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The class of ordinals is denoted by On and it satisfies the
following postulates (which can be proved in ZFC):

1 (On, <) is linearly ordered (= totally ordered).
2 if ∅  C ⊆ On then C has a minimal element, denoted by

min C.
3 the class {ξ ∈ On | ξ < α} is a set for all α ∈ On.
4 for every set A ⊆ On exists a γ ∈ On such that α < γ for all
α ∈ A.

We use the following abbreviations: 0 = min On and
α′ = min{ξ ∈ On | α < ξ}.
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TRANSFINITE INDUCTION

Theorem
Let φ be a property of ordinals.

If
∀α ∈ On : (∀ξ < α : φ(ξ))→ φ(α) then ∀α ∈ On : φ(α).
Proof.
Assume the antecedence and assume that there exists a β ∈ On
such that ¬φ(β). Define

C = {ξ ∈ On | ¬φ(ξ)}.

This class is non empty since β ∈ C. Put α0 = min C. Then
¬φ(α0). By assumption there exists an α1 < α0 such that ¬φ(α1)
since otherwise φ(α0). Contradicton with the minimality of α0.

Andreas Weiermann Ordinals and Hierarchies 4 / 84



BASIC THEORY OF ORDINALS

Normal functions
Ordinal arithmetic

The Veblen hierarchy
Fundamental sequences and the Hardy hierarchy

TRANSFINITE INDUCTION

Theorem
Let φ be a property of ordinals. If
∀α ∈ On : (∀ξ < α : φ(ξ))→ φ(α) then ∀α ∈ On : φ(α).

Proof.
Assume the antecedence and assume that there exists a β ∈ On
such that ¬φ(β). Define

C = {ξ ∈ On | ¬φ(ξ)}.

This class is non empty since β ∈ C. Put α0 = min C. Then
¬φ(α0). By assumption there exists an α1 < α0 such that ¬φ(α1)
since otherwise φ(α0). Contradicton with the minimality of α0.

Andreas Weiermann Ordinals and Hierarchies 4 / 84



BASIC THEORY OF ORDINALS

Normal functions
Ordinal arithmetic

The Veblen hierarchy
Fundamental sequences and the Hardy hierarchy

TRANSFINITE INDUCTION

Theorem
Let φ be a property of ordinals. If
∀α ∈ On : (∀ξ < α : φ(ξ))→ φ(α) then ∀α ∈ On : φ(α).
Proof.
Assume the antecedence and assume that there exists a β ∈ On
such that ¬φ(β).

Define

C = {ξ ∈ On | ¬φ(ξ)}.

This class is non empty since β ∈ C. Put α0 = min C. Then
¬φ(α0). By assumption there exists an α1 < α0 such that ¬φ(α1)
since otherwise φ(α0). Contradicton with the minimality of α0.

Andreas Weiermann Ordinals and Hierarchies 4 / 84



BASIC THEORY OF ORDINALS

Normal functions
Ordinal arithmetic

The Veblen hierarchy
Fundamental sequences and the Hardy hierarchy

TRANSFINITE INDUCTION

Theorem
Let φ be a property of ordinals. If
∀α ∈ On : (∀ξ < α : φ(ξ))→ φ(α) then ∀α ∈ On : φ(α).
Proof.
Assume the antecedence and assume that there exists a β ∈ On
such that ¬φ(β). Define

C = {ξ ∈ On | ¬φ(ξ)}.

This class is non empty since β ∈ C.

Put α0 = min C. Then
¬φ(α0). By assumption there exists an α1 < α0 such that ¬φ(α1)
since otherwise φ(α0). Contradicton with the minimality of α0.

Andreas Weiermann Ordinals and Hierarchies 4 / 84



BASIC THEORY OF ORDINALS

Normal functions
Ordinal arithmetic

The Veblen hierarchy
Fundamental sequences and the Hardy hierarchy

TRANSFINITE INDUCTION

Theorem
Let φ be a property of ordinals. If
∀α ∈ On : (∀ξ < α : φ(ξ))→ φ(α) then ∀α ∈ On : φ(α).
Proof.
Assume the antecedence and assume that there exists a β ∈ On
such that ¬φ(β). Define

C = {ξ ∈ On | ¬φ(ξ)}.

This class is non empty since β ∈ C. Put α0 = min C.

Then
¬φ(α0). By assumption there exists an α1 < α0 such that ¬φ(α1)
since otherwise φ(α0). Contradicton with the minimality of α0.

Andreas Weiermann Ordinals and Hierarchies 4 / 84



BASIC THEORY OF ORDINALS

Normal functions
Ordinal arithmetic

The Veblen hierarchy
Fundamental sequences and the Hardy hierarchy

TRANSFINITE INDUCTION

Theorem
Let φ be a property of ordinals. If
∀α ∈ On : (∀ξ < α : φ(ξ))→ φ(α) then ∀α ∈ On : φ(α).
Proof.
Assume the antecedence and assume that there exists a β ∈ On
such that ¬φ(β). Define

C = {ξ ∈ On | ¬φ(ξ)}.

This class is non empty since β ∈ C. Put α0 = min C. Then
¬φ(α0). By assumption there exists an α1 < α0 such that ¬φ(α1)
since otherwise φ(α0). Contradicton with the minimality of α0.

Andreas Weiermann Ordinals and Hierarchies 4 / 84



BASIC THEORY OF ORDINALS

Normal functions
Ordinal arithmetic

The Veblen hierarchy
Fundamental sequences and the Hardy hierarchy

LIMIT ORDINALS

The class of limit ordinals (denoted by Lim) is defined by

α ∈ Lim ⇐⇒ α 6= 0 ∧ ∀ξ < α : ξ′ < α

The least limit ordinal is ω = min Lim.
For a set A ⊆ On define

sup A = min{ξ ∈ On | ∀α ∈ A : α ≤ ξ}

In particular we have sup ∅ = 0.

Andreas Weiermann Ordinals and Hierarchies 5 / 84



BASIC THEORY OF ORDINALS

Normal functions
Ordinal arithmetic

The Veblen hierarchy
Fundamental sequences and the Hardy hierarchy

LIMIT ORDINALS

The class of limit ordinals (denoted by Lim) is defined by

α ∈ Lim ⇐⇒ α 6= 0 ∧ ∀ξ < α : ξ′ < α

The least limit ordinal is ω = min Lim.

For a set A ⊆ On define

sup A = min{ξ ∈ On | ∀α ∈ A : α ≤ ξ}

In particular we have sup ∅ = 0.

Andreas Weiermann Ordinals and Hierarchies 5 / 84



BASIC THEORY OF ORDINALS

Normal functions
Ordinal arithmetic

The Veblen hierarchy
Fundamental sequences and the Hardy hierarchy

LIMIT ORDINALS

The class of limit ordinals (denoted by Lim) is defined by

α ∈ Lim ⇐⇒ α 6= 0 ∧ ∀ξ < α : ξ′ < α

The least limit ordinal is ω = min Lim.
For a set A ⊆ On define

sup A = min{ξ ∈ On | ∀α ∈ A : α ≤ ξ}

In particular we have sup ∅ = 0.

Andreas Weiermann Ordinals and Hierarchies 5 / 84



BASIC THEORY OF ORDINALS

Normal functions
Ordinal arithmetic

The Veblen hierarchy
Fundamental sequences and the Hardy hierarchy

LIMIT ORDINALS

The class of limit ordinals (denoted by Lim) is defined by

α ∈ Lim ⇐⇒ α 6= 0 ∧ ∀ξ < α : ξ′ < α

The least limit ordinal is ω = min Lim.
For a set A ⊆ On define

sup A = min{ξ ∈ On | ∀α ∈ A : α ≤ ξ}

In particular we have sup ∅ = 0.

Andreas Weiermann Ordinals and Hierarchies 5 / 84



BASIC THEORY OF ORDINALS

Normal functions
Ordinal arithmetic

The Veblen hierarchy
Fundamental sequences and the Hardy hierarchy

LIMIT ORDINALS

The class of limit ordinals (denoted by Lim) is defined by

α ∈ Lim ⇐⇒ α 6= 0 ∧ ∀ξ < α : ξ′ < α

The least limit ordinal is ω = min Lim.
For a set A ⊆ On define

sup A = min{ξ ∈ On | ∀α ∈ A : α ≤ ξ}

In particular we have sup ∅ = 0.

Andreas Weiermann Ordinals and Hierarchies 5 / 84



BASIC THEORY OF ORDINALS

Normal functions
Ordinal arithmetic

The Veblen hierarchy
Fundamental sequences and the Hardy hierarchy

SUPREMA

Lemma
Assume that A 6= ∅ and that A ⊆ On is a set. If sup A /∈ A then
sup A ∈ Lim.

Proof. Let α = sup A, then α > 0 since A 6= ∅ and sup A /∈ A. Let
β < α in A. We have to show that β′ < α. Because of β < α and
α = sup A there exists a ξ ∈ A such that β < ξ < α and thus
β′ ≤ ξ < α.
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WELL FOUNDED RELATIONS

A binary relation R is called well founded if every non empty set
contains an R-minimal element.

Lemma

1 If ≺ is well founded then there does not exist an infinite
descending chain of elements in with respect to ≺.

2 If ≺⊆ A× A and if there exists an F : A→ On such that
∀x , y : x ≺ y → F (x) < F (y) then ≺ is well founded.

Proof.
The first assertion is obvious. The elements of an infinite
descending chain form a non empty set without a minimal
element.
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For a proof of the second assertion assume that X 6= ∅. If
X ∩ A = ∅ then every x ∈ X is a <-minimal element and the
assertion follows.

Assume now that X ∩ A 6= ∅ and define
β = min{F (x) | x ∈ X ∩ A}. Let x0 ∈ X ∩ A such that F (x0) = β.
Then x0 is minimal. If there exists an x1 ∈ X such that x1 < x0

then necessarily x1 /∈ A. Otherwise x1 ∈ A yields F (x1) < F (x0)
in contradiction with the assumption that x0 is minimal.
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A function F : On→ On is called order preserving (o.p.) if
α < β =⇒ F (α) < F (β).

Lemma
If F : On→ On is o.p., then F (α) ≥ α holds for all α ∈ On.
Proof. Assume that there exists an α ∈ On such that F (α) < α.
Define

C = {ξ ∈ On | F (ξ) < ξ}.

Then C 6= ∅ and C ⊆ On, hence there exists α0 = min C. Since
F is order preserving we conclude from F (α0) < α0 that
F (F (α0)) < F (α0) and thus F (α0) ∈ C. But we have F (α0) < α0

in contradiction with the minimality of α0.
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ENUMERATION FUNCTIONS

A function F : On→ A is called ordering function for A ⊆ On if F
is order preserving and surjective onto A.

A ⊆ On is unbounded if for all α ∈ On there exists a β ∈ A such
that α < β.
A ⊆ On is called closed if sup X ∈ A for all non empty sets
X ⊆ A.
If A ⊆ On is closed and unbounded then A is called club.
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ENUMERATION FUNCTIONS

Lemma
Let A be unbounded. Then there exists a uniquely determined
ordering function EnumA on A such that

EnumA(α) = min{β ∈ A | ∀ξ < α : EnumA(ξ) < β}.

Proof of existence of F for A using transfinite recursion. Assume
inductively that F (ξ) is defined for all ξ < α. Then {F (ξ) | ξ < α}
is a set and hence there exists a minimal γ ∈ On such that
F (ξ) < γ for all ξ < α. Because A is unbounded there exists a
minimal β ∈ A such that γ ≤ β. Hence F (α) = β and so F is
totally defined.
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We still have to show that F is order preserving and surjective
with range(F ) = A.

That F is order preserving is easy to see. To
prove surjectivity let γ ∈ A. Then there exists
α = min{ξ | γ ≤ F (ξ)} since α ≤ F (α). We have γ ≤ F (α) and
∀ξ < α : F (ξ) < γ so that F (α) = γ.
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Proof of uniqueness. Let F and G both be ordering functions for
A, thus F ,G : On→ A and F ,G are surjective and order
preserving.

Assume by induction on α that ∀ξ < α : F (ξ) = G(ξ).
Assume for a contradiction that F (α) 6= G(α). We have then two
cases:

F (α) < G(α). The surjectivity of G yields that there exists a
β such that F (α) = G(β). Then β > α since β = α is
impossible by assumption and if β < α the induction
hypothesis yields that F (β) = G(β) = F (α). But F is order
preserving hence β < α yields F (β) < F (α), contradiction.
Thus β > α and the order preservation of G yields
G(β) > G(α) > F (α).
F (α) > G(α). Similarly.

We conclude ∀α ∈ On : F (α) = G(α) hence F = G.
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Normal functions

A function F is called continuous if
∀λ ∈ Lim : F (λ) = sup{F (ξ) | ξ < λ}.

A function F is called normal if F is continues and order
preserving.

Lemma
If F : On→ On is continuous and if ∀α : F (α) < F (α′). Then F is
normal.
Proof. By induction on α we show that F is order preserving,
hence ∀β ∈ On : β < α =⇒ F (β) < F (α). The case α = 0 is
trivial. Assume that α = γ′. Then the two cases follow from
β < α = γ′:
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β = γ. Then F (β) < F (α) follows from the assumption that
F (β) < F (β′).

β < γ. Then the induction hypothesis yields that
F (β) < F (γ) and hence F (β) < F (α) since F (γ) < F (γ′) is
valid by assumption.

Assume now that α ∈ Lim. Since α is a limit we obtain from
β < α also β′ < α. The continuity of F implies
F (α) = sup{F (ξ) | ξ < α}. The induction hypothesis yields
F (β′) ≤ F (α). By assumption we have F (β) < F (β′) hence
F (β) < F (α).
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Proof of the first assertion. Assume inductively that
F (β) = sup{F (ξ′) | ξ < β} for all β < α.

Assume first that α is a
successor. We have F (α) ∈ {F (ξ′) | ξ < α} thence
F (α) ≤ sup{F (ξ′) | ξ < α}. F is order preserving, hence
ξ′ ≤ α =⇒ F (ξ′) ≤ F (α) so that sup{F (ξ′) | ξ < α} ≤ F (α).
Therefore F (α) = sup{F (ξ′) | ξ < α}.
Let α ∈ Lim. Then
F (α) = sup{F (ξ) | ξ < α} = sup{F (ξ′) | ξ < α}.
Proof of the second assertion. Let λ ∈ Lim. Then
F (λ) = sup{F (ξ) | ξ < λ} because F is continuous. Suppose
γ < F (λ). Then γ < F (ξ) for some ξ < λ. Then
γ′ ≤ F (ξ) < F (ξ′) < F (λ) because F is order preserving.
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Proof of assertion three. Let γ ≥ F (0).

Then γ ≤ F (γ) < F (γ′).
So there exists α = min{ξ | γ < F (ξ′)}. Then γ < F (α′). If α = 0
then γ = F (0) en the assertion follows. If α > 0 then
F (α) = sup{F (ξ′) | ξ < α}. If ξ < α then F (ξ′) ≤ γ so that
F (α) = sup{F (ξ′) | ξ < α} ≤ γ.
Proof of assertion four. This Is easy.
Proof of assertion five. Suppose that A ⊆ On is a non empty set
with α = sup A. If α ∈ A then F (α) = F (sup A) = sup F [A] since F
is order preserving. If α /∈ A then α ∈ Lim such that
F (α) = sup{F (ξ) | ξ < α} = sup F [A].
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Lemma
Let A ⊆ On. Then A is club iff EnumA is normal.
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Fixed point lemma for normal functions

Lemma
If F is normal, then there exists a least α such that F (α) = α.

Proof. Let us define a sequence αn as follows.

α0 = 0 αn+1 = F (αn)

Let β := sup{αn | n < ω}. Then

F (β) = F (sup{αn | n < ω})
= sup{F (αn) | n < ω}
= sup{αn+1 | n < ω}
= β

hence β is a fixed point of F and there will be a smallest one.
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Lemma
If F is normal, then {α ∈ On : F (α) = α} is club.

Proof. Exercise.

Lemma
Let delta ∈ On. If Cξ ⊆ On is a club for all ξ < δ then

⋂
ξ<δ Cξ is a

club.

Proof. Exercise.
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The sum of ordinals

The sum of ordinals is defined by transfinite recursion:

α + 0 = α

α + β′ = (α + β)′

α + λ = sup{α + ξ | ξ < λ}
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Lemma

1 The function β 7→ α + β is normal.

2 β0 < β1 =⇒ α + β0 < α + β1.
3 α, β ≤ α + β.
4 For all γ ≥ α there exists a unique β such that γ = α + β.
5 α0 ≤ α1 =⇒ α0 + β ≤ α1 + β.
6 (α + β) + γ = α + (β + γ).
7 α, β < ω =⇒ α + β = β + α.
8 0 < k < ω =⇒ k + ω = ω < ω + k .
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Proof. Define F (β) = α + β for a given α.
1 F continuous by definition. Note that
α + β < (α + β)′ = α + β′ so that ∀β : F (β) < F (β′). This
yields that F is normal.

2 This assertion follows from the normality of F .
3 Since F is normal we see β ≤ α + β. The other assertion

follows by Induction on β.
4 Suppose γ ≥ α and choose a β such that
α + β ≤ γ < α + β′. Then γ = α + β.

5 By induction on β.
6 By induction on γ.
7 By induction on α.
8 If 0 < k < ω, then k + ω = sup{k + n | n < ω} = sup{m |

m < ω} = ω < ω′ ≤ ω + k .
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The product of ordinals

The product of two ordinals is defined by transfinite recursion:

α · 0 = 0
α · β′ = α · β + α

α · λ = sup{α · ξ | ξ < λ} if λ ∈ Lim.
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Lemma

1 If α > 0 then the function β 7→ α · β is normal.

2 α0 ≤ α1 =⇒ α0 · β ≤ α1 · β.
3 α · (β · γ) = (α · β) · γ.
4 α · (β + γ) = α · β + α · γ.
5 α · 0 = 0 = 0 · α.
6 α, β < ω =⇒ α · β = β · α.
7 1 < k < ω =⇒ k · ω = ω < ω · k .
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Proof. All proofs are similar to the proofs we have seen before
for the sum of ordinals, except the distributivity property which is
proved by induction on γ:

γ = 0. Then α · (β + 0) = α · β = α · β + α · 0.
γ = ξ′. Then α · (β + ξ′) = α · (β + ξ)′ = α · (β + ξ) + α. By
induction hypthesis this is equal to
(α · β + α · ξ) + α = α · β + (α · ξ + α) = α · β + α · γ.
γ ∈ Lim. Then
α · (β + γ) = α · sup{β + ξ | ξ < γ} = sup{α · (β + ξ) | ξ < γ}.
By the induction hypothesis the last term equals
sup{α·β+α·ξ | ξ < γ} = α·β+sup{α·ξ | ξ < γ} = α·β+α·γ.

Andreas Weiermann Ordinals and Hierarchies 26 / 84



BASIC THEORY OF ORDINALS

Normal functions
Ordinal arithmetic

The Veblen hierarchy
Fundamental sequences and the Hardy hierarchy

Proof. All proofs are similar to the proofs we have seen before
for the sum of ordinals, except the distributivity property which is
proved by induction on γ:

γ = 0. Then α · (β + 0) = α · β = α · β + α · 0.

γ = ξ′. Then α · (β + ξ′) = α · (β + ξ)′ = α · (β + ξ) + α. By
induction hypthesis this is equal to
(α · β + α · ξ) + α = α · β + (α · ξ + α) = α · β + α · γ.
γ ∈ Lim. Then
α · (β + γ) = α · sup{β + ξ | ξ < γ} = sup{α · (β + ξ) | ξ < γ}.
By the induction hypothesis the last term equals
sup{α·β+α·ξ | ξ < γ} = α·β+sup{α·ξ | ξ < γ} = α·β+α·γ.

Andreas Weiermann Ordinals and Hierarchies 26 / 84



BASIC THEORY OF ORDINALS

Normal functions
Ordinal arithmetic

The Veblen hierarchy
Fundamental sequences and the Hardy hierarchy

Proof. All proofs are similar to the proofs we have seen before
for the sum of ordinals, except the distributivity property which is
proved by induction on γ:

γ = 0. Then α · (β + 0) = α · β = α · β + α · 0.
γ = ξ′. Then α · (β + ξ′) = α · (β + ξ)′ = α · (β + ξ) + α.

By
induction hypthesis this is equal to
(α · β + α · ξ) + α = α · β + (α · ξ + α) = α · β + α · γ.
γ ∈ Lim. Then
α · (β + γ) = α · sup{β + ξ | ξ < γ} = sup{α · (β + ξ) | ξ < γ}.
By the induction hypothesis the last term equals
sup{α·β+α·ξ | ξ < γ} = α·β+sup{α·ξ | ξ < γ} = α·β+α·γ.

Andreas Weiermann Ordinals and Hierarchies 26 / 84



BASIC THEORY OF ORDINALS

Normal functions
Ordinal arithmetic

The Veblen hierarchy
Fundamental sequences and the Hardy hierarchy

Proof. All proofs are similar to the proofs we have seen before
for the sum of ordinals, except the distributivity property which is
proved by induction on γ:

γ = 0. Then α · (β + 0) = α · β = α · β + α · 0.
γ = ξ′. Then α · (β + ξ′) = α · (β + ξ)′ = α · (β + ξ) + α. By
induction hypthesis this is equal to
(α · β + α · ξ) + α = α · β + (α · ξ + α) = α · β + α · γ.

γ ∈ Lim. Then
α · (β + γ) = α · sup{β + ξ | ξ < γ} = sup{α · (β + ξ) | ξ < γ}.
By the induction hypothesis the last term equals
sup{α·β+α·ξ | ξ < γ} = α·β+sup{α·ξ | ξ < γ} = α·β+α·γ.

Andreas Weiermann Ordinals and Hierarchies 26 / 84



BASIC THEORY OF ORDINALS

Normal functions
Ordinal arithmetic

The Veblen hierarchy
Fundamental sequences and the Hardy hierarchy

Proof. All proofs are similar to the proofs we have seen before
for the sum of ordinals, except the distributivity property which is
proved by induction on γ:

γ = 0. Then α · (β + 0) = α · β = α · β + α · 0.
γ = ξ′. Then α · (β + ξ′) = α · (β + ξ)′ = α · (β + ξ) + α. By
induction hypthesis this is equal to
(α · β + α · ξ) + α = α · β + (α · ξ + α) = α · β + α · γ.
γ ∈ Lim. Then
α · (β + γ) = α · sup{β + ξ | ξ < γ} = sup{α · (β + ξ) | ξ < γ}.

By the induction hypothesis the last term equals
sup{α·β+α·ξ | ξ < γ} = α·β+sup{α·ξ | ξ < γ} = α·β+α·γ.

Andreas Weiermann Ordinals and Hierarchies 26 / 84



BASIC THEORY OF ORDINALS

Normal functions
Ordinal arithmetic

The Veblen hierarchy
Fundamental sequences and the Hardy hierarchy

Proof. All proofs are similar to the proofs we have seen before
for the sum of ordinals, except the distributivity property which is
proved by induction on γ:

γ = 0. Then α · (β + 0) = α · β = α · β + α · 0.
γ = ξ′. Then α · (β + ξ′) = α · (β + ξ)′ = α · (β + ξ) + α. By
induction hypthesis this is equal to
(α · β + α · ξ) + α = α · β + (α · ξ + α) = α · β + α · γ.
γ ∈ Lim. Then
α · (β + γ) = α · sup{β + ξ | ξ < γ} = sup{α · (β + ξ) | ξ < γ}.
By the induction hypothesis the last term equals
sup{α·β+α·ξ | ξ < γ} = α·β+sup{α·ξ | ξ < γ} = α·β+α·γ.

Andreas Weiermann Ordinals and Hierarchies 26 / 84



BASIC THEORY OF ORDINALS

Normal functions
Ordinal arithmetic

The Veblen hierarchy
Fundamental sequences and the Hardy hierarchy

The exponentiation of ordinals

The exponentiation of two ordinals is defined by the following
transfinite recursion:

α0 = 1

αβ
′

= αβ · α
αλ = sup{αξ | 0 < ξ < λ} if λ ∈ Lim.
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Lemma

1 The function β 7→ αβ is normal if α ≥ 2.

2 α ≤ γ =⇒ αβ ≤ γβ.
3 αβ · αγ = αβ+γ.
4 (αβ)γ = αβ·γ.
5 If β > β0 > · · · > βn and α > δ0, . . . , δn then
αβ > αβ0 · δ0 + · · ·+ αβn · δn.
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Proof.
All proofs are routine. Assertion 4 is proved by induction on γ
and assertion 5 is proved by induction on n. For the induction
step argue as follows:

αβ ≥ αβ0 · α
≥ αβ0 · (δ0 + 1)

> αβ0 · δ0 + · · ·+ αβn · δn.

Andreas Weiermann Ordinals and Hierarchies 29 / 84



BASIC THEORY OF ORDINALS

Normal functions
Ordinal arithmetic

The Veblen hierarchy
Fundamental sequences and the Hardy hierarchy

Cantor’s theorem

1 For all α ≥ 2 and γ ≥ 1 there exist uniquely determined
β, δ, γ0 such that 0 < δ < α, γ0 < αβ and

γ = αβ · δ + γ0.

2 For all α ≥ 2 and γ ≥ 1 there exist uniquely determined n,
β0 > · · · > βn, 0 < δ0, . . . , δn < α such that

γ = αβ0 · δ0 + · · ·+ αβn · δn.
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Proof of the first assertion. We first prove existence. Since
β 7→ αβ is normal there exists a β such that αβ ≤ γ < αβ+1.

Therefore there exists a δ such that 0 < δ < α and
αβ · δ ≤ γ < αβ · (δ + 1) and so there exists a γ0 such that
γ0 < αβ and αβ · δ + γ0 ≤ γ < αβ · δ + γ0 + 1.
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Cantor’s theorem
We now prove uniqueness.

Assume that
γ = αβ · δ + γ0 = αβ1 · δ1 + γ1 where 0 < δ, δ1 < α and γ0 < αβ,
γ1 < αβ1. Since 0 < δ < α and γ0 < αβ we find αβ ≤ γ < αβ+1.
Indeed,

αβ+1 = αβ · α ≥ αβ(δ + 1) = αβ · δ + αβ > αβ + γ0.

Similarly we find αβ1 ≤ γ < αβ1+1. Since exponentiation is
normal we find β = β1. So we see γ = αβ · δ + γ0 = αβ · δ1 + γ1.
This yields

αβ · δ ≤ γ < αβ · (δ + 1)

αβ · δ1 ≤ γ < αβ · (δ1 + 1)

hence δ = δ1.
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We now arrive at γ = αβ · δ + γ0 = αβ · δ + γ1. Since the ordinal
sum is normal in the second argument we find γ0 = γ1.

Proof of the second assertion by induction on γ. The previous
assertion yields γ = αβ · δ + γ0 with 0 < δ < α. Since γ0 < γ the
induction hypothesis yields that γ0 = αβ1 · δ1 + · · ·+αβn · δn so that
γ = αβ · δ + αβ1 · δ1 + · · ·+ αβn · δn. We find β > β1 since αβ > γ0.
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We write α =CNF ω
α0k0 + · · ·+ ωαnkn where α0 > · · · > αn. We

call this the Cantor normal form of α.
Note that the CNF is unique by Cantor’s theorem.
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The class AP of additive principal numbers is defined by

α ∈ AP ⇐⇒ α > 0 ∧ ∀ξ, η < α : ξ + η < α

It is easy to see that 1 is the first additive principal number. It is
also easy to see that the other additive principal numbers are
limit ordinals.
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Lemma

1 α 7→ ωα is the ordering function of AP.

2 α ∈ AP ⇐⇒ ∀ξ < α : ξ + α = α.
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Proof of the first assertion. By induction on α. Let F (α) = ωα.
The we have to show that F is a surjective and order preserving
function from On onto AP.

We know already that F is order
preserving. We still have to show that rangeF = AP.
Suppose α = 0. Then ωα = ω0 = 1 ∈ AP.
Suppose α = β + 1 and let ξ, η < ωβ+1 = ωβω. Then there exist
m,n < ω such that ξ < ωβn and η < ωβm. Then
ξ + η < ωβn + ωβm = ωβ(n + m). Because n + m < ω we have
ωβ(n + m) < ωβω = ωβ+1 = ωα. This yields ωα ∈ AP.
Assume now that α ∈ Lim and let ξ, η < ωα. Then there exist
α1, α2 < α with ξ < ωα1 and η < ωα2. Then
ξ + η < ωα1 + ωα2 < ωmax(α0,α1)+1 < ωα. Hence ωα ∈ AP.
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Finally suppose that α ∈ AP. Let α =CNF ω
α0k0 + · · ·+ ωαnkn.

If
n > 0 or n = 0 and k0 > 1 then
α = ωα0 + ωα0 · (k0 − 1) + · · ·+ ωαnkn would show that α 6∈ AP.
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Proof of the second assertion.
Suppose α ∈ AP. Then there are two cases:

α = 1. This case is trivial because the only ξ < α is the
ordinal 0 and in this case we have 0 + α = α.

α ∈ Lim. Suppose ξ < α. Then
ξ + α = sup{ξ + η | η < α} ≤ α. We have ξ + α ≥ α and so
ξ + α = α.

For the other direction, suppose ξ + α = α for all ξ < α.
Suppose ξ, η < α. Then ξ + α, η + α = α and thence
ξ + η < ξ + α = α so that α ∈ AP.
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We write α =NF α0 + · · ·+ αn if α = α0 + · · ·+ αn and
α0 ≥ · · · ≥ αn and α0, . . . , αn ∈ AP.

Lemma
For every α > 0 there exists uniquely determined ordinals
α0, . . . , αn such that α =NF α0 + · · ·+ αn.

Proof. By looking at the Cantor normal form of α.
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The natural sum of ordinals

The natural sum α⊕ β is defined by
1 α⊕ 0 = α = 0⊕ α.
2 If α =NF α0 + · · ·+ αn and β =NF αn+1 + · · ·+ αn+m then
α⊕ β = αp(0) + · · ·+ αp(n+m) where p : N→ N is a bijection
from {0, . . . ,n + m} → {0, . . . ,n + m} with
αp(0) ≥ · · · ≥ αp(n+m).
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Lemma

1 α⊕ β = β ⊕ α.

2 α⊕ (β ⊕ γ) = (α⊕ β)⊕ γ.
3 If α0, . . . , αn ∈ AP with α0 ≥ · · · ≥ αn then
α0 + · · ·+ αn = α0 ⊕ · · · ⊕ αn.

4 β < γ =⇒ α⊕ β < α⊕ γ.
5 α, β < ωγ =⇒ α⊕ β < ωγ.
6 α + β ≤ α⊕ β.

One can interprete the natural sum of ordinals α en β as union
of the multisets of their exponents.
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For α ∈ On we define functions ϕα : On→ On as follows.
1 ϕ0 = EnumAP.
2 ϕα+1 = Enum{β∈On:β=ϕαβ}.
3 ϕλ = Enum{β∈On:(∀ξ<λ)β=ϕξβ}.

ϕαβ := ϕαβ.
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Lemma
The function ϕα is normal for every α ∈ On.
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Proof. By induction on α.

Let Cr(α) be the range of ϕα. One shows that Cr(α) is club for
all α.
Closedness: Let us consider the case that α ∈ Lim. Let
A ⊆ Cr(α) =

⋂
ξ<α Cr(ξ). Then A ⊆ Cr(ξ) for all ξ < α. Hence

by i.h. sup A ∈ Cr(ξ) for all ξ < α so that sup A ∈ Cr(α).
Unboundedness: Fix β ∈ On. Let γ0 > α. By recursion let
γn+1 := sup{ϕξγn : ξ < α}. Let γ = sup γn. Then β < γ.
Now let ξ < α.
Then ϕξγ = supϕξγn ≤ sup γn+1 = γ. Hence γ ∈ Cr(α).
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Lemma
ϕαβ = ϕγδ iff

1 α < γ and β = ϕγδ, or
2 α = γ and β = δ, or
3 γ < α and ϕαβ = δ.

Proof. If α < γ then ϕα(ϕγδ) = ϕγδ. Hence ϕαβ = ϕγδ iff
β = ϕγδ. The case γ < α is similar. For α = γ the assertion is
trivial.
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Lemma
For every γ ∈ AP there exist unique α and β < γ such that
γ = ϕαβ.
Proof. Existence: By induction on α one shows α ≤ ϕα0
(exercise).

Therefore γ ≤ ϕγ0 < ϕγγ. Let α be minimal such
that γ < ϕαγ. If α > 0 then ϕξγ = γ for all ξ < α. Therefore in all
cases γ ∈ Crα and so there exists a β such that γ = ϕαβ. Since
γ < ϕαγ we have β < γ.
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Uniqueness.

Assume γ = ϕαβ = ϕξδ and β, δ < γ. Then a
previous Lemma yields α = ξ and β = η.
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Lemma
There exists Γ0 := min{α : α = ϕα0}.

{α : α = ϕα0} is a club.
Proof. Let γ0 := 0 and γn+1 := ϕγn0. Let γ := sup γn. Then
γ = ϕγ0. (exercise).
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Fundamental sequences and the Hardy
hierarchy

From now on we restrict ourselves to ordinals below ϕ10 = ε0.
Let α[n] is the n-th element of the fundamental sequence for
α ∈ Lim:

α[n] =

{
0 if α ∈ {0,1}
α0 + · · ·+ αm−1 + αm[n] if α =NF α0 + · · ·+ αm

ωα+1[n] = ωα(n + 1)

ωλ[n] = ωλ[n] if λ ∈ Lim.
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The Hardy hierarchy is defined as follows:

H0(n) = n
Hα+1(n) = Hα(n + 1)

Hλ(n) = Hλ[n](n + 1) where λ ∈ Lim
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Let α = ωα1 + · · ·+ ωαn be in Cantor normal form. Then

N(α) = n + N(α1) + · · ·+ N(αn)

We say NF(α, β) if one the following conditions hold:
1 α = 0;
2 β = 0;
3 α = ωα1 + · · ·+ ωαn and β = ωβ1 + · · ·+ ωβn and α1 ≥ β1.
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The Bachmann property

Lemma

1 α ∈ Lim =⇒ α[n] < α[n + 1] and α[n]→ α if n→ ω

2 α > 0 =⇒ N(α[0]) < N(α)

Proof by induction on α.
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Lemma
α[n] < β < α =⇒ α[n] ≤ β[0].

Proof. Assume that β =NF β0 + · · ·+ βk with k ≥ 0. There are
the following three cases.
Case 1. α =NF α0 + · · ·+ αm with m > 0:

α[n] = α0 + · · ·+ αm[n] < β0 + · · ·+ βk < α0 + · · ·+ αm

This yields k ≥ m en αi = βi for all i < m so that

αm[n] < βm + · · ·+ βk < αm =⇒ αm[n] ≤ βm < αm.

If k = m then αm[n] < βm < αm. The induction hypothesis yields
αm[n] ≤ βm[0] ≤ αm. If k > m then βm + · · ·+ βk [0] ≥ βm.
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Case 2. Suppose now α = ωγ+1.

Then

α[n] = ωγ(n + 1) < β < ωγ+1

This yields β0 = · · · = βn = ωγ and βn+1 6= 0 for k ≥ n + 1 and
thus

ωγ(n + 1) ≤ β0 + · · ·+ βn + · · ·+ βk [0]
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Case 3. Suppose α = ωλ. Then

α[n] = ωλ[n] = ωλ[n] < β < ωλ

We have β0 = ωγ =⇒ λ[n] ≤ γ. If k > 0 then β[0] ≥ β0 ≥ ωλ[n].
If k = 0 then λ[n] < γ < λ. The induction hypothesis yields
λ[n] ≤ γ[0]. Thence

ωλ[n] ≤ ωγ[0] = β[0].
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Lemma
α[n] < β < α =⇒ N(α[n]) < N(β).
Proof. This follows from the previous two lemmas.

Lemma
α < β =⇒ α ≤ β[N(α)].
Proof. We obtain

β ∈ Lim =⇒ N(β[n]) < N(β[n + 1]) =⇒ N(α) ≤ N(β[N(α)])

Suppose β[N(α)] < α < β. This yields a contradiction.
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Lemma

1 Hα(n) < Hα(n + 1)

2 β[m] < α < β =⇒ Hβ[m](n + 1) ≤ Hα(n)

3 β < α ∧ N(β) ≤ n =⇒ Hβ(n) < Hα(n)

Proof. The first two assertions are proved by simultaneous
induction on α. The first assertion is clear for α = 0 and follows
from the i.h. when α = β + 1. If α ∈ Lim then the second
assertion yields
Hα(n) = Hα[n](n + 1) < Hα[n](n + 2) < Hα[n+1](n + 2) = Hα(n + 1).
For a proof of the second assertion note β[m] ≤ α[n] < β
Hβ[m](n + 1) ≤ Hα[n](n) < Hα[n](n + 1) = Hα(n).
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The third assertion follows by induction on λ. β < α ∧ N(β) ≤ n
yields β < α[n] and hence Hβ(n) ≤ Hα[n](n) < Hα(n).
Crucial observation: Let k ≥ n be minimal such that
α[n] . . . [k − 1] = 0. Then

Hα(n) = Hα[n](n + 1) = Hα[n][n+1](n + 2) = Hα[n]...[k−1](k) = k
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Lemma

1 NF(α, β) =⇒ Hα+β(n) = Hα(Hβ(n)).

2 Hωα+1(n) = Hn+1
ωα (n + 1) en Hωλ(n) = Hωλ[n](n + 1).

3 For all primitive recursive functions f exists a k such that for
all ~x we have f (~x) < Hωk (max~x).

Proof.
1 By induction on β.
2 Hωα+1(n) = Hωα+1[n](n + 1) = Hωα(n+1)(n + 1) = Hn+1

ωα (n + 1).
3 This assertion follows from (2).
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Lemma
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Proof of the first assertion. Suppose β < α. The assertion is
proved by induction on α. If α = 0 then the assertion follows
trivially. So suppose α > 0.

We find

Hβ(n) < Hβ(n + 1)
IH
≤ Hα[n](n + 1) = Hα(n)
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Proof of assertion two by induction on λ.

If λ = 0 then the
theorem is trivial. So suppose that λ = α + 1. Then λ[0] = α

1 + N(λ[0]) = 1 + N(α) = N(α + 1) = N(λ)

If λ = ωα+1 then λ[0] = ωα and

1 + N(λ[0]) = 2 + N(α) = 1 + N(λ)

If λ = ωα where α ∈ Lim then we have

1 + N(λ[0]) = 1 + N(ωα[0]) = 2 + N(α[0])
IH
= 1 + N(α) = 1 + N(λ)
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Lemma

1 Hα(n) ≤ Hωα(n).

2 Hα(n) ≤ Hα⊕β(n).
3 N(α) ≤ Hα(n).
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Proof of the first assertion. If α = 0 then H0(n) = n < H1(n).

For
α = β + 1 we find

Hωα(n) = Hωβ(n+1)(n) = Hn+1
ωβ (n + 1)

IH
≥ Hβ(n + 1) = Hα(n).

If α is a limit, then:

Hα(n) = Hα[n](n + 1) ≤ Hωα[n](n + 1) = Hωα(n)

Proof of the second assertion. Suppose α = ωα1 + · · ·+ ωαm and
β = ωαm+1 + · · ·+ ωαm+n . Then

Hα(n) = Hωα1 (. . .Hωαm (n) . . . )

Hα⊕β = Hω
απ(1) (. . .Hω

απ(n+m) (n) . . . )

whereπ is an permutation so that απ(1) ≥ · · · ≥ απ(n+m). It is easy
to see that the assertion follows.
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Proof of the third assertion.

If α = 0 then the assertion is clear.
For successors α + 1 we find

N(α + 1) = 1 + N((α + 1)[0]) ≤ H(α+1)[0](0) ≤ H(α+1)[0](1) ≤ Hα+1(0)

If α is a limit:

N(α) = 1 + N(α[0]) ≤ 1 + Hα[0](0) ≤ Hα[0](1) = Hα(0) ≤ Hα(n)
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Applications

Now we study majorization properties for the Hardy hierarchy.

Fα(x) = max({F (x) + 1} ∪ {C(F γ,F δ)(x) :

γ, δ < α ∧ N(γ),N(δ) ≤ F (x)})
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Lemma
Suppose that F is weakly increasing and fulfilling F (x) ≥ x .

1 α < β =⇒ Fα(x) ≤ F β(x).

2 4k ≤ Hω2(k) and 8k ≤ Hω3(k) or more generally
2ik ≤ Hωi(k).

3 F ≤ Hα =⇒ F β(x) ≤ Hωα⊕β+1+8(x).
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Proof of the first assertion. By induction on α. For α = 0 we
obtain

Fα(x) = F (x) + 1 ≤ F β(x)

For α > 0 we find

Fα(x) = F (x) + 1

or

Fα(x) = F γ(F δ(x)) + F γ(x) + F δ(x)

for γ, δ < α with N(γ),N(δ) ≤ F (x).
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Proof of the second assertion. We compute:

Hω(k) = Hω[k ](k + 1) = Hk+1(k + 1) = Hk (k + 2) = Hk−1(k + 3) = 2k + 2
Hω2(k) = H(ω2)[k ](k + 1) = Hω+k+1(k + 1) = Hω(2k + 2) = Hω[2k+2](2k + 3)

= H2k+3(2k + 3) = 4k + 6
Hω3(k) = Hω2+k+1(k + 1) = Hω2(2k + 2) ≥ 4(2k + 2) ≥ 8k
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Proof of the third assertion. By induction on β we prove for all
x ≥ 8,

F β(x) ≤ Hωα⊕β+1(x)

and this yields the assertion.

For β = 0 we obtain:

F 0(x) = F (x) + 1 ≤ Hα(x) + 1 ≤ Hα+1(x) ≤ Hα⊕β+1(x)

≤ Hωα⊕β+1(x)

For β > 0 we have

F β(x) = F γ(F δ(x)) + F γ(x) + F δ(x)

for γ, δ < β. Let ξ = max(γ, δ). Then we obtain

F β(x) ≤ F ξ(F ξ(x)) · 3 ≤ F ξ(F ξ(x)) · 4
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The induction hypothesis and (2) yield

F ξ(F ξ(x)) · 4 ≤ Hω2(Hωα⊕ξ+1(Hωα⊕ξ+1(x)))

≤ Hωα⊕ξ+1(Hωα⊕ξ+1(Hωα⊕ξ+1(Hωα⊕ξ+1(x))))

Because of Hα(Hβ(x)) = Hα+β(x) for NF (α, β) we see

F ξ(F ξ(x)) · 4 ≤ Hωα⊕ξ·4

Moreover we find

N(ωα⊕ξ+1) = 4(1 + N(α)⊕ N(ξ) + 1) ≤ 8(2Hα(x)) = 16Hα(x)

≤ Hω4(Hα(x)) ≤ Hωα⊕β5(x)

Thus F β(x) ≤ Hωα⊕ξ+14(Hωα⊕β5(x)).
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Now we can show that F β(x) ≤ Hωα⊕β4(Hωα⊕β5(x)). For ξ < β we
have ξ + 1 ≤ β and there are two options:

If ξ + 1 = β then Hωα⊕ξ+14(Hωα⊕β5(x)) = Hωα⊕β4(Hωα⊕β5(x)).

If ξ + 1 < β then Hωα⊕ξ+14(Hωα⊕β5(x)) = Hωα⊕β4(Hωα⊕β5(x))
since the norm of the leftmost ordinal is controlled by the
argument. Finally we see

F β(x) ≤ Hωα⊕β9(x) ≤ Hωα⊕β+1(x) ≤ Hωα⊕β+1(x + 8)

≤ Hωα⊕β+1+1(x + 7) ≤ · · · ≤ Hωα⊕β+1+8(x)
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The Goodstein sequences

Let m[k ← k + 1] be the result of first writing m hereditarily in
base k normal form and then second replacing base k by k + 1.

Let m0 := m and mk+1 := mk [k + 2← k + 3]− 1.
Then the assertion ∀m∃kmk = 0 is true but not provable in first
order Peano arithmetic.
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Pxα =


0 if α = 0
β if α = β + 1
Px (λ[x ]) if λ ∈ Lim.
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The modified Hardy hierarchy is defined as follows:

h0(n) = n
hα+1(n) = hα(n + 1)

hλ(n) = hλ[n](n) where λ ∈ Lim
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The slow growing hierarchy is defined as follows:

G0(n) = 0
Gα+1(n) = 1 + Gα(n)

Gλ(n) = Gλ[n](n) where λ ∈ Lim
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Lemma

1 If α > 0 then Hα(x) = HPxα(x + 1).
2 Let k ≥ n be minimal such that Pk . . .Pn+1Pnα = 0. Then

hα(n) = k

Lemma
Hα(x) ≤ hα(x + 1) ≤ Hα(x + 1).
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Lemma
Write Gxα = Gα(x). Then PxGxα = GxPxα.

Andreas Weiermann Ordinals and Hierarchies 80 / 84



BASIC THEORY OF ORDINALS

Normal functions
Ordinal arithmetic

The Veblen hierarchy
Fundamental sequences and the Hardy hierarchy

Lemma
If NF (ωα, β) then Gx (ωα + β) = (x + 1)Gxα + Gxβ.
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Lemma
The termination of the Goodstein sequences follows from the
totality of the function x 7→ Hε0(x).
Proof by putting the last lemmata together.

Let m be given.
Write m in base 2 representation. Let α be the result of
replacing in this representation 2 by ω. Then m = G1(α). Then
m1 = G2(α)− 1 = P2G2(α) = G2P2α and
m2 = G3P2α− 1 = G3P3P2α. The mk = 0 iff Pk+1 . . .P3P2α = 0.
This k corresponds to hα(k) so essentially to Hα(k).
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THANKS - PERSONAL INFORMATION

Thank you for listening. The results of this talk will be covered
next term in a lecture in Ghent. Interested (master,PhD)
students or others are welcome.

Andreas Weiermann
Andreas.Weiermann@UGent.be

Department Mathematics
Ghent University
Krijgslaan 281
Building S22
9000 Ghent
Belgium

Andreas Weiermann Ordinals and Hierarchies 83 / 84


	Basic theory of ordinals
	Normal functions
	Ordinal arithmetic
	 The Veblen hierarchy
	Fundamental sequences and the Hardy hierarchy
	The Bachmann property
	The Bachmann property
	The Bachmann property
	The Bachmann property
	The Bachmann property
	The Bachmann property


