Axiomatizing provable *n*-provability **Evgeny Kolmakov**¹ Lev D. Beklemishev¹ ¹ Steklov Mathematical Institute of Russian Academy of Sciences, kolmakov-ea@yandex.ru bekl@mi.ras.ru Moscow, Russia Local reflection is provably 1-provable **Preliminaries: theories** We deal with arithmetical theories in the language $0, (\cdot)', +, \times, exp$. **Fact.** Rfn(S) $\subseteq C_S^1(T)$. Arithmetical hierarchy: Using transfinite induction in PA one can generalize this fact and show • $\Sigma_0 = \Pi_0 = \Delta_0(\exp) = bounded$ arithmetical formulas, $\operatorname{Rfn}(S)_{\omega_m} \subseteq C^1_S(I\Sigma_m)$ and $\operatorname{Rfn}(S)_{\varepsilon_0} \subseteq C^1_S(PA)$. • $\varphi \in \Pi_n \Rightarrow \exists x_1, \ldots, x_k \varphi \in \Sigma_{n+1}$ and $\psi \in \Sigma_n \Rightarrow \forall x_1, \ldots, x_k \psi \in \Pi_{n+1}$. where $\omega_0 := 1, \omega_{m+1} := \omega^{\omega_m}$ and $\varepsilon_0 := \sup\{\omega_m \mid m \in \omega\}$. **Elementary arithmetic** (base theory) **Peano** arithmetic **Natural hypothesis:** $C^1_S(I\Sigma_m) \equiv Rfn(S)_{\omega_m}$ and $C^1_S(PA) \equiv Rfn(S)_{\varepsilon_0}$. $\mathsf{E}\mathsf{A} \equiv \mathsf{I}\Delta_0(\mathsf{exp}) \subseteq \mathsf{E}\mathsf{A}^+ \subseteq \mathsf{I}\Sigma_1 \subseteq \cdots \subseteq \mathsf{I}\Sigma_m \subseteq \cdots \subseteq \mathsf{P}\mathsf{A} \equiv \left(\ \right) \mathsf{I}\Sigma_m.$ The main difficulty is to prove the **reverse inclusions**. $\mathsf{EA}^+ := \mathsf{EA} + orall x, y \exists z \, 2_v^x = z$, where $2_0^x := 2^x$ and $2_{v+1}^x := 2^{2_y^x}$. $I\Sigma_m := EA + induction$ schema restricted to Σ_m -formulas with parameters. Main results: provable 1-provability $T \subseteq U \Leftrightarrow$ every theorem of T is a theorem of U We obtain the following results on provable 1-provability: $T \equiv U \Leftrightarrow T$ and U have the same theorems

 $T \equiv_{\Sigma_n} U \Leftrightarrow T$ and U have the same Σ_n -theorems

Preliminaries: provability

For every r.e. consistent T we fix some $\Delta_0(exp)$ -formula

Prf_T(p, x) := p codes a proof of the formula φ with $x = \lceil \varphi \rceil$.

The **provability predicate** for T is given by $\Box_T(x) := \exists p \operatorname{Prf}_T(p, x)$. φ is *n*-**provable** in T, if φ is provable in T together with all true Π_n -sentences. The classes Π_n for n > 0 have **truth definitions** $\operatorname{True}_{\Pi_n}(z) \in \Pi_n$ such that $\forall \varphi \in \Pi_n \quad \operatorname{EA} \vdash \operatorname{True}_{\Pi_n}(\ulcorner \varphi(\underline{x_1}, \ldots, \underline{x_k}) \urcorner) \leftrightarrow \varphi(x_1, \ldots, x_k),$ which allow to formalize the notion of *n*-provability as follows

 $[n]_{T}\varphi := \exists \pi \left(\mathsf{True}_{\Pi_n}(\ulcorner \pi \urcorner) \land \Box_{T}(\ulcorner \pi \to \varphi \urcorner) \right).$

[*n*]_{*T*} satisfies the **derivability conditions** and is **provably** Σ_{n+1} -**complete**: 1. If $T \vdash \varphi$, then $\mathsf{EA} \vdash [n]_T \varphi$. 2. $\mathsf{EA} \vdash [n]_T (\varphi \to \psi) \to ([n]_T \varphi \to [n]_T \psi)$. 3. $\mathsf{EA} \vdash [n]_T \varphi \to [n]_T [n]_T \varphi$.

4. EA $\vdash \sigma(\vec{x}) \rightarrow [n]_T \sigma(\vec{x})$, whenever $\sigma(\vec{x})$ is a Σ_{n+1} -formula.

- For any $m \ge 0$ we have $C_S^1(I\Sigma_m) \equiv \mathsf{Rfn}(S)_{\omega_m}$.
- It follows that $C^1_S(\mathsf{PA}) \equiv \mathsf{Rfn}(S)_{\varepsilon_0}$.
- In general, if α is the Σ_2^0 -ordinal of a (Σ_2^0 -regular) theory T measured w.r.t. the transfinite iterations of local Σ_2 -reflection schema over EA, i.e., α is the least ordinal in (D, \prec) such that $T \equiv_{\Sigma_2} Rfn_{\Sigma_2}(EA)_{\alpha}$, then we have

 $C^1_S(T) \equiv \mathsf{Rfn}(S)_{1+lpha}.$

- All these equivalences are provable in EA⁺.
- $C_{\mathsf{EA}}^1(\mathsf{I}\Sigma_m)$ has superexponential speed-up over $\mathsf{Rfn}(\mathsf{EA})_{\omega_m}$.

Main results: provable *n*-provability for n > 1

For n > 1 we get the following generalizations of the results above

- For any $m \ge n > 0$ we have $C_S^{n+1}(I\Sigma_m) \equiv \mathsf{Rfn}^n(S)_{\omega_{m-n}}$.
- It follows that $C_S^{n+1}(\mathsf{PA}) \equiv \mathsf{Rfn}^n(S)_{\varepsilon_0}$.
- If α is the \sum_{n+2}^{0} -ordinal of a (\sum_{n+2}^{0} -regular) theory T measured w.r.t. the transfinite iterations of $\text{Rfn}_{\sum_{n+2}}^{n}(\text{EA})$, then

 $C^{n+1}_{\mathcal{S}}(\mathcal{T})\equiv \mathsf{Rfn}^n(\mathcal{S})_{1+lpha}.$

• In case $I\Sigma_n \subseteq S$ these equivalences are provable in EA⁺.

Proof: a general outline (for n = 1)

Provable *n*-provability

A formula φ is **provably** *n*-**provable** in PA, if PA $\vdash [n]_{PA}\varphi$.

 $\mathsf{PA} \vdash \Box_{\mathsf{PA}} \varphi \leftrightarrow \mathsf{PA} \vdash \varphi \Longrightarrow$ provable 0-provability \leftrightarrow provability.

Although for a fixed n > 0 the set of all formulas *n*-provable in PA is not r.e., the set of all **provably** *n*-provable formulas is an r.e. theory extending PA. **Problem.** Find an explicit axiomatization of the theory

 $\{\varphi \mid \mathsf{PA} \vdash [n]_{\mathsf{PA}}\varphi\}$ for a fixed n > 0.

More generally, given a pair T and S of r.e. consistent extensions of EA we consider the set of formulas T-provably n-provable in S

 $C_{S}^{n}(T) := \{ \varphi \mid T \vdash [n]_{S} \varphi \}.$

 $C_S^n(T)$ is an r.e. theory extending S, which can be viewed as a theory with the provability predicate $\Box_T[n]_S$.

Main question. How can we axiomatize $C_S^n(T)$ in terms of T and S?

Iterated local reflection principles

The answer will be given in terms of **iterated local reflection principles**. The **local reflection principles** are the following schemata The proof consists of three key steps.

1. Applying Σ_2 -conservativity results

We want to show $C_S^1(I\Sigma_m) \subseteq Rfn(S)_{\omega_n} \Longrightarrow$ it would be more convenient, if we could replace $I\Sigma_m$ under $C_S^1(\cdot)$ with an equivalent form of **iterated reflection**.

 $[1]_S \varphi$ is a Σ_2 -sentence $\Rightarrow C^1_S(T)$ depends on the Σ_2 -consequences of T

Theorem 1 (Beklemishev, Visser; [1]). For m > 0 provably in EA⁺, $I\Sigma_m \equiv_{\Sigma_2} Rfn_{\Sigma_2}(EA)_{\omega_m}$.

Theorem 2 (Beklemishev; [2]). Provably in EA, $\forall \alpha \operatorname{Rfn}_{\Sigma_2}(T)_{\alpha} \equiv_{\Sigma_2} \operatorname{Rfn}(T)_{\alpha}.$

2. Permuting $C_S^1(\cdot)$ with $Rfn(\cdot)_{\alpha}$

Lemma 3. Provably in EA, $\forall \alpha \ C_S^1(\text{Rfn}(T)_\alpha) \equiv \text{Rfn}(C_S^1(T))_\alpha$. **Proof (idea)** goes by reflexive induction on α in EA.

3. Characterizing $C_S^1(EA)$

Lemma 4. Provably in EA⁺, $C_S^1(EA) \equiv S + Rfn(S)$. **Proof (idea)** uses the Herbrand theorem for Σ_2 -formulas.

full local reflection Rfn(T) := {□_Tφ → φ | φ is a sentence},
partial local reflection Rfn_{Σ_n}(T) := {□_Tφ → φ | φ is a Σ_n-sentence}.
The relativized versions Rfnⁿ(T) and Rfnⁿ_{Σ_n}(T) of the above principles are obtained by replacing □_T with [n]_T.

Turing considered the **transfinite iterations** of such principles along recursive ordinals (D, \prec) (**Turing progressions**, 1939).

$$egin{aligned} & \operatorname{Rfn}(T)_0 := T, \ & \operatorname{Rfn}(T)_{lpha+1} := T + \operatorname{Rfn}(\operatorname{Rfn}(T)_lpha), \ & \operatorname{Rfn}(T)_\lambda := igcup_{eta < \lambda} \operatorname{Rfn}(T)_eta, \ \lambda \in \operatorname{Lim}. \end{aligned}$$

Formally, the sequence of theories $Rfn(T)_{\alpha}$, $\alpha \in D$ is defined via the fixed-point lemma applied to the formalization of the following equivalence in EA

 $\mathsf{Rfn}(T)_{\alpha} \equiv T + \{\mathsf{Rfn}(\mathsf{Rfn}(T)_{\beta}) \mid \beta \prec \alpha\}.$

Combining all the results above we get the following **chain of equivalences** $C_{S}^{1}(I\Sigma_{m}) \equiv C_{S}^{1}(Rfn_{\Sigma_{2}}(EA)_{\omega_{m}}) \equiv C_{S}^{1}(Rfn(EA)_{\omega_{m}}) \equiv Rfn(C_{S}^{1}(EA))_{\omega_{m}} \equiv Rfn(S)_{\omega_{m}}$

The same strategy applies to the case n > 1, since all the results above can be relativized. The only subtle point is that the syntactic proof of the relativized version of Lemma 4 seems to require $S \supseteq I\Sigma_n$.

To prove the equivalence for arbitrary $S \supseteq EA$ we argue model-theoretically using the substructure $K^{n+1}(M) \prec_{\Sigma_{n+1}} M$ of Σ_{n+1} -definable elements.

References

- [1] L. D. Beklemishev and A. Visser. On the limit existence principles in elementary arithmetic and Σ_n^0 -consequences of theories. Annals of Pure and Applied Logic, 136(1–2):56–74, 2005.
- [2] L. D. Beklemishev. Proof-theoretic analysis by iterated reflection. Archive for Mathematical Logic, 42:515–552, 2003. DOI: 10.1007/s00153-002-0158-7.

[3] L. D. Beklemishev and E. Kolmakov. Axiomatizing provable *n*-provability. Preprint arXiv:1805.00381.

This work is supported by the Russian Science Foundation under grant No. 14-50-00005.