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Preliminaries: theories

We deal with arithmetical theories in the language 0, (-)', +, X, exp.

Arithmetical hierarchy:
@ Y = o = Ag(exp) = bounded arithmetical formulas,

o pell,=3xy,....xxk ¥ € Lpt1,
@ YEL,=Vxy,...,xk E |_|,,+1.
Elementary arithmetic Peano arithmetic
EA =1Aq(exp) CEAT CIS; €+~ CIEn C--- CPA= | ] IZn.
mew

EAT := EA + Vx,y 3225 = z, where 2§ := 2% and 25, := 2%,
1>, := EA + induction schema restricted to X ,,-formulas.

T C U < every theorem of T is a theorem of U
T = U<« T and U have the same theorems

T =5, U< T and U have the same X ,-consequences
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Preliminaries: provability

For every r.e. consistent T we fix some Ag(exp)-formula
Prfr(p, x) := p codes a proof of a formula ¢ with x = "™
The provability predicate for T is given by O7(x) := Ip Prfr(p, x).
The classes 1, have truth definitions Truen,(z) € M, such that

Vo € My EAFE Truen,("o(x1, ..., xk) ") < o(x1, ..., Xk).

@ is n-provable in T, if ¢ is provable in T + all true I1,-sentences.
[n]7y =3 (Truen, ("7 ) ADOT ("7 — 7).

[n] 7 satisfies the derivability conditions and is provably ¥, 1-complete:
Q If T+ ¢, then EAF [n]1e.
@ EAF [n]7r(p — ) = ([n]Te — [n]7T9).
@ EAF [n]ry — [n]7[n]Te.
Q EA o(X) — [n]T0(X), whenever o(X) is a X,41-formula.
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Provable n-provability

A formula ¢ is provably n-provable in PA, if PA = [n]pag.
PA I Opay <> PA F ¢ = provable 0-provability <+ provability.

Although for a fixed n > 0 the set of all formulas n-provable in PA is
not r.e., the set of all provably n-provable formulas is an r.e. theory
extending PA.

Problem. Find an explicit axiomatization of the theory

{¢ | PAF [n]pap} for a fixed n > 0.

More generally, given a pair T and S of r.e. consistent extensions
of EA we consider the set of formulas T-provably n-provable in S

C(T) = A{e | T [n]se}.
C2(T) is an r.e. extension of S with the provability predicate O7[n]s.

Main question. How can we axiomatize CZ(T) in terms of T and S?
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Iterated local reflection principles

The answer will be given using iterated local reflection principles.
The local reflection principles are the following schemata

o full schema Rfn(T) := {1¢p — ¢ | ¢ is a sentence},

e partial schema Rfny (T) := {O7¢ — ¢ | ¢ is a L,-sentence}.
The relativized versions Rfn"(T) and Rfng (T) of the above princi-
ples are obtained by replacing O+ with [n] .

Turing considered the transfinite iterations of such principles along
recursive ordinals (D, <) (Turing progressions, 1939).

Rfn(T)o:=T, Rfn(T)at1:=T + Rin(Rn(T),),

Rfn(T)x := [ J Rfn(T)s, A € Lim.
B<A
Formally, the sequence of theories Rfn(T)q, @ € D is defined via the
fixed-point lemma applied to the formalization of the following

Rfn(T)a = T + {Rfn(Rfn(T)g) | B < a}.
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Local reflection is provably 1-provable

Fact. Rfn(S) C CY(T).
Proof. Consider an arbitrary instance Os¢ — ¢ of Rfn(S). We have

THE DS(P — [1]5()0
= [ls(Hsp — ).

The sentence =Osp is My, so by provable ¥»-completeness of [1]s

T+ =0Osp — [1]s (Os¢p)
= [1]s(Osp — ),

This shows T  [1]s(0s¢ — ), whence Rfn(S) C C&(T).
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Iterated reflection is provably 1-provable

In the same fashion using transfinite induction in PA one can show
Rfn(S).,, € C3(IZ) and Rfn(S)., C C(PA).
where wp := 1, wmt1 := w*™ and &g := sup{wm | M € w}.

Natural conjecture: CZ(1£,) = Rfn(S).,, and CZ(PA) = Rfn(S)e,.

m

The main difficulty is to prove the reverse inclusions

CL(1Zm) C Rfn(S).,,, and C¢(PA) C Rfn(S).,.
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Main results: n=1

We obtain the following results on provable 1-provability:

For any m > 0 we have C(1X,) = Rfn(S).,,.
It follows that C2(PA) = Rfn(S)-,.

In general, if « is the ¥3-ordinal of a (X9-regular) theory T
measured w.r.t. the transfinite iterations of local ¥ »-reflection
schema over EA, i.e., « is the least ordinal in (D, <) such that

T =5, anz2 (EA)a,

then we have C2(T) = Rfn(S)140-
All these equivalences are provable in EA™.

CEA(IZ1) has superexponential speed-up over Rfn(EA),,,
i.e., an IX ,-proof of 1-provability of ¢ can be “much shorter”
than the shortest proof of ¢ from iterated reflection.
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Main results: n > 1

The results above can be generalized to the case of provable n-provability
for n > 1. In particular,

o For any m > n > 0 we have CZT'(IZ,) = Rfn"(S).,,_,-
o It follows that CZT!(PA) = Rfn"(S).,.
o If ais the X9 ,-ordinal of a (X9 ,-regular) theory T

measured w.r.t. the transfinite iterations of Rfny  (EA), then

CIY(T) = Rfn"(S)14a.

In case IX, C S these equivalences are provable in EAT.
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> »-conservation results

We want to show Ci(IZ,,) C Rfn(S)., => it would be more con-
venient if we could replace IZ,, under C(-) with an equivalent form
of iterated reflection.

1]s¢p is a ¥o-sentence = C%(T) depends on Y»-consequences of T.
S

Theorem (Beklemishev, Visser; 2005). ¥,-consequences of |X,, are
axiomatized by Rfny,(EA),, for m > 0.

Theorem (Beklemishev; 2003). EA - Yo Rfny,(T)o =5, Rfn(T)q.

Lemma. C(IZ,) = Ci(Rfng,(EA),,,) = CI(Rfn(EA).,,).
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Csl() permutes with Rfn(+),

Lemma. EA F Va CH(Rfn(T)a) = Rfn(C(T))a-

Proof (idea). Argue in EA by reflexive induction on a:

Va(Oea(V8 < a A(B)) — A(a))
Va A(a)
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Characterizing CZ(EA)

Using the permutation property we get
C3(1Zm) = C&(Rfn(EA).,,) = Rfn(CE(EA))w,,
hence it is only left to find CZ(EA).
Lemma. EAT  CI(EA) = S + Rfn(S).
Proof (idea). O was shown above.

For C we apply a version of the Herbrand theorem for ¥»>-formulas.
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Proof: a general outline (for n = 1)

Combining all the Lemmas we get the following chain of equivalences

Ci(IZ )
> »-consequences of X, Il
Ci(Rfng,(EA),,)
Y »-conservativity of Rfn over Rfny, 11
CY(Rfn(EA),,.)
C2(-) permutes with Rfn(-),, Il
Rfn(CZ(EA))w,

CY(EA) = S +Rfn(S) Il
Rfn(S + Rfn(S)).,,
14wy =wn,form>0 Il
Rfn(S)w,,
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Relativization to the case n > 1

The same strategy applies to the case n > 1.

Theorem (Beklemishev, Visser; 2005). X ,;2-consequences of IX,
are axiomatized by Rfng  (EA),, , for m>n>0.

Theorem (Beklemishev; 2003). EA - VaRfng  (T)a Rfn"(T)q.

: n+2
Lemma. EA I Va CZTH(Rfn(T)a) = RI"(CZHY(T))a-

Lemma. CZT1(EA) = S + Rfn"(S). Moreover, if IX, C S then this
equivalence is provable in EA™.

Proof (idea). Relativization of the syntactic proof for the case n = 1
(via the Herbrand theorem) uses ¥ ,-induction, whence the require-
ment on S appears.

To prove the equivalence for arbitrary S O EA we argue model-
theoretically using the substructure K""(M) <5, M of L,.1-
definable elements and the equivalence Rfng  (EA) =I%.
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Thank you for your attention!
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