n-sided sequents.
Example: 3-valued Gödel logic implication

→ 0 1
2 1

0 1 1 1
1
2 0 1 1
1 0 1

2 1

νI (A→ B) = 0 (νI (A) = 1 ∨ νI (A) =
1

2
) and νI (B) = 0

Π|Γ,A|∆,A Π,B|Γ|∆
→: 0

Π,A→ B|Γ|∆

νI (A→ B) =
1

2
νI (A) = 1 and νI (B) =

1

2

Π|Γ|∆,A Π|Γ,B|∆
→: 1

2Π|Γ,A→ B|∆



n-valued logics

νI (A→ B) = 1 not(((νI (A) = 1 or νI (A) =
1

2
) or

((νI (A) = 1 and νI (B) =
1

2
) or νI (B) = 0

⇓

νI (A) = 0 or νI (B) =
1

2
or νI (B) = 1

and

νI (A) = 0 or νI (A) =
1

2
or νI (B) = 1

Π,A|Γ,B|∆,B Π,A|Γ,A|∆,B
1 : A→ B

Π|Γ|∆,A→ B



structural rules

axioms A|A|A ` A|A|A

weakening, contraction obvious.

Π,A|Γ|∆ Π′|Γ′,A|∆′
cut

Π,Π′|Γ, Γ′|∆,∆′

Π,A|Γ|∆ Π′|Γ′|∆′,A
cut

Π,Π′|Γ, Γ′|∆,∆′

Π|Γ|∆,A Π′,A|Γ′|∆′
cut

Π,Π′|Γ, Γ′|∆,∆′



complexity of cut-elimination

I complexity of cut-elimination is nonelementary.

Orevkov, Statman (1979):
There exists a sequence of LK-proofs ϕn of sequents Sn s.t.

I ‖ϕn‖ ≤ 2k∗n and

I for all cut-free proofs ψ of ϕn: ‖ψ‖ > s(n) where

s(0) = 1, s(n + 1) = 2s(n).

There exists no cheap way of cut-elimination in principle!



complexity

Let e : IN2 → IN be the following function

e(0,m) = m

e(n + 1,m) = 2e(n,m).

I f : INk → INm for k ,m ≥ 1 is called elementary if there exists
an n ∈ IN and a Turing machine π computing f s.t. for the
computing time Tπ of π:

Tπ(l1, . . . , lk) ≤ e(n, |(l1, . . . , lk)|)

where | | = maximum norm on INk .

I s : IN→ IN is defined as s(n) = e(n, 1) for n ∈ IN.

s and e are nonelementary.



the origin of complexity

P(a)→ P(f n(a)),P(f n(a))→ P(f 2n(a)) ` P(a)→ P(f 2n(a))

P(a)→ P(f n(a)), ∀x(P(x)→ P(f n(x))) ` P(a)→ P(f 2n(a))

∀x(P(x)→ P(f n(x))), ∀x(P(x)→ P(f n(x))) ` P(a)→ P(f 2n(a))

∀x(P(x)→ P(f n(x))) ` P(a)→ P(f 2n(a))

∀x(P(x)→ P(f n(x))) ` ∀x(P(x)→ P(f 2n(x)))

derive ∀x(P(x)→ P(f (x))) ` ∀x(P(x)→ P(f 2n(x)))



limits of complexity

Theorem
For fixed k there is an elementary procedure that eliminates cuts
from proofs with ≤ k iterated quantifiers in the cuts.



Cut-Elimination

Matthias Baaz

Vienna University of Technology



skolemization of formulas

I idea of skolemization: eliminate quantifiers with eigenvariable
conditions, so-called strong quantifiers.

I strong quantifier: ∀ in positive, ∃ in negative occurrence,

I weak quantifier: ∀ in negative, ∃ in positive occurrence.

Examples:

I (∀x)(∃y)P(x , y): ∀x strong, ∃y weak.

I ¬(∀x)(∃y)P(x , y): ∀x weak, ∃y strong.

I (∀z)((∀x)Q(x , z)→ (∀y)R(y , z)): ∀z , ∀y : strong, ∀x : weak.



skolemization of formulas

sk : closed formulas → closed formulas; eliminates strong
quantifiers. it is defined in the following way:

sk(F ) = F if F does not contain strong quantifiers.

Otherwise take (Qy) - the first strong quantifier in F which is in
the scope of the weak quantifiers (Q1x1), . . . , (Qnxn) . Let f be an
n-ary function symbol not occurring in F (f is a constant symbol
for n = 0). Then sk(F ) is defined inductively as

sk(F ) = sk(F(Qy){y ← f (x1, . . . , xn)}).

where F(Qy) is F after omission of (Qy). sk(F ) is called the
(structural) Skolemization of F .



skolemization of formulas: examples

I sk((∀x)(∃y)P(x , y)) = (∃y)P(c, y),

I sk(¬(∀x)(∃y)P(x , y)) = ¬(∀x)P(x , f (x)),

I sk((∀z)((∀x)Q(x , z)→ (∀y)R(y , z))) =
((∀x)Q(x , c)→ R(d , c)).

I sk(¬((∃x)P(x) ∧ (∃y)¬P(y))) = ¬(P(c) ∧ P(d)).



skolemization of sequents

Let S be the sequent
A1, . . . ,An ` B1, . . . ,Bm consisting of closed formulas only and

sk((A1 ∧ . . . ∧ An)→ (B1 ∨ . . . ∨ Bm)) =
(A′1 ∧ . . . ∧ A′n)→ (B ′1 ∨ . . . ∨ B ′m).

Then the sequent

S ′ : A′1, . . . ,A
′
n ` B ′1, . . . ,B

′
m

is called the Skolemization of S .
example:
S = (∀x)(∃y)P(x , y) ` (∀x)(∃y)P(x , y). Then the Skolemization
of S is

S ′ : (∀x)P(x , f (x)) ` (∃y)P(c , y).



skolemization of proofs

I Skolemized proof: proof of the Skolemized end sequent.

I construction by ommitting strong quantifier introductions and
by replacing eigenvariables.

I also proofs with cuts can be Skolemized, but the cut formulas
themselves cannot!

I Only the strong quantifiers which are ancestors of the end
sequent are eliminated.

I skolemization does not increase the number of inferences.



skolemization of proofs: example

P(a, α) ` P(a, α) Q(α) ` Q(α)

P(a, α),P(a, α) → Q(α)) ` Q(α)
→ : l

P(a, α),P(a, α) → Q(α)) ` (∃z)Q(z)
∃ : r

P(a, α), (∀v)(P(a, v) → Q(v)) ` (∃z)Q(z)
∀ : l

P(a, α), (∀u)(∀v)(P(u, v) → Q(v)) ` (∃z)Q(z)
∀ : l

(∃y)P(a, y), (∀u)(∀v)(P(u, v) → Q(v)) ` (∃z)Q(z)
∃ : l

(∀x)(∃y)P(x , y), (∀u)(∀v)(P(u, v) → Q(v)) ` (∃z)Q(z)
∀ : l

P(a, f (a)) ` P(a, f (a)) Q(f (a)) ` Q(f (a))

P(a, f (a)),P(a, f (a)) → Q(f (a))) ` Q(f (a))
→ : l

P(a, f (a)),P(a, f (a)) → Q(f (a))) ` (∃z)Q(z)
∃ : r

P(a, f (a)), (∀v)(P(a, v) → Q(v)) ` (∃z)Q(z)
∀ : l

P(a, f (a)), (∀u)(∀v)(P(u, v) → Q(v)) ` (∃z)Q(z)
∀ : l

(∀x)P(x , f (x)), (∀u)(∀v)(P(u, v) → Q(v)) ` (∃z)Q(z)
∀ : l



clause form transformations

I clause: atomic sequent.

I provability of ` F can be reduced to refutability of sets of
clauses C(F ).

I clause form transformation: transformation of ¬F to C(F ).

I refutation of sets of clauses: by resolution



clause form transformations: example

F = (H(s) ∧ (∀x)(H(x)→ M(x)))→ M(s).

transform ¬F to

(H(s) ∧ (∀x)(H(x)→ M(x))) ∧ ¬M(s).

clause form:

{` H(s), H(x) ` M(x), M(s) `}.



the resolution calculus

I resolution works on sets of clauses.

I resolution consists of substitution (most general unification)
+ cut.

The resolution rule (Ai ,Bj atoms):

I C = Γ ` ∆,A1, . . . ,An,

I D = B1, . . . ,Bm,Π ` Λ,

I assume Aiθ = Bjθ = A′ for all i , j so θ ”unifies” all the Ai ,Bj .

I then apply θ, cut out the Ai ,Bj and get the resolvent of C
and D:

Γθ,Πθ ` ∆θ,Λθ.



resolution deductions

I binary proof trees with resolution as the only rule.

I resolution refutation: resolution deduction of ` (the empty
sequent).

example:
C = {` H(s), H(x) ` M(x), M(s) `}.

resolution refutation of C:

` H(s) H(x) ` M(x)

` M(s)
x ← s

M(s) `
`



the resolution calculus

I resolution is complete, i.e. ` A is provable in LK iff the clause
form of ¬A is refutable by resolution.

I resolution is the basic calculus for the most efficient
automated theorem provers.

I (without unification) resolution represents the ”logic-free”
structural part of LK on atomic sequents.



The Method CERES: cut-elimination by resolution

Example: ϕ =

ϕ1 ϕ2

(∀x)(P(x)→ Q(x)) ` (∃y)(P(a)→ Q(y))
cut

ϕ1 =

P(u) ` P(u) Q(u) ` Q(u)

P(u),P(u)→ Q(u) ` Q(u)
→: l

P(u)→ Q(u) ` P(u)→ Q(u)
→: r

P(u)→ Q(u) ` (∃y)(P(u)→ Q(y))
∃ : r

(∀x)(P(x)→ Q(x)) ` (∃y)(P(u)→ Q(y))
∀ : l

(∀x)(P(x)→ Q(x)) ` (∀x)(∃y)(P(x)→ Q(y))
∀ : r

S = {P(u) `} × {` Q(u)}.



Example

ϕ =
ϕ1 ϕ2

(∀x)(P(x)→ Q(x)) ` (∃y)(P(a)→ Q(y))
cut

ϕ2 =

P(a) ` P(a) Q(v) ` Q(v)

P(a),P(a)→ Q(v) ` Q(v)
→: l

P(a)→ Q(v) ` P(a)→ Q(v)
→: r

P(a)→ Q(v) ` (∃y)(P(a)→ Q(y))
∃ : r

(∃y)(P(a)→ Q(y)) ` (∃y)(P(a)→ Q(y))
∃ : l

(∀x)(∃y)(P(x)→ Q(y)) ` (∃y)(P(a)→ Q(y))
∀ : l

S ′ = {` P(a)} ∪ {Q(v) `}.



cut-ancestors in axioms:

S1 = {P(u) `}, S2 = {` Q(u)}, S3 = {` P(a)}, S4 = {Q(v) `}.

S = S1 × S2 = {P(u) ` Q(u)}.

S ′ = S3 ∪ S4 = {` P(a); Q(v) `}.

characteristic clause set:

CL(ϕ) = S ∪ S ′ = {P(u) ` Q(u); ` P(a); Q(v) `}.



Projection of ϕ to CL(ϕ)

I Skip inferences leading to cuts.

I Obtain cut-free proof of end-sequent + a clause in CL(ϕ).

proof ϕ of S

⇓
cut-free proof ϕ(C ) of S ◦ C .



Let ϕ be the proof of the sequent
S : (∀x)(P(x)→ Q(x)) ` (∃y)(P(a)→ Q(y)) shown above.

CL(ϕ) = {P(u) ` Q(u); ` P(a); Q(v) `}.

Skip inferences in ϕ1 leading to cuts:

P(u) ` P(u) Q(u) ` Q(u)

P(u),P(u)→ Q(u) ` Q(u)
→ : l

P(u), (∀x)(P(x)→ Q(x)) ` Q(u)
∀ : l

ϕ(C1) =

P(u) ` P(u) Q(u) ` Q(u)

P(u),P(u)→ Q(u) ` Q(u)
→ : l

P(u), (∀x)(P(x)→ Q(x)) ` Q(u)
∀ : l

P(u), (∀x)(P(x)→ Q(x)) ` (∃y)(P(a)→ Q(y)),Q(u)
w : r



ϕ proof of
S : (∀x)(P(x)→ Q(x)) ` (∃y)(P(a)→ Q(y))

CL(ϕ) = {P(u) ` Q(u); ` P(a); Q(v) `}.

For C2 = ` P(a) we obtain the projection ϕ(C2):

P(a) ` P(a)

P(a) ` P(a),Q(v)
w : r

` P(a)→ Q(v),P(a)
→: r

` (∃y)(P(a)→ Q(y)),P(a)
∃ : l

(∀x)(P(x)→ Q(x)) ` (∃y)(P(a)→ Q(y)),P(a)
w : l



The Method CERES

given proof ϕ,

I extract characteristic clause set CL(ϕ),

I compute the projections of ϕ to clauses in CL(ϕ),

I construct an R-refutation γ of CL(ϕ),

I insert the projections of ϕ into γ ⇒ CERES normal form of ϕ.



Example

ϕ proof of
S : (∀x)(P(x)→ Q(x)) ` (∃y)(P(a)→ Q(y))

CL(ϕ) = {C1 : P(u) ` Q(u), C2 : ` P(a), C3 : Q(u) `}.
a resolution refutation δ of CL(ϕ):

` P(a) P(u) ` Q(u)

` Q(a)
R

Q(v) `
` R

ground projection γ of δ:

` P(a) P(a) ` Q(a)

` Q(a)
R

Q(a) `
` R

via σ = {u ← a, v ← a}.



Example

end sequent S of ϕ, S = B ` C .
γ =

` P(a) P(a) ` Q(a)

` Q(a)
R

Q(a) `
` R

CERES-normal form ϕ(γ) =

(χ2)
B ` C ,P(a)

(χ1)
P(a),B ` C ,Q(a)

B,B ` C ,C ,Q(a)
cut

B ` C ,Q(a)
c∗

(χ3)
Q(a),B ` C

B,B ` C ,C
cut

S
c∗



skolemized proofs

I SK = set of all LK-derivations with skolemized end-sequents.

I SK∅ = set of all cut-free proofs in SK.

I SKi = derivations in SK with cut-formulas of complexity ≤ i .

I Goal: reduction to derivations with only atomic cuts, i.e.
transform ϕ ∈ SK into ψ ∈ SK0.

I Proof skolemization needed for soundness of projections!

first step: construction of the characteristic clause set



characteristic clause set

I ϕ: an LK-derivation of S ,

I Ω be the set of all occurrences of cut formulas in ϕ.

We define the set of clauses CL(ϕ) inductively:

Let ν be the occurrence of an initial sequent in ϕ and sqν the
corresponding sequent. Then

S/ν = {sq(ν,Ω)}

where sq(ν,Ω) is the subsequent of sqν containing the ancestors of
Ω.



Assume: S/ν already constructed for depth(ν) ≤ k .
depth(ν) = k + 1:

(a) ν is the consequent of µ:

S/ν = S/µ.

(b) ν is the consequent of µ1 and µ2:

(b1) The auxiliary formulas of ν are ancestors of Ω, i.e. the
formulas occur in sq(µ1,Ω), sq(µ2,Ω):

(+) S/ν = S/µ1 ∪ S/µ2.

(b2) The auxiliary formulas of ν are not ancestors of Ω:

(×) S/ν = S/µ1 × S/µ2.

CL(ϕ) = S/ν0 where ν0 is the occurrence of the end-sequent.



If ϕ is a cut-free proof then there are no occurrences of cut
formulas in ϕ and CL(ϕ) = {`}.

Proposition:
Let ϕ be an LK-derivation. Then CL(ϕ) is refutable by resolution.



projection

Lemma:
Let ϕ be a deduction in SK of a sequent S : Γ ` ∆. Let C : P̄ ` Q̄
be a clause in CL(ϕ). Then there exists a deduction

I ϕ(C ) of P̄, Γ ` ∆, Q̄

s.t.
ϕ(C ) ∈ SK∅ and l(ϕ(C )) ≤ l(ϕ).

Projection of ϕ to C : construct ϕ(C ).

I ϕ(C ) is sound: no strong quantifier inferences in ϕ(C )!



the remaining steps of CERES

I Construct a resolution refutation γ of CL(ϕ),

I insert the projections of ϕ into γ.

I add some contractions and obtain a proof with (only) atomic
cuts, the CERES normal form.

(elimination of the atomic cuts optional)



Complexity of CERES

essential source of complexity:

I resolution refutation γ of CL(ϕ).

I ‖CL(ϕ)‖ is at most exponential in ‖ϕ‖.
I Computing the global m.g.u. σ and a p-resolution refutation
γ′ from γ is at most exponential in ‖γ‖.

I Let

r(γ′) = max{‖t‖ | t is a term occurring in γ′}.

Then r(γ′) ≤ ‖γ′‖ and, for any clause C ∈ CL(ϕ):

‖Cσ‖ ≤ ‖C‖ ∗ r(γ′),

‖ϕ(Cσ)‖ ≤ ‖ϕ(C )‖ ∗ r(γ′) ≤ ‖ϕ‖ ∗ r(γ′).



Complexity of CERES

ϕ: LK-proof of S .

Let γ be a resolution refutation of CL(ϕ) and γ′ be a
corresponding ground projection.
Then there exists a CERES-normal form ψ of S s.t.

‖ψ‖ ≤ c ∗ ‖γ′‖ ∗ r(γ′) ∗ ‖ϕ‖.



Complexity of CERES

I Resolution complexity:
Let C be an unsatisfiable set of clauses. Then the resolution
complexity of C is defined as

rc(C) = min{‖γ‖ | γ is a resolution refutation of C}.

I Definition:
Let P be a class of skolemized proofs. We say that

CERES is fast on P
if there exists an elementary function f s.t. for all ϕ in P:

rc(CL(ϕ)) ≤ f (‖ϕ‖).



Efficiency of CERES

CERES is superior to Gentzen w.r.t. the length of cut-free
proofs:

nonelementary speed-up of Gentzen by CERES:

I There exists a sequence of LK-proofs ϕn s.t.
I ‖ϕn‖ ≤ 2k∗n and
I all Gentzen-eliminations are of size > s(n).
I CERES is fast on {ϕn | n ∈ IN}.

I There is no nonelementary speed-up of CERES by reductive
methods based on R!



1903

David Hilbert, Grundlagen der Geometrie

⇓

the axiomatic method

the Hilbertian revolution



And before?

Euler became famous by deriving

∞∑
n=1

1

n2
=
π2

6
(1)



Let us consider Eulers reasoning. Consider the polynomial of even
degree

b0 − b1x2 + b2x4 − . . .+ (−1)nbnx2n (2)

If bn = 1 it has the 2n roots ±β1, . . . , βn 6= 0 then (2) can be
written as

(x − β1)(x + β1) . . . (x − βn)(x + βn) (3)

(−1)n(β1 − x)(β1 + x) . . . (βn − x)(βn + x) (4)

(−1)n(β2
1 − x2) . . . (β2

n − x2) (5)

where b0 = (−1)nβ2
1 . . . β

2
n

b0

(
1− x2

β2
1

)(
1− x2

β2
2

)
. . .

(
1− x2

β2
n

)
(6)

By comparing coefficients in (2) and (6) one obtains that

b1 = b0

(
1

β2
1

+
1

β2
2

+ . . .+
1

β2
n

)
. (7)



Next Euler considers the Taylor series for sin(x) divided by x

sin x

x
=
∞∑
n=0

(−1)n
x2n

(2n + 1)!
(8)

which has as roots ±π,±2π,±3π, . . . Now by way of analogy Euler
assumes that the infinite degree polynomial (8) behaves in the
same way as the finite polynomial (2). Hence in analogy to (6) he
obtains

sin x

x
=

(
1− x2

π2

)(
1− x2

4π2

)(
1− x2

9π2

)
. . . (9)

and in analogy to (7) he obtains

1

3!
=

(
1

π2
+

1

4π2
+

1

9π2
+ . . .

)
(10)

which immediately gives
∞∑
n=1

1

n2
=
π2

6
(11)



(1) That Kurt Gödel is Austrian entails that Kurt Gödel is
Austrian.

(2) Hence, that Kurt Gödel is Austrian entails that everyone
is Austrian.

(3) That is, if Kurt Gödel is Austrian, then all people are
Austrian.

(4) Therefore, there exists a person such that, if that person
is Austrian, then all people are Austrian.



A(a) ` A(a)

A(a) ` ∀yA(y)

` A(a)→ ∀yA(y)

` ∃x(A(x)→ ∀yA(y))



The traditional way to ensure soundness

I Inferences are sound, i.e. only true conclusions result from
true premises.

I Derivations are hereditary, i.e. initial segments of proofs are
proofs themselves.



Weak regularity

A(a) ` A(a)

A(a) ` ∀xA(x)

A(f (a)) ` A(f (a))

∀xA(x) ` A(f (a))

A(a) ` A(f (a))

` A(a)→ A(f (a))

` ∃x(A(x)→ A(f (x)))



Side variables

b is a side variable of a in π (written a <π b) if
π contains a strong-quantifier inference of the form

Γ ` ∆,A(a, b,~c)

Γ ` ∆, ∀xA(x , b,~c)

or of the form

A(a, b,~c), Γ ` ∆

∃xA(x , b,~c), Γ ` ∆



Skolemization sk(A)

The Skolemization of a first-order formula is defined by replacing
every strongly quantified variable y with a new function symbol
fy (x1, . . . , xn), where x1, . . . , xn are the weakly quantified variables
such that Qy appears in the scope of their quantifiers, and
removing the quantifier Qy .



A(b) ` A(b)

A(a),A(b) ` A(b)

A(b) ` A(a)→ A(b)

A(b) ` A(a)→ A(b),A(c)

` A(a)→ A(b),A(b)→ A(c)

` A(a)→ A(b),∀y(A(b)→ A(y))

` A(a)→ A(b),∃x∀y(A(x)→ A(y))

` ∀y(A(a)→ A(y)),∃x∀y(A(x)→ A(y))

` ∃x∀y(A(x)→ A(y)),∃x∀y(A(x)→ A(y))

` ∃x∀y(A(x)→ A(y))



Skolemization:

A(f (a)) ` A(f (a))

A(a),A(f (a)) ` A(f (a))

A(f (a)) ` A(a)→ A(f (a))

A(f (a)) ` A(a)→ A(f (a)),A(f (f (a)))

` A(a)→ A(f (a)),A(f (a))→ A(f (f (a)))

` A(a)→ A(f (a)),∃x(A(x)→ A(f (x)))

` ∃x(A(x)→ A(f (x))),∃x(A(x)→ A(f (x)))

` ∃x(A(x)→ A(f (x)))



Suitable quantifier inferences

A quantifier inference is suitable for a proof π if either it is a
weak-quantifier inference, or the following three conditions are
satisfied:

I (substitutability) the characteristic variable does not appear in
the conclusion of π.

I (side-variable condition) the relation <π is acyclic.

I (weak regularity) the characteristic variable is not the
characteristic variable of another strong-quantifier inference in
π.

(LK+)

The calculus LK+ is defined like LK, except that we instead allow
all weak and strong quantifier inferences with the proviso that they
be suitable for the proof.



Weakly suitable quantifier inference

A quantifier inference is weakly suitable for a proof π if either it is
a weak-quantifier inference or it satisfies substitutability, the
side-variable condition, and

I (very weak regularity) whenever the characteristic variable is
also the characteristic variable of another strong-quantifier
inference in π, then it has the same critical formula.

LK++

The calculus LK++ is the extension of LK+ that results from
allowing all weakly suitable quantifier inferences.



Soundness

Theorem.
If a sequent is LK++-derivable, then it is already LK-derivable.

Proof. Let π be an LK++-proof. Replace every unsound universal
quantifier inference by an → L inference:

Γ ` ∆,A(a) ∀xA(x) ` ∀xA(x)

Γ,A(a)→ ∀xA(x) ` ∆,∀xA(x)

Similarly replace every unsound existential quantifier by an → L
inference

∃xA(x) ` ∃xA(x) A(a), Γ ` ∆

Γ, ∃xA(x),∃xA(x)→ A(a) ` ∆

By doing this, we obtain a proof of the desired sequent, together
with many formulae of the form A(a)→ ∀xA(x) or ∃xA(x)→ A(a)
on the left-hand side. Introduce existential quantifiers left. This is
sound in LK by properties of <π.



Corollary.

If a sequent is derivable in LK+ or LK++, then it is already
derivable in LK.

A(a, b) ` A(a, b)

A(a, b) ` ∀yA(a, y)

A(a, b) ` ∃x∀yA(x , y)

∃xA(x , b) ` ∃x∀yA(x , y)

∀y∃xA(x , y) ` ∃x∀yA(x , y)

a <π b b <π a !



LK

A(a) ` A(a)

A(a) ` A(a),B

` A(a),A(a)→ B

` A(a), ∃x (A(x)→ B)

` ∃x (A(x)→ B),A(a)

` ∃x (A(x)→ B),∀x A(x) B ` B

∀x A(x)→ B ` ∃x (A(x)→ B),B

∀x A(x)→ B,A(b) ` ∃x (A(x)→ B),B

∀x A(x)→ B ` ∃x (A(x)→ B),A(b)→ B

∀x A(x)→ B ` ∃x (A(x)→ B),∃x (A(x)→ B)

∀x A(x)→ B ` ∃x (A(x)→ B)



LK+

A(a) ` A(a)

A(a) ` ∀x A(x) B ` B

A(a), ∀x A(x)→ B ` B

∀x A(x)→ B,A(a) ` B

∀x A(x)→ B ` A(a)→ B

∀x A(x)→ B ` ∃x (A(x)→ B)



Theorem.
There is no elementary function bounding the length of the
shortest cut-free LK-proof of a formula in terms of its shortest
cut-free LK+-proof.

An immediate consequence is the following:

Corollary.

There is no elementary function bounding the length of the
shortest cut-free LK-proof of a formula in terms of its shortest
cut-free LK++-proof.



The calculus LKshift is obtained by extending LK with the
following rules:

Γ, κ[Qx A � B] ` ∆

Γ, κ[Q ′x (A � B)] ` ∆

Γ, κ[A � Qx B] ` ∆

Γ, κ[Q ′x (A � B)] ` ∆

Γ ` ∆, κ[Qx A � B]

Γ ` ∆, κ[Q ′x (A � B)]

Γ ` ∆, κ[A � Qx B]

Γ ` ∆, κ[Q ′x (A � B)]

where κ[·] is a context, � ∈ {∧,∨,→} and Q ′ = Q, except if � is
→ and Q is taken from the antecedent, in which case Q ′ is
opposite. We refer to these rules as deep quantifier shifts.



Proposition.

Cut-free LK+ simulates cut-free LKshift double-exponentially, i.e.,
every LKshift-provable sequent is LK+-provable and there is a
double exponential function that bounds the length of the least
cut-free LK+-proof of a LK+-provable sequent in terms of its least
cut-free LKshift-proof.



In LKshift:

A(a) ` A(a)

∀xA(x) ` A(a)

∀xA(x) ` ∀yA(y)

` ∀xA(x)→ ∀yA(y)

` ∃x(A(x)→ ∀yA(y))

In LK+:

A(a) ` A(a)

A(a) ` ∀yA(y)

` A(a)→ ∀yA(y)

` ∃x(A(x)→ ∀yA(y))



In LK:

A(a) ` A(a)

A(a) ` A(a),∀yA(y)

` A(a),A(a)→ ∀yA(y)

` A(a),∃x(A(x)→ ∀yA(y))

` ∀yA(y),∃x(A(x)→ ∀yA(y))

A(a) ` ∀yA(y),∃x(A(x)→ ∀yA(y))

` A(a)→ ∀yA(y),∃x(A(x)→ ∀yA(y))

` ∃x(A(x)→ ∀yA(y)),∃x(A(x)→ ∀yA(y))

` ∃x(A(x)→ ∀yA(y))



Theorem.
There is no elementary function bounding the length of the
shortest cut-free LK-proof of a formula in terms of its shortest
cut-free LKshift-proof.

e.g. Statman’s sequence {sj}j<ω

1. the size of Si is polynomial in i ;

2. there is no bound on the size of their smallest cut-free
LK-proofs that is elementary in i ;

3. the size of these proofs (with cuts), however, is polynomially
bounded in i ;

4. all cut formulae are closed; we can also assume they are
prenex by, e.g., Theorem 3.3 in [BaazLeitsch94]1.

1M. Baaz and A. Leitsch, On Skolemization and Proof Complexity, Fund.
Inform., 20 (1994), 353-379.



Transform this proof in LKshift

Γ ` ∆,A A, Γ ` ∆

Γ ` ∆

⇓

Γ ` ∆,A Γ,A ` ∆
→ L

Γ,A→ A ` ∆

obtaining
A0 → A0, . . . ,Am → Am, Γi ` ∆i

cut-free.

And by LKshift-rules cut-free

∀x0
0∃x0

1 . . . (Â0 → Â0), . . . ,∀xm
0 ∃xm

1 (Âm → Âm), Γi ` ∆i .



Claim.
There is no elementary function bounding the size of the smallest
cut-free LK-proofs of

∀x0
0∃x0

1 . . . (Â0 → Â0), . . . ,∀xm
0 ∃xm

1 (Âm → Âm), Γi ` ∆i .

Skolemize, extract a Herbrand sequent and replace all Skolem
terms stepwise by f (t1, . . . , tn)→ ti sucht that the instances of

∀x0
0∃x0

1 . . . (Â0 → Â0), . . . ,∀xm
0 ∃xm

1

Skolemized become of the form c → c .



LJ+ and LJ++

Proposition

LJ+ and LJ++ do not admit cut elimination.

A(a) ` A(a)

A(a) ` ∀xA(x)

A(f (a)) ` A(f (a))

∀xA(x) ` A(f (a))

A(a) ` A(f (a))

` A(a)→ A(f (a))

` ∃x(A(x)→ A(f (x)))

Consequently, there is no Gentzen-style cut-elimination for LK+

and LK++.



Quantifier shifts not valid intuitionistically

1. ∀x (A ∨ B(x)) ` A ∨ ∀x B(x);

2. (∀x A(x)→ B) ` ∃x (A(x)→ B);

3. (A→ ∃x B(x)) ` ∃x (A→ B(x)).

Proposition.

A sequent is provable in LJ++ if and only if it is provable in LJ
with all quantifier shifts added as axioms.



No elementary Skolemization for cut-free LK+ and LK++ proofs.
(But quadratic Skolemization using additional cuts.)

No elementary extraction of Skolemized Herbrand disjunctions
from cut-free LK+ and LK++ proofs.



Andrew’s Skolemization

A(∃xB(x , y)) A(∀xB(x , y))
B negative in A B positive in A

⇓

A(B(f (y), y))

where f depends only on the weakly bound variables of the scope
that occur in B.

Proposition.

Andrew’s Skolemization projects a cut-free LK++-proof into a
cut-free proof of the Skolemized end-sequent. Conversely, any
cut-free proof of Andrew’s Skolemization of a sequent can be easily
retransformed into a cut-free proof in LK.



Andrew’s Skolemization

Consequently, there is a sequence of refutable formulas A1,A2, . . .
such that the lenght of the shortest refutations of the clause forms
of the usual Skolemization cannot not be elementarily bounded in
the length of the shortest refutations of the clause forms of
Andrews’s Skolemizations.

(Note that this holds for any elementary transformation to clause
form of the Skolemized formulas!)



Relation to the ε-calculus

∃xA(x) ∼ A(εxA(x))

∀xA(x) ∼ A(εx¬A(x)) ∼ A(τxA(x))

LKε

Γ,A(t) ` ∆
τ

Γ,A(τxA(x)) ` ∆

Γ ` ∆,A(t)
ε

Γ ` ∆,A(εxA(x))



Consider the following proof of a sequent whose only occurrence of
τ is weak:

A(τx (A(x) → B)) ` A(τx (A(x) → B))

A(τxA(x)) ` A(τx (A(x) → B))

A(τxA(x)) ` B, A(τx (A(x) → B))

` A(τxA(x)) → B, A(τx (A(x) → B)) B ` B

A(τx (A(x) → B)) → B ` A(τxA(x)) → B, B

A(τx (A(x) → B)) → B, A(τxA(x)) ` A(τxA(x)) → B, B

A(τx (A(x) → B)) → B ` A(τxA(x)) → B, A(τxA(x)) → B

A(τx (A(x) → B)) → B ` A(τxA(x)) → B

The corresponding Herbrand sequent is

A(a)→ B `
(
A(a)→ B

)
∨
(
A(b)→ B

)
, (D)

which is a propositional tautology.



Moreover, the result of shifting the disjunction to where the ε-term
originally appeared, namely,

A(a)→ B ` A(a) ∧ A(b)→ B,

is also a propositional tautology. Here, the disjunction is replaced
by a conjunction, as the ε-term appeared in the antecedent of an
implication. The conclusion of the proof is the translation of the
Skolemized sequent

∀x
(
A(x)→ B

)
` ∀x A(x)→ B,

and so this is LK-provable. Compare this with

∀x
(
A(x)→ B

)
` ∃x

(
A(x)→ B

)
,

which is the Skolemized sequent suggested by (D).



Proposition

If a sequent is has an LK++-proof of length k , then its standard
translation has an LKε-proof of length ≤ k .

Proposition

A sequent is LJ++-provable if and only if its standard translation is
LJε-provable.



Relation to the ε-calculus

Another soundness proof for LK+ and LK++

But e.g.

(ϕ)

Γ ` ∆,A(s(t))

Γ ` ∆,A(s(εxA(s(x))))

Γ′ ` ∆′,A(s(εxA(s(x))))

Γ′ ` ∆′,A(εxA(x))

not represented in LK+ and LK++.



All cuts in LKε can be immediately reduced to translations of
universal cuts.

⇓

No Schütte-Tait-style cut-elimination.

Also Gentzen-style cut-elimination is impossible.



Π ` Γ,A(e, f (e)) A(e, f (e)),Π ` Γ

Π,Π ` Γ, Γ

Π ` Γ

f (x) ∼ τyA(x , y), e ∼ εxA(x , f (x)), A(e, f (e)) ∼ [∃x∀yA(x , y)]ε

can be easily transformed into

Π ` Γ,A(e, f (e)) A(e, f (e)),Π ` Γ

A(e, f (e))→ A(e, f (e)),Π ` Γ

A(e, h(e))→ A(e, h(e)),Π ` Γ

A(g , h(g))→ A(g , h(g)),Π ` Γ

Π ` Γ

cut with

A(g , h(g)) ` A(g , h(g))

` A(g , h(g))→ A(g , h(g))

h(x) ∼ τy (A(x , y)→ A(x , y)), g ∼ τx(A(x , h(x))→ A(x , h(x)))

A(g , h(g))→ A(g , h(g)) ∼ [∀x∀y(A(x , y)→ A(x , y))]ε



We have to suppress inner inferences (no first ε-theorem for the
logic captured by LJε!)

Inner inferences

Π ` Γ,A(t)

Π ` Γ,A(εxA(x))

A(t),Π ` Γ

A(τxA(x)),Π ` Γ

are eliminated by inferring

A(s, t)→ A(s, fi (s)) A(s, fj(s))→ A(s, t)

on the left side, where s are terms substituted in the matrix.



We reconstruct an LK++ proof of

. . . ∀x∀y(A(x , y)→ A(x , fi (x))) . . . ∀x∀y(A(x , f (x))→ A(x , y)),

A1, . . . ,An ` B1, . . . ,Bm

from a proof of [A1]τ , . . . , [An]τ ` [B1]τ , . . . , [Bm]τ in LJε.

Translate this proof to a proof of

∀x∃z∀y(A(x , y)→ A(x , z)) . . . ∀x∃z∀y(A(x , z)→ A(x , y)),

A1, . . . ,An ` B1, . . . ,Bm.

Derive the additional formulas using shifts and apply cuts.



complexity of the ε-notation

ε-translation of ∃x∃y∃z A(x , y , z):

A(εx A(x , εy A(x , y , εz A(x , y , z)), εzA(x , εy A(x , y , εz
A(x , y , z)), z)), εy A(εx A(x , εy
A(x , y , εzA(x , y , z)), εzA(x , εyA(x , y , εzA(x , y , z)), z)), y , εzA(εx
A(x , εy A(x , y , εz A(x , y , z)), εz A(x , εy A(x , y , εz
A(x , y , z)), z)), y , z)), εzA(εx A(x , εy A(x , y , εz
A(x , y , z)), εzA(x , εy A(x , y , εz A(x , y , z)), z)), εyA(εx A(x , εy
A(x , y , εz A(x , y , z)), εz A(x , εy A(x , y , εz A(x , y , z)), z)), y , εz
A(εx A(x , εy A(x , y , εz A(x , y , z)), εz A(x , εy A(x , y , εz
A(x , y , z)), z)), y , z)), z)).



Lemma (Hilbert’s Ansatz)

If A(t1)→ A(εxA(x)), . . . , A(tn)→ A(εx A(x)), Π ` ∆ is valid
then Π{εxA(x) → t1}, . . . , Π{εxA(x) → tn}, Π ` ∆{εx A(x)
→ t1}, . . . , ∆{εx A(x) → tn}, ∆ is valid (εxA(x) can then be
substituted by a fixed constant).

Proof.
Note that A(ti ),Π{εxA(x)→ ti} ` ∆{εxA(x)→ ti} and
¬A(t1), . . . , ¬A(tn),Π ` ∆ are valid.



Definition
An ε-term e is nested in an ε-term e ′ if e is a proper subterm of e ′.
An ε-term e is subordinate to an ε-term e ′ = εxA(x) if e occurs in
e ′ and x is free in e.

The rank counts the subordination levels and the degree the length
of the maximal inclusion chain.



Theorem (Extended first ε-theorem)

Given a proof C1, . . . ,Cr ,Π ` ∆ we obtain a valid sequent
Πσ1, . . . ,Πσn ` ∆σ1, . . . ,∆σn containing no ε-terms, where the σi
are substituting ε-terms by closed terms.

Proof.
(Sketch) Hilbert’s Ansatz is repeatedly applied to ε-terms of
maximal rank and maximal degree and to the remaining critical
formulas to obtain an expansion both of the other critical formulas
and of the rest of the sequent. The condition of maximal rank is
necessary to guarantee that critical formulas are transformed into
critical formulas by these substitutions. The maximal degree is
necessary for termination.
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