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We deal with arithmetical theories in the language 0, (-), +, X, exp.

Arithmetical hierarchy:
e >y =TIy = Ay(exp) = bounded arithmetical formulas,
cepell,=dx,...,.xxp€2prand Y € X, = Vxy,...,xx ¢ € [1,,1.

Elementary arithmetic (base theory) Peano arithmetic
EA = IAg(exp) CEAT CIT, C - CIL, C---CPA= | ] IE,
EA" := EA + Vx,y 3225 = z, where 2§ := 2* and 2011 = 2%y, M

12_,,, := EA + induction schema restricted to 2 ,,-formulas with parameters.

I C U & every theorem of T is a theorem of U
I = U < T and U have the same theorems
I' =y U<« T and U have the same 2 ,-theorems

Preliminaries: provability

For every r.e. consistent T we fix some Ag(exp)-formula

Prfr(p, x) := p codes a proof of the formula © with x ="

The provability predicate for T is given by [17(x) := dp Prfr(p, x).

@ is n-provable in T, if © is provable in T together with all true [1,-sentences.
The classes I1,, for n > 0 have truth definitions Truepn (z) € I, such that
Vo € M, EAFE Truen, ("o(x1,...,xk) ") < ©(xi, ..., Xk),
which allow to formalize the notion of n-provability as follows
[n]7o =37 (Truen ("7 ) AO("m — ).
[n]r satisfies the derivability conditions and is provably ¥ . ;-complete:
1. If TF o, then EAF [n]1e.
> EAF [nl (¢ = ©) — ([lre — [lr¢)
3. EAF[n]rp — [n]7]n] 7.
4. EAF o(X) — [n]r0(X), whenever o(X) is a X, ,1-formula.

Provable n-provability

A formula ¢ is provably n-provable in PA, if PA = [n]pac.

PA = Lpap <+ PA = ¢ = provable 0-provability <+ provability.

Although for a fixed n > 0 the set of all formulas n-provable in PA is not r.e.,
the set of all provably n-provable formulas is an r.e. theory extending PA.

Problem. Find an explicit axiomatization of the theory

{o | PAF [n]lpap} for a fixed n > 0.

More generally, given a pair T and S of r.e. consistent extensions of EA we
consider the set of formulas 7-provably n-provable in S

Cs(T) = 1p | TF [n]sp}.
CI(T) is an r.e. theory extending S, which can be viewed as a theory with the
provability predicate [17[n]s.

Main question. How can we axiomatize CZ(T) in terms of T and 57

Iterated local reflection principles

The answer will be given in terms of iterated local reflection principles.

The local reflection principles are the following schemata

o full local reflection Rfn(T) := {{Jrp — ¢ | ¢ is a sentence},

e partial local reflection Rfny (T) := {7 — ¢ | v is a X ,-sentence}.

he relativized versions Rfn"(T) and Rfny (T) of the above principles are
obtained by replacing [l with [n]7.

Turing considered the transfinite iterations of such principles along recursive
ordinals (D, <) (Turing progressions, 1939).

Rin(T)o:= T,

Rfn(T)ay1:= T + Rfn(Rfn( T),),

Rfin(T)) := U Rfn(T)s, A € Lim.
B<A

Formally, the sequence of theories Rfn(T),, « € D is defined via the fixed-point
lemma applied to the formalization of the following equivalence in EA

Rfn(T)o = T +{Rfn(Rfn(T)3) | B < a}.

Local reflection is provably 1-provable

Fact. Rfn(S) C C3(T).

Using transfinite induction in PA one can generalize this fact and show
Rfn(S), C Cs(1X,,) and Rfn(S)., C C5(PA).

where wy :== 1, W1 := W and gg := sup{w, | m € w}.

Natural hypothesis: C(1Z,,) = Rfn(S),, and C(PA) = Rfn(S).,.

The main difficulty is to prove the reverse inclusions.

Main results: provable 1-provability

We obtain the following results on provable 1-provability:

o For any m > 0 we have C{(1X,,) = Rfn(S)., .

o It follows that C3(PA) = Rfn(S).,.

e In general, if o is the Y5-ordinal of a (X5-regular) theory T measured w.r.t.

the transfinite iterations of local 2»-reflection schema over EA, i.e., o is the
least ordinal in (D, <) such that T =y, Rfny (EA),, then we have

CHT) = Rfn(S)y.1a

o All these equivalences are provable in EA™.

o C2,(IX,,) has superexponential speed-up over Rfn(EA),, .

Main results: provable n-provability for n > 1

For n > 1 we get the following generalizations of the results above
e For any m > n > 0 we have CZ7H(1L,,) = Rfn"(S),,,_..
o It follows that CZ™'(PA) = Rfn"(S).,

o If is the XV, -ordinal of a (XY, ,-regular) theory T measured w.r.t. the
transfinite iterations of Rfng (EA), then

CIYT) = Rfin"(S) 110

e In case 1Y, C S these equivalences are provable in EA™.

Proof: a general outline (for n = 1)

The proof consists of three key steps.
1. Applying 2 ,-conservativity results

We want to show C3(IX,,) C Rfn(S),, = it would be more convenient, if we
could replace 1X,,, under C(-) with an equivalent form of iterated reflection.

[1]s¢ is a Xo-sentence = C¢(T) depends on the X ,-consequences of T

Theorem 1 (Beklemishev, Visser; [1]). For m > 0 provably in EA™,
1%, =5, Rfng,(EA)., .

Theorem 2 (Beklemishev; [2]). Provably in EA,
VaRfng, (T), =5, Rfn(T).,.

2. Permuting C(-) with Rfn(-),

Lemma 3. Provably in EA, Va C3(Rfn(T),) = Rfn(C(T))..
Proof (idea) goes by reflexive induction on « in EA.

3. Characterizing C:(EA)

Lemma 4. Provably in EA", CJ(EA) = S + Rfn(S).
Proof (idea) uses the Herbrand theorem for X ,-formulas.

Combining all the results above we get the following chain of equivalences
Cs(1X,,) = C3(Rfns,(EA),, ) = C3(Rfn(EA),, ) = Rfn(C$(EA))., = Rfn(S).,

The same strategy applies to the case n > 1, since all the results above can be
relativized. The only subtle point is that the syntactic proof of the relativized
version of Lemma 4 seems to require S O |2,

To prove the equivalence for arbitrary S O EA we argue model-theoretically
using the substructure K""{(M) <5z = M of X ,,1-definable elements.
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