Ordinals and Hierarchies

Andreas Weiermann

Department of Mathematics Ghent University

Proof Society Summer School Ghent, 2-5 September 2018

OUTLINE

イロト 不得 とくほ とくほう

OUTLINE

- BASIC THEORY OF ORDINALS
- 2 Normal functions

・ロン ・雪 と ・ ヨ と

OUTLINE

- BASIC THEORY OF ORDINALS
- 2 Normal functions
- 3 Ordinal arithmetic

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

OUTLINE

- BASIC THEORY OF ORDINALS
- 2 Normal functions
- 3 Ordinal arithmetic
- 4 The Veblen hierarchy

OUTLINE

- 1 BASIC THEORY OF ORDINALS
- 2 Normal functions
- 3 Ordinal arithmetic
- 4 The Veblen hierarchy
- 5 Fundamental sequences and the Hardy hierarchy
 - The Bachmann property
 - The Bachmann property

イロト 不得 とくほ とくほう

Normal functions Ordinal arithmetic The Veblen hierarchy Fundamental sequences and the Hardy hierarchy

The class of ordinals is denoted by On and it satisfies the following postulates (which can be proved in *ZFC*):

The class of ordinals is denoted by On and it satisfies the following postulates (which can be proved in *ZFC*):

1 (On, <) is linearly ordered (= totally ordered).

The class of ordinals is denoted by On and it satisfies the following postulates (which can be proved in *ZFC*):

- 1 (On, <) is linearly ordered (= totally ordered).
- 2 if $\emptyset \subsetneq C \subseteq$ On then C has a minimal element, denoted by min C.

The class of ordinals is denoted by On and it satisfies the following postulates (which can be proved in *ZFC*):

- 1 (On, <) is linearly ordered (= totally ordered).
- 2 if $\emptyset \subsetneq C \subseteq$ On then C has a minimal element, denoted by min C.
- 3 the class $\{\xi \in On \mid \xi < \alpha\}$ is a set for all $\alpha \in On$.

The class of ordinals is denoted by On and it satisfies the following postulates (which can be proved in *ZFC*):

- 1 (On, <) is linearly ordered (= totally ordered).
- 2 if $\emptyset \subsetneq C \subseteq$ On then C has a minimal element, denoted by min C.
- 3 the class $\{\xi \in On \mid \xi < \alpha\}$ is a set for all $\alpha \in On$.
- 4 for every set $A \subseteq$ On exists a $\gamma \in$ On such that $\alpha < \gamma$ for all $\alpha \in A$.

・ロット (雪) (き) (き)

The class of ordinals is denoted by On and it satisfies the following postulates (which can be proved in *ZFC*):

- 1 (On, <) is linearly ordered (= totally ordered).
- 2 if $\emptyset \subsetneq C \subseteq$ On then C has a minimal element, denoted by min C.
- 3 the class $\{\xi \in On \mid \xi < \alpha\}$ is a set for all $\alpha \in On$.
- 4 for every set $A \subseteq On$ exists a $\gamma \in On$ such that $\alpha < \gamma$ for all $\alpha \in A$.

We use the following abbreviations: $0 = \min On$

・ロト ・ 同ト ・ ヨト・

The class of ordinals is denoted by On and it satisfies the following postulates (which can be proved in *ZFC*):

- 1 (On, <) is linearly ordered (= totally ordered).
- 2 if $\emptyset \subsetneq C \subseteq$ On then C has a minimal element, denoted by min C.
- 3 the class $\{\xi \in On \mid \xi < \alpha\}$ is a set for all $\alpha \in On$.
- 4 for every set $A \subseteq On$ exists a $\gamma \in On$ such that $\alpha < \gamma$ for all $\alpha \in A$.

We use the following abbreviations: $0 = \min On$ and $\alpha' = \min \{ \xi \in On \mid \alpha < \xi \}.$

・ロン ・雪 と ・ ヨ と

Normal functions Ordinal arithmetic The Veblen hierarchy Fundamental sequences and the Hardy hierarchy

TRANSFINITE INDUCTION

Theorem

Let ϕ be a property of ordinals.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Normal functions Ordinal arithmetic The Veblen hierarchy Fundamental sequences and the Hardy hierarchy

TRANSFINITE INDUCTION

Theorem

Let ϕ be a property of ordinals. If $\forall \alpha \in \text{On} : (\forall \xi < \alpha : \phi(\xi)) \rightarrow \phi(\alpha)$ then $\forall \alpha \in \text{On} : \phi(\alpha)$.

Normal functions Ordinal arithmetic The Veblen hierarchy Fundamental sequences and the Hardy hierarchy

TRANSFINITE INDUCTION

Theorem

Let ϕ be a property of ordinals. If $\forall \alpha \in \text{On} : (\forall \xi < \alpha : \phi(\xi)) \rightarrow \phi(\alpha) \text{ then } \forall \alpha \in \text{On} : \phi(\alpha).$

Proof.

Assume the antecedence and assume that there exists a $\beta \in On$ such that $\neg \phi(\beta)$.

Normal functions Ordinal arithmetic The Veblen hierarchy Fundamental sequences and the Hardy hierarchy

TRANSFINITE INDUCTION

Theorem

Let ϕ be a property of ordinals. If $\forall \alpha \in \text{On} : (\forall \xi < \alpha : \phi(\xi)) \rightarrow \phi(\alpha) \text{ then } \forall \alpha \in \text{On} : \phi(\alpha).$

Proof.

Assume the antecedence and assume that there exists a $\beta \in On$ such that $\neg \phi(\beta)$. Define

$$\mathcal{C} = \{\xi \in \mathrm{On} \mid \neg \phi(\xi)\}.$$

This class is non empty since $\beta \in C$.

Normal functions Ordinal arithmetic The Veblen hierarchy Fundamental sequences and the Hardy hierarchy

TRANSFINITE INDUCTION

Theorem

Let ϕ be a property of ordinals. If $\forall \alpha \in \text{On} : (\forall \xi < \alpha : \phi(\xi)) \rightarrow \phi(\alpha) \text{ then } \forall \alpha \in \text{On} : \phi(\alpha).$

Proof.

Assume the antecedence and assume that there exists a $\beta \in On$ such that $\neg \phi(\beta)$. Define

$$\mathcal{C} = \{\xi \in \mathrm{On} \mid \neg \phi(\xi)\}.$$

This class is non empty since $\beta \in C$. Put $\alpha_0 = \min C$.

・ロット (雪) (き) (き)

Normal functions Ordinal arithmetic The Veblen hierarchy Fundamental sequences and the Hardy hierarchy

TRANSFINITE INDUCTION

Theorem

Let ϕ be a property of ordinals. If $\forall \alpha \in \text{On} : (\forall \xi < \alpha : \phi(\xi)) \rightarrow \phi(\alpha)$ then $\forall \alpha \in \text{On} : \phi(\alpha)$. Proof.

Assume the antecedence and assume that there exists a $\beta \in On$ such that $\neg \phi(\beta)$. Define

$$\mathcal{C} = \{\xi \in \mathrm{On} \mid \neg \phi(\xi)\}.$$

This class is non empty since $\beta \in C$. Put $\alpha_0 = \min C$. Then $\neg \phi(\alpha_0)$. By assumption there exists an $\alpha_1 < \alpha_0$ such that $\neg \phi(\bigcap_{c \in \mathsf{NI}} f_{c \in \mathsf{NI}})$ since otherwise $\phi(\alpha_0)$. Contradicton with the minimality of α_0 .

LIMIT ORDINALS

The class of limit ordinals (denoted by Lim) is defined by

$$\alpha \in \operatorname{Lim} \iff \alpha \neq \mathbf{0} \land \forall \xi < \alpha : \xi' < \alpha$$

The least limit ordinal is $\omega = \min \text{Lim}$. For a set $A \subseteq \text{On define}$

 $\sup \mathbf{A} = \min\{\xi \in \mathbf{On} \mid \forall \alpha \in \mathbf{A} : \alpha \le \xi\}$

In particular we have sup $\emptyset = 0$.

イロト 不得 とくほと くほとう

Normal functions Ordinal arithmetic The Veblen hierarchy Fundamental sequences and the Hardy hierarchy

LIMIT ORDINALS

The class of limit ordinals (denoted by Lim) is defined by

$$\alpha \in \operatorname{Lim} \iff \alpha \neq \mathbf{0} \land \forall \xi < \alpha : \xi' < \alpha$$

The least limit ordinal is $\omega = \min \text{Lim}$.

GENT

LIMIT ORDINALS

The class of limit ordinals (denoted by Lim) is defined by

$$\alpha \in \operatorname{Lim} \iff \alpha \neq \mathbf{0} \land \forall \xi < \alpha : \xi' < \alpha$$

The least limit ordinal is $\omega = \min \text{Lim}$. For a set $A \subseteq \text{On define}$

$$\sup \mathbf{A} = \min\{\xi \in \mathbf{On} \mid \forall \alpha \in \mathbf{A} : \alpha \le \xi\}$$

LIMIT ORDINALS

The class of limit ordinals (denoted by Lim) is defined by

$$\alpha \in \operatorname{Lim} \iff \alpha \neq \mathbf{0} \land \forall \xi < \alpha : \xi' < \alpha$$

The least limit ordinal is $\omega = \min \text{Lim}$. For a set $A \subseteq \text{On define}$

 $\sup \mathbf{A} = \min\{\xi \in \mathbf{On} \mid \forall \alpha \in \mathbf{A} : \alpha \le \xi\}$

In particular we have $\sup \emptyset = 0$.

・ロト ・ 同ト ・ ヨト・

LIMIT ORDINALS

The class of limit ordinals (denoted by Lim) is defined by

$$\alpha \in \operatorname{Lim} \iff \alpha \neq \mathbf{0} \land \forall \xi < \alpha : \xi' < \alpha$$

The least limit ordinal is $\omega = \min \text{Lim}$. For a set $A \subseteq \text{On define}$

 $\sup \mathbf{A} = \min\{\xi \in \mathbf{On} \mid \forall \alpha \in \mathbf{A} : \alpha \le \xi\}$

In particular we have $\sup \emptyset = 0$.

・ロト ・ 同ト ・ ヨト・

Normal functions Ordinal arithmetic The Veblen hierarchy Fundamental sequences and the Hardy hierarchy

SUPREMA

Lemma

Assume that $A \neq \emptyset$ and that $A \subseteq On$ is a set. If sup $A \notin A$ then sup $A \in Lim$.

Normal functions Ordinal arithmetic The Veblen hierarchy Fundamental sequences and the Hardy hierarchy

SUPREMA

Lemma

Assume that $A \neq \emptyset$ and that $A \subseteq On$ is a set. If sup $A \notin A$ then sup $A \in Lim$.

Proof. Let $\alpha = \sup A$, then $\alpha > 0$ since $A \neq \emptyset$ and $\sup A \notin A$.

ヘロト ヘワト ヘビト ヘビト

GENT

Normal functions Ordinal arithmetic The Veblen hierarchy Fundamental sequences and the Hardy hierarchy

SUPREMA

Lemma

Assume that $A \neq \emptyset$ and that $A \subseteq On$ is a set. If sup $A \notin A$ then sup $A \in Lim$.

Proof. Let $\alpha = \sup A$, then $\alpha > 0$ since $A \neq \emptyset$ and $\sup A \notin A$. Let $\beta < \alpha$ in A.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Normal functions Ordinal arithmetic The Veblen hierarchy Fundamental sequences and the Hardy hierarchy

SUPREMA

Lemma

Assume that $A \neq \emptyset$ and that $A \subseteq On$ is a set. If sup $A \notin A$ then sup $A \in Lim$.

Proof. Let $\alpha = \sup A$, then $\alpha > 0$ since $A \neq \emptyset$ and $\sup A \notin A$. Let $\beta < \alpha$ in A. We have to show that $\beta' < \alpha$.

イロン 不良 とうほう イロン

Normal functions Ordinal arithmetic The Veblen hierarchy Fundamental sequences and the Hardy hierarchy

SUPREMA

Lemma

Assume that $A \neq \emptyset$ and that $A \subseteq On$ is a set. If sup $A \notin A$ then sup $A \in Lim$.

Proof. Let $\alpha = \sup A$, then $\alpha > 0$ since $A \neq \emptyset$ and $\sup A \notin A$. Let $\beta < \alpha$ in A. We have to show that $\beta' < \alpha$. Because of $\beta < \alpha$ and $\alpha = \sup A$ there exists a $\xi \in A$ such that $\beta < \xi < \alpha$ and thus $\beta' \leq \xi < \alpha$.

・ロト ・ 同ト ・ ヨト・

Normal functions Ordinal arithmetic The Veblen hierarchy Fundamental sequences and the Hardy hierarchy

WELL FOUNDED RELATIONS

A binary relation *R* is called well founded if every non empty set contains an *R*-minimal element.

WELL FOUNDED RELATIONS

A binary relation *R* is called well founded if every non empty set contains an *R*-minimal element.

Lemma

 If ≺ is well founded then there does not exist an infinite descending chain of elements in with respect to ≺.

WELL FOUNDED RELATIONS

A binary relation *R* is called well founded if every non empty set contains an *R*-minimal element.

Lemma

- If ≺ is well founded then there does not exist an infinite descending chain of elements in with respect to ≺.
- 2 If $\prec \subseteq A \times A$ and if there exists an $F : A \to On$ such that $\forall x, y : x \prec y \to F(x) < F(y)$ then \prec is well founded.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

WELL FOUNDED RELATIONS

A binary relation *R* is called well founded if every non empty set contains an *R*-minimal element.

Lemma

- If ≺ is well founded then there does not exist an infinite descending chain of elements in with respect to ≺.
- 2 If $\prec \subseteq A \times A$ and if there exists an $F : A \to On$ such that $\forall x, y : x \prec y \to F(x) < F(y)$ then \prec is well founded.

Proof.

The first assertion is obvious. The elements of an infinite descending chain form a non empty set without a minimal element

Ordinals and Hierarchies

UNIVERSITEI GENT

Normal functions Ordinal arithmetic The Veblen hierarchy Fundamental sequences and the Hardy hierarchy

For a proof of the second assertion assume that $X \neq \emptyset$. If $X \cap A = \emptyset$ then every $x \in X$ is a <-minimal element and the assertion follows.

For a proof of the second assertion assume that $X \neq \emptyset$. If $X \cap A = \emptyset$ then every $x \in X$ is a <-minimal element and the assertion follows.

Assume now that $X \cap A \neq \emptyset$ and define

$$\beta = \min\{F(x) \mid x \in X \cap A\}.$$

ヘロト ヘヨト ヘヨト

For a proof of the second assertion assume that $X \neq \emptyset$. If $X \cap A = \emptyset$ then every $x \in X$ is a <-minimal element and the assertion follows.

Assume now that $X \cap A \neq \emptyset$ and define

 $\beta = \min\{F(x) \mid x \in X \cap A\}$. Let $x_0 \in X \cap A$ such that $F(x_0) = \beta$.
For a proof of the second assertion assume that $X \neq \emptyset$. If $X \cap A = \emptyset$ then every $x \in X$ is a <-minimal element and the assertion follows.

Assume now that $X \cap A \neq \emptyset$ and define

 $\beta = \min\{F(x) \mid x \in X \cap A\}$. Let $x_0 \in X \cap A$ such that $F(x_0) = \beta$. Then x_0 is minimal.

Normal functions Ordinal arithmetic The Veblen hierarchy Fundamental sequences and the Hardy hierarchy

For a proof of the second assertion assume that $X \neq \emptyset$. If $X \cap A = \emptyset$ then every $x \in X$ is a <-minimal element and the assertion follows.

Assume now that $X \cap A \neq \emptyset$ and define

 $\beta = \min\{F(x) \mid x \in X \cap A\}$. Let $x_0 \in X \cap A$ such that $F(x_0) = \beta$. Then x_0 is minimal. If there exists an $x_1 \in X$ such that $x_1 < x_0$ then necessarily $x_1 \notin A$.

・ロト ・ 同ト ・ ヨト ・ ヨト

Normal functions Ordinal arithmetic The Veblen hierarchy Fundamental sequences and the Hardy hierarchy

For a proof of the second assertion assume that $X \neq \emptyset$. If $X \cap A = \emptyset$ then every $x \in X$ is a <-minimal element and the assertion follows.

Assume now that $X \cap A \neq \emptyset$ and define

 $\beta = \min\{F(x) \mid x \in X \cap A\}$. Let $x_0 \in X \cap A$ such that $F(x_0) = \beta$. Then x_0 is minimal. If there exists an $x_1 \in X$ such that $x_1 < x_0$ then necessarily $x_1 \notin A$. Otherwise $x_1 \in A$ yields $F(x_1) < F(x_0)$ in contradiction with the assumption that x_0 is minimal.

・ロト ・ 同ト ・ ヨト ・ ヨト

Normal functions Ordinal arithmetic The Veblen hierarchy Fundamental sequences and the Hardy hierarchy

A function $F : On \to On$ is called order preserving (o.p.) if $\alpha < \beta \implies F(\alpha) < F(\beta)$.

イロト 不得 とくほ とくほとう

Normal functions Ordinal arithmetic The Veblen hierarchy Fundamental sequences and the Hardy hierarchy

A function $F : On \to On$ is called order preserving (o.p.) if $\alpha < \beta \implies F(\alpha) < F(\beta)$.

Lemma

If $F : On \to On$ is o.p., then $F(\alpha) \ge \alpha$ holds for all $\alpha \in On$.

A function $F : \text{On} \to \text{On}$ is called order preserving (o.p.) if $\alpha < \beta \implies F(\alpha) < F(\beta)$.

Lemma

If $F : On \to On$ is o.p., then $F(\alpha) \ge \alpha$ holds for all $\alpha \in On$.

Proof. Assume that there exists an $\alpha \in On$ such that $F(\alpha) < \alpha$. Define

$$\boldsymbol{\mathcal{C}} = \{ \boldsymbol{\xi} \in \mathrm{On} \mid \boldsymbol{\mathcal{F}}(\boldsymbol{\xi}) < \boldsymbol{\xi} \}.$$

Then $C \neq \emptyset$ and $C \subseteq On$, hence there exists $\alpha_0 = \min C$. Since F is order preserving we conclude from $F(\alpha_0) < \alpha_0$ that $F(F(\alpha_0)) < F(\alpha_0)$ and thus $F(\alpha_0) \in C$. But we have $F(\alpha_0) < \max_{u \in E} f(\alpha_0)$ in contradiction with the minimality of α_0 .

A function $F : \text{On} \to \text{On}$ is called order preserving (o.p.) if $\alpha < \beta \implies F(\alpha) < F(\beta)$.

Lemma

If $F : On \to On$ is o.p., then $F(\alpha) \ge \alpha$ holds for all $\alpha \in On$.

Proof. Assume that there exists an $\alpha \in On$ such that $F(\alpha) < \alpha$. Define

$$\boldsymbol{\mathcal{C}} = \{ \boldsymbol{\xi} \in \mathrm{On} \mid \boldsymbol{\mathcal{F}}(\boldsymbol{\xi}) < \boldsymbol{\xi} \}.$$

Then $C \neq \emptyset$ and $C \subseteq On$, hence there exists $\alpha_0 = \min C$.

・ロト ・ ア・ ・ ヨト ・ ヨト

A function $F : \text{On} \to \text{On}$ is called order preserving (o.p.) if $\alpha < \beta \implies F(\alpha) < F(\beta)$.

Lemma

If $F : On \to On$ is o.p., then $F(\alpha) \ge \alpha$ holds for all $\alpha \in On$.

Proof. Assume that there exists an $\alpha \in On$ such that $F(\alpha) < \alpha$. Define

$$\mathcal{C} = \{\xi \in \mathrm{On} \mid \mathcal{F}(\xi) < \xi\}.$$

Then $C \neq \emptyset$ and $C \subseteq On$, hence there exists $\alpha_0 = \min C$. Since F is order preserving we conclude from $F(\alpha_0) < \alpha_0$ that $F(F(\alpha_0)) < F(\alpha_0)$

・ロット (雪) () () () ()

A function $F : \text{On} \to \text{On}$ is called order preserving (o.p.) if $\alpha < \beta \implies F(\alpha) < F(\beta)$.

Lemma

If $F : On \to On$ is o.p., then $F(\alpha) \ge \alpha$ holds for all $\alpha \in On$.

Proof. Assume that there exists an $\alpha \in On$ such that $F(\alpha) < \alpha$. Define

$$\mathcal{C} = \{\xi \in \mathrm{On} \mid \mathcal{F}(\xi) < \xi\}.$$

Then $C \neq \emptyset$ and $C \subseteq On$, hence there exists $\alpha_0 = \min C$. Since F is order preserving we conclude from $F(\alpha_0) < \alpha_0$ that $F(F(\alpha_0)) < F(\alpha_0)$ and thus $F(\alpha_0) \in C$. But we have $F(\alpha_0) <$

Normal functions Ordinal arithmetic The Veblen hierarchy Fundamental sequences and the Hardy hierarchy

ENUMERATION FUNCTIONS

A function $F : \text{On} \to A$ is called ordering function for $A \subseteq \text{On}$ if F is order preserving and surjective onto A.

Normal functions Ordinal arithmetic The Veblen hierarchy Fundamental sequences and the Hardy hierarchy

ENUMERATION FUNCTIONS

A function $F : \text{On} \to A$ is called ordering function for $A \subseteq \text{On}$ if F is order preserving and surjective onto A. $A \subseteq \text{On}$ is unbounded if for all $\alpha \in \text{On}$ there exists a $\beta \in A$ such that $\alpha < \beta$.

Normal functions Ordinal arithmetic The Veblen hierarchy Fundamental sequences and the Hardy hierarchy

ENUMERATION FUNCTIONS

A function $F : \text{On} \to A$ is called ordering function for $A \subseteq \text{On}$ if F is order preserving and surjective onto A.

 $A \subseteq On$ is unbounded if for all $\alpha \in On$ there exists a $\beta \in A$ such that $\alpha < \beta$.

 $A \subseteq$ On is called closed if sup $X \in A$ for all non empty sets $X \subseteq A$.

Normal functions Ordinal arithmetic The Veblen hierarchy Fundamental sequences and the Hardy hierarchy

ENUMERATION FUNCTIONS

A function $F : \text{On} \to A$ is called ordering function for $A \subseteq \text{On}$ if F is order preserving and surjective onto A.

 $A \subseteq On$ is unbounded if for all $\alpha \in On$ there exists a $\beta \in A$ such that $\alpha < \beta$.

 $A \subseteq$ On is called closed if sup $X \in A$ for all non empty sets $X \subseteq A$.

If $A \subseteq On$ is closed and unbounded then A is called club.

Normal functions Ordinal arithmetic The Veblen hierarchy Fundamental sequences and the Hardy hierarchy

ENUMERATION FUNCTIONS

Lemma

Let *A* be unbounded. Then there exists a uniquely determined ordering function Enum_A on *A* such that

$$\operatorname{Enum}_{\mathcal{A}}(\alpha) = \min\{\beta \in \mathcal{A} \mid \forall \xi < \alpha : \operatorname{Enum}_{\mathcal{A}}(\xi) < \beta\}.$$

Normal functions Ordinal arithmetic The Veblen hierarchy Fundamental sequences and the Hardy hierarchy

ENUMERATION FUNCTIONS

Lemma

Let *A* be unbounded. Then there exists a uniquely determined ordering function Enum_A on *A* such that

$$\operatorname{Enum}_{\mathcal{A}}(\alpha) = \min\{\beta \in \mathcal{A} \mid \forall \xi < \alpha : \operatorname{Enum}_{\mathcal{A}}(\xi) < \beta\}.$$

Proof of existence of F for A using transfinite recursion.

ヘロト ヘワト ヘビト ヘビト

11/84

Normal functions Ordinal arithmetic The Veblen hierarchy Fundamental sequences and the Hardy hierarchy

ENUMERATION FUNCTIONS

Lemma

Let *A* be unbounded. Then there exists a uniquely determined ordering function Enum_A on *A* such that

$$\operatorname{Enum}_{\mathcal{A}}(\alpha) = \min\{\beta \in \mathcal{A} \mid \forall \xi < \alpha : \operatorname{Enum}_{\mathcal{A}}(\xi) < \beta\}.$$

Proof of existence of *F* for *A* using transfinite recursion. Assume inductively that $F(\xi)$ is defined for all $\xi < \alpha$.

Normal functions Ordinal arithmetic The Veblen hierarchy Fundamental sequences and the Hardy hierarchy

ENUMERATION FUNCTIONS

Lemma

Let *A* be unbounded. Then there exists a uniquely determined ordering function Enum_A on *A* such that

$$\operatorname{Enum}_{\mathcal{A}}(\alpha) = \min\{\beta \in \mathcal{A} \mid \forall \xi < \alpha : \operatorname{Enum}_{\mathcal{A}}(\xi) < \beta\}.$$

Proof of existence of *F* for *A* using transfinite recursion. Assume inductively that $F(\xi)$ is defined for all $\xi < \alpha$. Then $\{F(\xi) \mid \xi < \alpha\}$ is a set and hence there exists a minimal $\gamma \in \text{On such that}$ $F(\xi) < \gamma$ for all $\xi < \alpha$.

・ロン ・雪 と ・ ヨ と

Normal functions Ordinal arithmetic The Veblen hierarchy Fundamental sequences and the Hardy hierarchy

ENUMERATION FUNCTIONS

Lemma

Let *A* be unbounded. Then there exists a uniquely determined ordering function Enum_A on *A* such that

$$\operatorname{Enum}_{\mathcal{A}}(\alpha) = \min\{\beta \in \mathcal{A} \mid \forall \xi < \alpha : \operatorname{Enum}_{\mathcal{A}}(\xi) < \beta\}.$$

Proof of existence of *F* for *A* using transfinite recursion. Assume inductively that $F(\xi)$ is defined for all $\xi < \alpha$. Then $\{F(\xi) \mid \xi < \alpha\}$ is a set and hence there exists a minimal $\gamma \in$ On such that $F(\xi) < \gamma$ for all $\xi < \alpha$. Because *A* is unbounded there exists a minimal $\beta \in A$ such that $\gamma \leq \beta$.

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Normal functions Ordinal arithmetic The Veblen hierarchy Fundamental sequences and the Hardy hierarchy

ENUMERATION FUNCTIONS

Lemma

Let *A* be unbounded. Then there exists a uniquely determined ordering function Enum_A on *A* such that

$$\operatorname{Enum}_{\mathcal{A}}(\alpha) = \min\{\beta \in \mathcal{A} \mid \forall \xi < \alpha : \operatorname{Enum}_{\mathcal{A}}(\xi) < \beta\}.$$

Proof of existence of *F* for *A* using transfinite recursion. Assume inductively that $F(\xi)$ is defined for all $\xi < \alpha$. Then $\{F(\xi) \mid \xi < \alpha\}$ is a set and hence there exists a minimal $\gamma \in \text{On such that}$ $F(\xi) < \gamma$ for all $\xi < \alpha$. Because *A* is unbounded there exists a minimal $\beta \in A$ such that $\gamma \leq \beta$. Hence $F(\alpha) = \beta$ and so *F* is universite totally defined.

Normal functions Ordinal arithmetic The Veblen hierarchy Fundamental sequences and the Hardy hierarchy

We still have to show that *F* is order preserving and surjective with range(F) = A.

・ロト ・ 同ト ・ ヨト ・ ヨト

Normal functions Ordinal arithmetic The Veblen hierarchy Fundamental sequences and the Hardy hierarchy

We still have to show that *F* is order preserving and surjective with range(*F*) = *A*. That *F* is order preserving is easy to see. To prove surjectivity let $\gamma \in A$.

Normal functions Ordinal arithmetic The Veblen hierarchy Fundamental sequences and the Hardy hierarchy

We still have to show that *F* is order preserving and surjective with range(*F*) = *A*. That *F* is order preserving is easy to see. To prove surjectivity let $\gamma \in A$. Then there exists $\alpha = \min\{\xi \mid \gamma \leq F(\xi)\}$ since $\alpha \leq F(\alpha)$.

Normal functions Ordinal arithmetic The Veblen hierarchy Fundamental sequences and the Hardy hierarchy

We still have to show that *F* is order preserving and surjective with range(*F*) = *A*. That *F* is order preserving is easy to see. To prove surjectivity let $\gamma \in A$. Then there exists $\alpha = \min\{\xi \mid \gamma \leq F(\xi)\}$ since $\alpha \leq F(\alpha)$. We have $\gamma \leq F(\alpha)$ and $\forall \xi < \alpha : F(\xi) < \gamma$ so that $F(\alpha) = \gamma$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Normal functions Ordinal arithmetic The Veblen hierarchy Fundamental sequences and the Hardy hierarchy

Proof of uniqueness. Let *F* and *G* both be ordering functions for *A*, thus $F, G : \text{On} \rightarrow A$ and F, G are surjective and order preserving.

・ロト ・ 同ト ・ ヨト・

Normal functions Ordinal arithmetic The Veblen hierarchy Fundamental sequences and the Hardy hierarchy

Proof of uniqueness. Let *F* and *G* both be ordering functions for *A*, thus *F*, *G* : On \rightarrow *A* and *F*, *G* are surjective and order preserving. Assume by induction on α that $\forall \xi < \alpha : F(\xi) = G(\xi)$.

・ロット (雪) (き) (き)

Normal functions Ordinal arithmetic The Veblen hierarchy Fundamental sequences and the Hardy hierarchy

Proof of uniqueness. Let *F* and *G* both be ordering functions for *A*, thus *F*, *G* : On \rightarrow *A* and *F*, *G* are surjective and order preserving. Assume by induction on α that $\forall \xi < \alpha : F(\xi) = G(\xi)$. Assume for a contradiction that $F(\alpha) \neq G(\alpha)$. We have then two cases:

・ロット (雪) (き) (き)

Normal functions Ordinal arithmetic The Veblen hierarchy Fundamental sequences and the Hardy hierarchy

Proof of uniqueness. Let *F* and *G* both be ordering functions for *A*, thus *F*, *G* : On \rightarrow *A* and *F*, *G* are surjective and order preserving. Assume by induction on α that $\forall \xi < \alpha : F(\xi) = G(\xi)$. Assume for a contradiction that $F(\alpha) \neq G(\alpha)$. We have then two cases:

•
$$F(\alpha) < G(\alpha)$$
.

・ロット (雪) (き) (き)

Proof of uniqueness. Let *F* and *G* both be ordering functions for *A*, thus *F*, *G* : On \rightarrow *A* and *F*, *G* are surjective and order preserving. Assume by induction on α that $\forall \xi < \alpha : F(\xi) = G(\xi)$. Assume for a contradiction that $F(\alpha) \neq G(\alpha)$. We have then two cases:

• $F(\alpha) < G(\alpha)$. The surjectivity of *G* yields that there exists a β such that $F(\alpha) = G(\beta)$.

Proof of uniqueness. Let *F* and *G* both be ordering functions for *A*, thus *F*, *G* : On \rightarrow *A* and *F*, *G* are surjective and order preserving. Assume by induction on α that $\forall \xi < \alpha : F(\xi) = G(\xi)$. Assume for a contradiction that $F(\alpha) \neq G(\alpha)$. We have then two cases:

F(α) < G(α). The surjectivity of G yields that there exists a β such that F(α) = G(β). Then β > α since β = α is impossible by assumption and if β < α the induction hypothesis yields that F(β) = G(β) = F(α).

・ロット (雪) () () () ()

BASIC THEORY OF ORDINALS Normal functions Ordinal arithmetic The Veblen hierarchy

Fundamental sequences and the Hardy hierarchy

Proof of uniqueness. Let *F* and *G* both be ordering functions for *A*, thus *F*, *G* : On \rightarrow *A* and *F*, *G* are surjective and order preserving. Assume by induction on α that $\forall \xi < \alpha : F(\xi) = G(\xi)$. Assume for a contradiction that $F(\alpha) \neq G(\alpha)$. We have then two cases:

F(α) < *G*(α). The surjectivity of *G* yields that there exists a β such that *F*(α) = *G*(β). Then β > α since β = α is impossible by assumption and if β < α the induction hypothesis yields that *F*(β) = *G*(β) = *F*(α). But *F* is order preserving hence β < α yields *F*(β) < *F*(α), contradiction. Thus β > α and the order preservation of *G* yields *G*(β) > *G*(α) > *F*(α).

・ロット 御マ キョット キョン

BASIC THEORY OF ORDINALS Normal functions

Ordinal arithmetic The Veblen hierarchy Fundamental sequences and the Hardy hierarchy

Proof of uniqueness. Let *F* and *G* both be ordering functions for *A*, thus *F*, *G* : On \rightarrow *A* and *F*, *G* are surjective and order preserving. Assume by induction on α that $\forall \xi < \alpha : F(\xi) = G(\xi)$. Assume for a contradiction that $F(\alpha) \neq G(\alpha)$. We have then two cases:

F(α) < *G*(α). The surjectivity of *G* yields that there exists a β such that *F*(α) = *G*(β). Then β > α since β = α is impossible by assumption and if β < α the induction hypothesis yields that *F*(β) = *G*(β) = *F*(α). But *F* is order preserving hence β < α yields *F*(β) < *F*(α), contradiction. Thus β > α and the order preservation of *G* yields *G*(β) > *G*(α) > *F*(α).
 F(α) > *G*(α). Similarly.

・ロット (雪) () () () ()

BASIC THEORY OF ORDINALS Normal functions Ordinal arithmetic The Veblen hierarchy

Fundamental sequences and the Hardy hierarchy

Proof of uniqueness. Let *F* and *G* both be ordering functions for *A*, thus *F*, *G* : On \rightarrow *A* and *F*, *G* are surjective and order preserving. Assume by induction on α that $\forall \xi < \alpha : F(\xi) = G(\xi)$. Assume for a contradiction that $F(\alpha) \neq G(\alpha)$. We have then two cases:

F(α) < *G*(α). The surjectivity of *G* yields that there exists a β such that *F*(α) = *G*(β). Then β > α since β = α is impossible by assumption and if β < α the induction hypothesis yields that *F*(β) = *G*(β) = *F*(α). But *F* is order preserving hence β < α yields *F*(β) < *F*(α), contradiction. Thus β > α and the order preservation of *G* yields *G*(β) > *G*(α) > *F*(α). *F*(α) > *G*(α). Similarly.
We conclude ∀α ∈ On : *F*(α) = *G*(α) hence *F* = *G*.

Normal functions

A function *F* is called continuous if $\forall \lambda \in \text{Lim} : F(\lambda) = \sup\{F(\xi) \mid \xi < \lambda\}.$

ヘロト 人間 トメヨトメヨト

Andreas Weiermann Ordinals and Hierarchies

Normal functions

A function *F* is called continuous if $\forall \lambda \in \text{Lim} : F(\lambda) = \sup\{F(\xi) \mid \xi < \lambda\}.$ A function *F* is called normal if *F* is continues and order preserving.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Normal functions

A function *F* is called continuous if $\forall \lambda \in \text{Lim} : F(\lambda) = \sup\{F(\xi) \mid \xi < \lambda\}.$ A function *F* is called normal if *F* is continues and order preserving.

Lemma

If $F : On \to On$ is continuous and if $\forall \alpha : F(\alpha) < F(\alpha')$. Then *F* is normal.

・ロト ・ 同ト ・ ヨト・

Normal functions

A function *F* is called continuous if $\forall \lambda \in \text{Lim} : F(\lambda) = \sup\{F(\xi) \mid \xi < \lambda\}.$ A function *F* is called normal if *F* is continues and order preserving.

Lemma

If $F : On \to On$ is continuous and if $\forall \alpha : F(\alpha) < F(\alpha')$. Then *F* is normal.

Proof. By induction on α we show that F is order preserving, hence $\forall \beta \in \text{On} : \beta < \alpha \implies F(\beta) < F(\alpha)$. The case $\alpha = 0$ is trivial.

・ロット 小型マネ ほう・
Normal functions

A function *F* is called continuous if $\forall \lambda \in \text{Lim} : F(\lambda) = \sup\{F(\xi) \mid \xi < \lambda\}.$ A function *F* is called normal if *F* is continues and order preserving.

Lemma

If $F : On \to On$ is continuous and if $\forall \alpha : F(\alpha) < F(\alpha')$. Then *F* is normal.

Proof. By induction on α we show that F is order preserving, hence $\forall \beta \in \text{On} : \beta < \alpha \implies F(\beta) < F(\alpha)$. The case $\alpha = 0$ is trivial. Assume that $\alpha = \gamma'$. Then the two cases follow from $\beta < \alpha = \gamma'$:

■ $\beta = \gamma$. Then $F(\beta) < F(\alpha)$ follows from the assumption that $F(\beta) < F(\beta')$.

イロト 不得 とくほと くほとう

- $\beta = \gamma$. Then $F(\beta) < F(\alpha)$ follows from the assumption that $F(\beta) < F(\beta')$.
- β < γ. Then the induction hypothesis yields that F(β) < F(γ) and hence F(β) < F(α) since F(γ) < F(γ') is valid by assumption.

Andreas Weiermann

・ロン ・雪 と ・ ヨ と

GENT

- $\beta = \gamma$. Then $F(\beta) < F(\alpha)$ follows from the assumption that $F(\beta) < F(\beta')$.
- β < γ. Then the induction hypothesis yields that
 F(β) < F(γ) and hence F(β) < F(α) since F(γ) < F(γ') is valid by assumption.

Assume now that $\alpha \in \text{Lim.}$ Since α is a limit we obtain from $\beta < \alpha$ also $\beta' < \alpha$.

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

- $\beta = \gamma$. Then $F(\beta) < F(\alpha)$ follows from the assumption that $F(\beta) < F(\beta')$.
- β < γ. Then the induction hypothesis yields that
 F(β) < F(γ) and hence F(β) < F(α) since F(γ) < F(γ') is valid by assumption.

Assume now that $\alpha \in \text{Lim.}$ Since α is a limit we obtain from $\beta < \alpha$ also $\beta' < \alpha$. The continuity of *F* implies $F(\alpha) = \sup\{F(\xi) \mid \xi < \alpha\}.$

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

- $\beta = \gamma$. Then $F(\beta) < F(\alpha)$ follows from the assumption that $F(\beta) < F(\beta')$.
- β < γ. Then the induction hypothesis yields that
 F(β) < F(γ) and hence F(β) < F(α) since F(γ) < F(γ') is valid by assumption.

Assume now that $\alpha \in \text{Lim.}$ Since α is a limit we obtain from $\beta < \alpha$ also $\beta' < \alpha$. The continuity of *F* implies $F(\alpha) = \sup\{F(\xi) \mid \xi < \alpha\}$. The induction hypothesis yields $F(\beta') \leq F(\alpha)$.

・ロット 小型マネ ほう・

- $\beta = \gamma$. Then $F(\beta) < F(\alpha)$ follows from the assumption that $F(\beta) < F(\beta')$.
- β < γ. Then the induction hypothesis yields that
 F(β) < F(γ) and hence F(β) < F(α) since F(γ) < F(γ') is valid by assumption.

Assume now that $\alpha \in \text{Lim.}$ Since α is a limit we obtain from $\beta < \alpha$ also $\beta' < \alpha$. The continuity of *F* implies $F(\alpha) = \sup\{F(\xi) \mid \xi < \alpha\}$. The induction hypothesis yields $F(\beta') \leq F(\alpha)$. By assumption we have $F(\beta) < F(\beta')$ hence $F(\beta) < F(\alpha)$.

・ロット 小型マネ ほう・

Elementary properties of normal functions

Lemma Let *F* be normal.

ヘロト ヘワト ヘビト ヘビト

Elementary properties of normal functions

Lemma

Let F be normal.

1
$$F(\alpha) = \sup\{F(\xi') \mid \xi < \alpha\}$$
 if $\alpha > 0$.

ヘロト ヘワト ヘビト ヘビト

Elementary properties of normal functions

Lemma

Let F be normal.

- 1 $F(\alpha) = \sup\{F(\xi') \mid \xi < \alpha\}$ if $\alpha > 0$.
- **2** If $\lambda \in \text{Lim}$ then $F(\lambda) \in \text{Lim}$.

・ロト ・ 同ト ・ ヨト・

Elementary properties of normal functions

Lemma

Let F be normal.

- 1 $F(\alpha) = \sup\{F(\xi') \mid \xi < \alpha\}$ if $\alpha > 0$.
- **2** If $\lambda \in \text{Lim}$ then $F(\lambda) \in \text{Lim}$.
- 3 For γ ≥ F(0) there exists a uniquely determined α such that F(α) ≤ γ < F(α').

・ロン ・雪 と ・ ヨ と

Elementary properties of normal functions

Lemma

Let F be normal.

- 1 $F(\alpha) = \sup\{F(\xi') \mid \xi < \alpha\}$ if $\alpha > 0$.
- **2** If $\lambda \in \text{Lim}$ then $F(\lambda) \in \text{Lim}$.
- 3 For γ ≥ F(0) there exists a uniquely determined α such that F(α) ≤ γ < F(α').
- 4 Let G be normal. Then $F \circ G$ is normal, too.

・ロン ・雪 と ・ ヨ と

Elementary properties of normal functions

Lemma

Let F be normal.

- 1 $F(\alpha) = \sup\{F(\xi') \mid \xi < \alpha\}$ if $\alpha > 0$.
- **2** If $\lambda \in \text{Lim}$ then $F(\lambda) \in \text{Lim}$.
- **3** For $\gamma > F(0)$ there exists a uniquely determined α such that $F(\alpha) < \gamma < F(\alpha').$
- 4 Let G be normal. Then $F \circ G$ is normal, too.
- 5 For a non empty set A we have $F(\sup A) = \sup F[A]$ where $F[A] = \{F(\alpha) \mid \alpha \in A\}.$ UNIVERSITEI

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Proof of the first assertion. Assume inductively that $F(\beta) = \sup\{F(\xi') \mid \xi < \beta\}$ for all $\beta < \alpha$.

イロト 不得 とくほ とくほと

Proof of the first assertion. Assume inductively that $F(\beta) = \sup\{F(\xi') \mid \xi < \beta\}$ for all $\beta < \alpha$. Assume first that α is a successor.

・ロト ・ 日本 ・ 日本 ・ 日本

Proof of the first assertion. Assume inductively that $F(\beta) = \sup\{F(\xi') \mid \xi < \beta\}$ for all $\beta < \alpha$. Assume first that α is a successor. We have $F(\alpha) \in \{F(\xi') \mid \xi < \alpha\}$ thence $F(\alpha) \le \sup\{F(\xi') \mid \xi < \alpha\}$. *F* is order preserving, hence $\xi' \le \alpha \implies F(\xi') \le F(\alpha)$ so that $\sup\{F(\xi') \mid \xi < \alpha\} \le F(\alpha)$.

ヘロト ヘワト ヘビト ヘビト

Proof of the first assertion. Assume inductively that $F(\beta) = \sup\{F(\xi') \mid \xi < \beta\}$ for all $\beta < \alpha$. Assume first that α is a successor. We have $F(\alpha) \in \{F(\xi') \mid \xi < \alpha\}$ thence $F(\alpha) \le \sup\{F(\xi') \mid \xi < \alpha\}$. *F* is order preserving, hence $\xi' \le \alpha \implies F(\xi') \le F(\alpha)$ so that $\sup\{F(\xi') \mid \xi < \alpha\} \le F(\alpha)$. Therefore $F(\alpha) = \sup\{F(\xi') \mid \xi < \alpha\}$.

・ロト ・ 日本 ・ 日本 ・ 日本

Proof of the first assertion. Assume inductively that $F(\beta) = \sup\{F(\xi') \mid \xi < \beta\}$ for all $\beta < \alpha$. Assume first that α is a successor. We have $F(\alpha) \in \{F(\xi') \mid \xi < \alpha\}$ thence $F(\alpha) \leq \sup\{F(\xi') \mid \xi < \alpha\}$. *F* is order preserving, hence $\xi' \leq \alpha \implies F(\xi') \leq F(\alpha)$ so that $\sup\{F(\xi') \mid \xi < \alpha\} \leq F(\alpha)$. Therefore $F(\alpha) = \sup\{F(\xi') \mid \xi < \alpha\}$. Let $\alpha \in \text{Lim}$. Then $F(\alpha) = \sup\{F(\xi) \mid \xi < \alpha\} = \sup\{F(\xi') \mid \xi < \alpha\}$.

GENT

・ロト ・ 同ト ・ ヨト・

Proof of the first assertion. Assume inductively that $F(\beta) = \sup\{F(\xi') \mid \xi < \beta\}$ for all $\beta < \alpha$. Assume first that α is a successor. We have $F(\alpha) \in \{F(\xi') \mid \xi < \alpha\}$ thence $F(\alpha) \leq \sup\{F(\xi') \mid \xi < \alpha\}$. F is order preserving, hence $\xi' < \alpha \implies F(\xi') \leq F(\alpha)$ so that $\sup\{F(\xi') \mid \xi < \alpha\} \leq F(\alpha)$. Therefore $F(\alpha) = \sup\{F(\xi') \mid \xi < \alpha\}$. Let $\alpha \in \text{Lim}$. Then $F(\alpha) = \sup\{F(\xi) \mid \xi < \alpha\} = \sup\{F(\xi') \mid \xi < \alpha\}.$ Proof of the second assertion. Let $\lambda \in \text{Lim}$. Then $F(\lambda) = \sup\{F(\xi) \mid \xi < \lambda\}$ because F is continuous.

・ロット 御マ キョット・ロット

GENT

Proof of the first assertion. Assume inductively that $F(\beta) = \sup\{F(\xi') \mid \xi < \beta\}$ for all $\beta < \alpha$. Assume first that α is a successor. We have $F(\alpha) \in \{F(\xi') \mid \xi < \alpha\}$ thence $F(\alpha) \leq \sup\{F(\xi') \mid \xi < \alpha\}$. F is order preserving, hence $\xi' < \alpha \implies F(\xi') \leq F(\alpha)$ so that $\sup\{F(\xi') \mid \xi < \alpha\} \leq F(\alpha)$. Therefore $F(\alpha) = \sup\{F(\xi') \mid \xi < \alpha\}$. Let $\alpha \in \text{Lim}$. Then $F(\alpha) = \sup\{F(\xi) \mid \xi < \alpha\} = \sup\{F(\xi') \mid \xi < \alpha\}.$ Proof of the second assertion. Let $\lambda \in \text{Lim}$. Then $F(\lambda) = \sup\{F(\xi) \mid \xi < \lambda\}$ because F is continuous. Suppose $\gamma < F(\lambda).$

GENT

・ロン ・雪 と ・ ヨ と

Proof of the first assertion. Assume inductively that $F(\beta) = \sup\{F(\xi') \mid \xi < \beta\}$ for all $\beta < \alpha$. Assume first that α is a successor. We have $F(\alpha) \in \{F(\xi') \mid \xi < \alpha\}$ thence $F(\alpha) \leq \sup\{F(\xi') \mid \xi < \alpha\}$. F is order preserving, hence $\xi' < \alpha \implies F(\xi') \leq F(\alpha)$ so that $\sup\{F(\xi') \mid \xi < \alpha\} \leq F(\alpha)$. Therefore $F(\alpha) = \sup\{F(\xi') \mid \xi < \alpha\}$. Let $\alpha \in \text{Lim}$. Then $F(\alpha) = \sup\{F(\xi) \mid \xi < \alpha\} = \sup\{F(\xi') \mid \xi < \alpha\}.$ Proof of the second assertion. Let $\lambda \in \text{Lim}$. Then $F(\lambda) = \sup\{F(\xi) \mid \xi < \lambda\}$ because F is continuous. Suppose $\gamma < F(\lambda)$. Then $\gamma < F(\xi)$ for some $\xi < \lambda$. Then $\gamma' < F(\xi) < F(\xi') < F(\lambda)$ because F is order preserving.

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Proof of the first assertion. Assume inductively that $F(\beta) = \sup\{F(\xi') \mid \xi < \beta\}$ for all $\beta < \alpha$. Assume first that α is a successor. We have $F(\alpha) \in \{F(\xi') \mid \xi < \alpha\}$ thence $F(\alpha) \leq \sup\{F(\xi') \mid \xi < \alpha\}$. F is order preserving, hence $\xi' < \alpha \implies F(\xi') \leq F(\alpha)$ so that $\sup\{F(\xi') \mid \xi < \alpha\} \leq F(\alpha)$. Therefore $F(\alpha) = \sup\{F(\xi') \mid \xi < \alpha\}$. Let $\alpha \in \text{Lim}$. Then $F(\alpha) = \sup\{F(\xi) \mid \xi < \alpha\} = \sup\{F(\xi') \mid \xi < \alpha\}.$ Proof of the second assertion. Let $\lambda \in \text{Lim}$. Then $F(\lambda) = \sup\{F(\xi) \mid \xi < \lambda\}$ because F is continuous. Suppose $\gamma < F(\lambda)$. Then $\gamma < F(\xi)$ for some $\xi < \lambda$. Then $\gamma' < F(\xi) < F(\xi') < F(\lambda)$ because F is order preserving.

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Proof of assertion three. Let $\gamma \geq F(0)$.

イロト イポト イヨト イヨト

Proof of assertion three. Let $\gamma \geq F(0)$. Then $\gamma \leq F(\gamma) < F(\gamma')$.

イロト 不得 とくほ とくほと

Proof of assertion three. Let $\gamma \ge F(0)$. Then $\gamma \le F(\gamma) < F(\gamma')$. So there exists $\alpha = \min\{\xi \mid \gamma < F(\xi')\}$.

イロト 不得 とくほ とくほと

Proof of assertion three. Let $\gamma \ge F(0)$. Then $\gamma \le F(\gamma) < F(\gamma')$. So there exists $\alpha = \min\{\xi \mid \gamma < F(\xi')\}$. Then $\gamma < F(\alpha')$.

・ロト ・ 同ト ・ ヨト ・ ヨト

Proof of assertion three. Let $\gamma \ge F(0)$. Then $\gamma \le F(\gamma) < F(\gamma')$. So there exists $\alpha = \min\{\xi \mid \gamma < F(\xi')\}$. Then $\gamma < F(\alpha')$. If $\alpha = 0$ then $\gamma = F(0)$ en the assertion follows.

・ロト ・ 同ト ・ ヨト ・ ヨト

Proof of assertion three. Let $\gamma \ge F(0)$. Then $\gamma \le F(\gamma) < F(\gamma')$. So there exists $\alpha = \min\{\xi \mid \gamma < F(\xi')\}$. Then $\gamma < F(\alpha')$. If $\alpha = 0$ then $\gamma = F(0)$ en the assertion follows. If $\alpha > 0$ then $F(\alpha) = \sup\{F(\xi') \mid \xi < \alpha\}$.

・ロン ・雪 と ・ ヨ と

Proof of assertion three. Let $\gamma \ge F(0)$. Then $\gamma \le F(\gamma) < F(\gamma')$. So there exists $\alpha = \min\{\xi \mid \gamma < F(\xi')\}$. Then $\gamma < F(\alpha')$. If $\alpha = 0$ then $\gamma = F(0)$ en the assertion follows. If $\alpha > 0$ then $F(\alpha) = \sup\{F(\xi') \mid \xi < \alpha\}$. If $\xi < \alpha$ then $F(\xi') \le \gamma$ so that $F(\alpha) = \sup\{F(\xi') \mid \xi < \alpha\} \le \gamma$.

・ロン ・雪 と ・ ヨ と

Proof of assertion three. Let $\gamma \ge F(0)$. Then $\gamma \le F(\gamma) < F(\gamma')$. So there exists $\alpha = \min\{\xi \mid \gamma < F(\xi')\}$. Then $\gamma < F(\alpha')$. If $\alpha = 0$ then $\gamma = F(0)$ en the assertion follows. If $\alpha > 0$ then $F(\alpha) = \sup\{F(\xi') \mid \xi < \alpha\}$. If $\xi < \alpha$ then $F(\xi') \le \gamma$ so that $F(\alpha) = \sup\{F(\xi') \mid \xi < \alpha\} \le \gamma$. Proof of assertion four. This is easy.

・ロン ・雪 と ・ ヨ と

GENT

Proof of assertion three. Let $\gamma \ge F(0)$. Then $\gamma \le F(\gamma) < F(\gamma')$. So there exists $\alpha = \min\{\xi \mid \gamma < F(\xi')\}$. Then $\gamma < F(\alpha')$. If $\alpha = 0$ then $\gamma = F(0)$ en the assertion follows. If $\alpha > 0$ then $F(\alpha) = \sup\{F(\xi') \mid \xi < \alpha\}$. If $\xi < \alpha$ then $F(\xi') \le \gamma$ so that $F(\alpha) = \sup\{F(\xi') \mid \xi < \alpha\} \le \gamma$. Proof of assertion four. This Is easy. Proof of assertion five. Suppose that $A \subseteq On$ is a non empty set with $\alpha = \sup A$.

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Proof of assertion three. Let $\gamma \ge F(0)$. Then $\gamma \le F(\gamma) < F(\gamma')$. So there exists $\alpha = \min\{\xi \mid \gamma < F(\xi')\}$. Then $\gamma < F(\alpha')$. If $\alpha = 0$ then $\gamma = F(0)$ en the assertion follows. If $\alpha > 0$ then $F(\alpha) = \sup\{F(\xi') \mid \xi < \alpha\}$. If $\xi < \alpha$ then $F(\xi') \le \gamma$ so that $F(\alpha) = \sup\{F(\xi') \mid \xi < \alpha\} \le \gamma$. Proof of assertion four. This Is easy. Proof of assertion five. Suppose that $A \subseteq \text{On}$ is a non empty set with $\alpha = \sup A$. If $\alpha \in A$ then $F(\alpha) = F(\sup A) = \sup F[A]$ since F is order preserving.

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Proof of assertion three. Let $\gamma \geq F(0)$. Then $\gamma \leq F(\gamma) < F(\gamma')$. So there exists $\alpha = \min\{\xi \mid \gamma < F(\xi')\}$. Then $\gamma < F(\alpha')$. If $\alpha = 0$ then $\gamma = F(0)$ en the assertion follows. If $\alpha > 0$ then $F(\alpha) = \sup\{F(\xi) \mid \xi < \alpha\}$. If $\xi < \alpha$ then $F(\xi) < \gamma$ so that $F(\alpha) = \sup\{F(\xi') \mid \xi < \alpha\} < \gamma.$ Proof of assertion four. This Is easy. Proof of assertion five. Suppose that $A \subseteq On$ is a non empty set with $\alpha = \sup A$. If $\alpha \in A$ then $F(\alpha) = F(\sup A) = \sup F[A]$ since F is order preserving. If $\alpha \notin A$ then $\alpha \in \text{Lim}$ such that $F(\alpha) = \sup\{F(\xi) \mid \xi < \alpha\} = \sup F[A].$

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

GENT

Lemma Let $A \subseteq On$. Then A is club iff $Enum_A$ is normal.

・ロト ・ 同ト ・ ヨト ・ ヨト

Fixed point lemma for normal functions

Lemma

If *F* is normal, then there exists a least α such that $F(\alpha) = \alpha$.

・ロト ・ 日本 ・ 日本 ・ 日本

Fixed point lemma for normal functions

Lemma

If *F* is normal, then there exists a least α such that $F(\alpha) = \alpha$. Proof. Let us define a sequence α_n as follows.

$$\alpha_0 = \mathbf{0} \qquad \qquad \alpha_{n+1} = F(\alpha_n)$$

ヘロト ヘワト ヘビト ヘビト
Fixed point lemma for normal functions

Lemma

If *F* is normal, then there exists a least α such that $F(\alpha) = \alpha$. Proof. Let us define a sequence α_n as follows.

$$\alpha_0 = \mathbf{0} \qquad \qquad \alpha_{n+1} = F(\alpha_n$$

Let $\beta := \sup\{\alpha_n \mid n < \omega\}.$

ヘロト ヘワト ヘビト ヘビト

Fixed point lemma for normal functions

Lemma

If *F* is normal, then there exists a least α such that $F(\alpha) = \alpha$. Proof. Let us define a sequence α_n as follows.

$$\alpha_{0} = 0 \qquad \qquad \alpha_{n+1} = F(\alpha_{n})$$

Let $\beta := \sup\{\alpha_{n} \mid n < \omega\}$. Then
$$F(\beta) = F(\sup\{\alpha_{n} \mid n < \omega\})$$
$$= \sup\{F(\alpha_{n}) \mid n < \omega\}$$
$$= \sup\{\alpha_{n+1} \mid n < \omega\}$$
$$= \beta$$

hence β is a fixed point of F and there will be a smallest one.

Andreas Weiermann

Ordinals and Hierarchies

Lemma If *F* is normal, then $\{\alpha \in On : F(\alpha) = \alpha\}$ is club.

The sum of ordinals

The sum of ordinals is defined by transfinite recursion:

$$\alpha + \mathbf{0} = \alpha$$

$$\alpha + \beta' = (\alpha + \beta)'$$

$$\alpha + \lambda = \sup\{\alpha + \xi \mid \xi < \lambda\}$$

ヘロト ヘワト ヘビト ヘビト

Lemma

1 The function $\beta \mapsto \alpha + \beta$ is normal.

(日) (日) (日) (日) (日)

Lemma

1 The function $\beta \mapsto \alpha + \beta$ is normal.

Andreas Weiermann

 $2 \ \beta_0 < \beta_1 \implies \alpha + \beta_0 < \alpha + \beta_1.$

イロト 不得 とくほと くほとう

э

Lemma

- **1** The function $\beta \mapsto \alpha + \beta$ is normal.
- $2 \ \beta_0 < \beta_1 \implies \alpha + \beta_0 < \alpha + \beta_1.$
- $3 \ \alpha,\beta \leq \alpha+\beta.$

イロト 不得 とくほと くほとう

Lemma

- **1** The function $\beta \mapsto \alpha + \beta$ is normal.
- $2 \ \beta_0 < \beta_1 \implies \alpha + \beta_0 < \alpha + \beta_1.$
- $3 \ \alpha, \beta \leq \alpha + \beta.$
- **4** For all $\gamma \ge \alpha$ there exists a unique β such that $\gamma = \alpha + \beta$.

GENT

Lemma

- **1** The function $\beta \mapsto \alpha + \beta$ is normal.
- $2 \ \beta_0 < \beta_1 \implies \alpha + \beta_0 < \alpha + \beta_1.$
- $3 \ \alpha, \beta \leq \alpha + \beta.$
- 4 For all $\gamma \ge \alpha$ there exists a unique β such that $\gamma = \alpha + \beta$.
- 5 $\alpha_0 \leq \alpha_1 \implies \alpha_0 + \beta \leq \alpha_1 + \beta.$

GENT

Lemma

- **1** The function $\beta \mapsto \alpha + \beta$ is normal.
- $2 \ \beta_0 < \beta_1 \implies \alpha + \beta_0 < \alpha + \beta_1.$
- $3 \ \alpha, \beta \leq \alpha + \beta.$
- 4 For all $\gamma \ge \alpha$ there exists a unique β such that $\gamma = \alpha + \beta$.
- 5 $\alpha_0 \leq \alpha_1 \implies \alpha_0 + \beta \leq \alpha_1 + \beta.$
- 6 $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma).$

GENT

Lemma

1 The function $\beta \mapsto \alpha + \beta$ is normal.

$$2 \ \beta_0 < \beta_1 \implies \alpha + \beta_0 < \alpha + \beta_1.$$

$$3 \ \alpha, \beta \leq \alpha + \beta.$$

4 For all $\gamma \ge \alpha$ there exists a unique β such that $\gamma = \alpha + \beta$.

5
$$\alpha_0 \le \alpha_1 \implies \alpha_0 + \beta \le \alpha_1 + \beta.$$

6
$$(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma).$$

$$7 \ \alpha, \beta < \omega \implies \alpha + \beta = \beta + \alpha.$$

・ロト ・四ト ・ヨト ・ヨト

UNIVERSITEIT GENT

Lemma

1 The function $\beta \mapsto \alpha + \beta$ is normal.

$$2 \ \beta_0 < \beta_1 \implies \alpha + \beta_0 < \alpha + \beta_1.$$

$$3 \quad \alpha, \beta \leq \alpha + \beta.$$

4 For all $\gamma \ge \alpha$ there exists a unique β such that $\gamma = \alpha + \beta$.

5
$$\alpha_0 \le \alpha_1 \implies \alpha_0 + \beta \le \alpha_1 + \beta.$$

6 $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma).$

$$7 \ \alpha, \beta < \omega \implies \alpha + \beta = \beta + \alpha.$$

$$0 < \mathbf{k} < \omega \implies \mathbf{k} + \omega = \omega < \omega + \mathbf{k}.$$

・ロト ・四ト ・ヨト ・ヨト

UNIVERSITEIT GENT

Proof. Define F(β) = α + β for a given α. **1** F continuous by definition. Note that α + β < (α + β)' = α + β' so that ∀β : F(β) < F(β'). This yields that F is normal.

・ロン ・雪 と ・ ヨ と

Proof. Define F(β) = α + β for a given α. **1** F continuous by definition. Note that α + β < (α + β)' = α + β' so that ∀β : F(β) < F(β'). This yields that F is normal.

2 This assertion follows from the normality of *F*.

Proof. Define F(β) = α + β for a given α. **1** F continuous by definition. Note that α + β < (α + β)' = α + β' so that ∀β : F(β) < F(β'). This yields that F is normal.

- 2 This assertion follows from the normality of *F*.
- 3 Since *F* is normal we see $\beta \leq \alpha + \beta$.

Proof. Define F(β) = α + β for a given α. **1** F continuous by definition. Note that α + β < (α + β)' = α + β' so that ∀β : F(β) < F(β'). This yields that F is normal.

2 This assertion follows from the normality of *F*.

Andreas Weiermann

3 Since *F* is normal we see $\beta \le \alpha + \beta$. The other assertion follows by Induction on β .

Proof. Define F(β) = α + β for a given α. **1** F continuous by definition. Note that α + β < (α + β)' = α + β' so that ∀β : F(β) < F(β'). This yields that F is normal.

- 2 This assertion follows from the normality of *F*.
- 3 Since *F* is normal we see $\beta \le \alpha + \beta$. The other assertion follows by Induction on β .
- **4** Suppose $\gamma \ge \alpha$ and choose a β such that
 - $\alpha + \beta \leq \gamma < \alpha + \beta'$. Then $\gamma = \alpha + \beta$.

・ロット (雪) () () () ()

Proof. Define F(β) = α + β for a given α. **1** F continuous by definition. Note that α + β < (α + β)' = α + β' so that ∀β : F(β) < F(β'). This yields that F is normal.

- 2 This assertion follows from the normality of *F*.
- 3 Since *F* is normal we see $\beta \le \alpha + \beta$. The other assertion follows by Induction on β .
- **4** Suppose $\gamma \ge \alpha$ and choose a β such that
 - $\alpha + \beta \leq \gamma < \alpha + \beta'$. Then $\gamma = \alpha + \beta$.
- **5** By induction on β .

・ロット (雪) () () () ()

Proof. Define F(β) = α + β for a given α. **1** F continuous by definition. Note that α + β < (α + β)' = α + β' so that ∀β : F(β) < F(β'). This yields that F is normal.

- 2 This assertion follows from the normality of *F*.
- Since *F* is normal we see β ≤ α + β. The other assertion follows by Induction on β.
- **4** Suppose $\gamma \ge \alpha$ and choose a β such that
 - $\alpha + \beta \leq \gamma < \alpha + \beta'$. Then $\gamma = \alpha + \beta$.
- **5** By induction on β .
- **6** By induction on γ .

・ロット (雪) () () () ()

Proof. Define F(β) = α + β for a given α. **1** F continuous by definition. Note that α + β < (α + β)' = α + β' so that ∀β : F(β) < F(β'). This yields that F is normal.

- 2 This assertion follows from the normality of *F*.
- Since *F* is normal we see β ≤ α + β. The other assertion follows by Induction on β.
- **4** Suppose $\gamma \ge \alpha$ and choose a β such that
 - $\alpha+\beta\leq\gamma<\alpha+\beta'. \text{ Then }\gamma=\alpha+\beta.$
- **5** By induction on β .
- **6** By induction on γ .
- 7 By induction on α .

Proof. Define F(β) = α + β for a given α. **1** F continuous by definition. Note that α + β < (α + β)' = α + β' so that ∀β : F(β) < F(β'). This yields that F is normal.

- 2 This assertion follows from the normality of *F*.
- 3 Since *F* is normal we see $\beta \le \alpha + \beta$. The other assertion follows by Induction on β .
- **4** Suppose $\gamma \ge \alpha$ and choose a β such that

$$\alpha + \beta \leq \gamma < \alpha + \beta'.$$
 Then $\gamma = \alpha + \beta$.

- **5** By induction on β .
- **6** By induction on γ .
- **7** By induction on α .
- 8 If $0 < k < \omega$, then $k + \omega = \sup\{k + n \mid n < \omega\} = \sup\{m \mid_{\substack{\text{UNIVERSITE IN GENTY OF N \\ GENTY of k < \omega\}} = \omega < \omega' \le \omega + k$.

The product of ordinals

The product of two ordinals is defined by transfinite recursion:

$$\alpha \cdot \mathbf{0} = \mathbf{0}$$

$$\alpha \cdot \beta' = \alpha \cdot \beta + \alpha$$

$$\alpha \cdot \lambda = \sup\{\alpha \cdot \xi \mid \xi < \lambda\} \text{ if } \lambda \in \text{Lim.}$$

GENT

イロト イヨト イヨト

Lemma

1 If $\alpha > 0$ then the function $\beta \mapsto \alpha \cdot \beta$ is normal.

イロト 不得 とくほと くほとう

Lemma

- **1** If $\alpha > 0$ then the function $\beta \mapsto \alpha \cdot \beta$ is normal.
- $2 \ \alpha_0 \leq \alpha_1 \implies \alpha_0 \cdot \beta \leq \alpha_1 \cdot \beta.$

Lemma

1 If $\alpha > 0$ then the function $\beta \mapsto \alpha \cdot \beta$ is normal.

$$2 \ \alpha_0 \leq \alpha_1 \implies \alpha_0 \cdot \beta \leq \alpha_1 \cdot \beta.$$

$$a \cdot (\beta \cdot \gamma) = (\alpha \cdot \beta) \cdot \gamma.$$

イロト 不得 とくほと くほとう

ъ

Lemma

1 If $\alpha > 0$ then the function $\beta \mapsto \alpha \cdot \beta$ is normal.

2
$$\alpha_0 \le \alpha_1 \implies \alpha_0 \cdot \beta \le \alpha_1 \cdot \beta$$
.
3 $\alpha \cdot (\beta \cdot \gamma) = (\alpha \cdot \beta) \cdot \gamma$.
4 $\alpha \cdot (\beta + \gamma) = \alpha \cdot \beta + \alpha \cdot \gamma$.

ъ

イロト 不得 とくほ とくほと

Lemma

1 If $\alpha > 0$ then the function $\beta \mapsto \alpha \cdot \beta$ is normal.

2
$$\alpha_0 \leq \alpha_1 \implies \alpha_0 \cdot \beta \leq \alpha_1 \cdot \beta$$

3 $\alpha \cdot (\beta \cdot \gamma) = (\alpha \cdot \beta) \cdot \gamma.$
4 $\alpha \cdot (\beta + \gamma) = \alpha \cdot \beta + \alpha \cdot \gamma.$
5 $\alpha \cdot 0 = 0 = 0 \cdot \alpha.$

.

ъ

イロト 不得 とくほ とくほと

Lemma

1 If
$$\alpha > 0$$
 then the function $\beta \mapsto \alpha \cdot \beta$ is normal.

2
$$\alpha_0 \le \alpha_1 \implies \alpha_0 \cdot \beta \le \alpha_1 \cdot \beta.$$

3 $\alpha \cdot (\beta \cdot \gamma) = (\alpha \cdot \beta) \cdot \gamma.$
4 $\alpha \cdot (\beta + \gamma) = \alpha \cdot \beta + \alpha \cdot \gamma.$
5 $\alpha \cdot 0 = 0 = 0 \cdot \alpha.$
6 $\alpha \cdot \beta \le \omega \implies \alpha \cdot \beta = \beta \cdot \alpha$

・ロト ・四ト ・ヨト ・ヨト

UNIVERSITEIT

ъ

Lemma

1 If
$$\alpha > 0$$
 then the function $\beta \mapsto \alpha \cdot \beta$ is normal.

2
$$\alpha_0 \leq \alpha_1 \implies \alpha_0 \cdot \beta \leq \alpha_1 \cdot \beta$$
.
3 $\alpha \cdot (\beta \cdot \gamma) = (\alpha \cdot \beta) \cdot \gamma$.
4 $\alpha \cdot (\beta + \gamma) = \alpha \cdot \beta + \alpha \cdot \gamma$.
5 $\alpha \cdot 0 = 0 = 0 \cdot \alpha$.
6 $\alpha, \beta < \omega \implies \alpha \cdot \beta = \beta \cdot \alpha$.
7 $1 < k < \omega \implies k \cdot \omega = \omega < \omega \cdot k$.

・ロト ・四ト ・ヨト ・ヨト

UNIVERSITEIT

э.

Lemma

1 If
$$\alpha > 0$$
 then the function $\beta \mapsto \alpha \cdot \beta$ is normal.

2
$$\alpha_0 \leq \alpha_1 \implies \alpha_0 \cdot \beta \leq \alpha_1 \cdot \beta$$
.
3 $\alpha \cdot (\beta \cdot \gamma) = (\alpha \cdot \beta) \cdot \gamma$.
4 $\alpha \cdot (\beta + \gamma) = \alpha \cdot \beta + \alpha \cdot \gamma$.
5 $\alpha \cdot 0 = 0 = 0 \cdot \alpha$.
6 $\alpha, \beta < \omega \implies \alpha \cdot \beta = \beta \cdot \alpha$.
7 $1 < k < \omega \implies k \cdot \omega = \omega < \omega \cdot k$.

・ロト ・四ト ・ヨト ・ヨト

UNIVERSITEIT

э.

Proof. All proofs are similar to the proofs we have seen before for the sum of ordinals, except the distributivity property which is proved by induction on γ :

・ロト ・ 同ト ・ ヨト ・ ヨト

•
$$\gamma = \mathbf{0}$$
. Then $\alpha \cdot (\beta + \mathbf{0}) = \alpha \cdot \beta = \alpha \cdot \beta + \alpha \cdot \mathbf{0}$.

・ロト ・ 同ト ・ ヨト ・ ヨト

•
$$\gamma = 0$$
. Then $\alpha \cdot (\beta + 0) = \alpha \cdot \beta = \alpha \cdot \beta + \alpha \cdot 0$.
• $\gamma = \xi'$. Then $\alpha \cdot (\beta + \xi') = \alpha \cdot (\beta + \xi)' = \alpha \cdot (\beta + \xi) + \alpha$.

GENT

・ロト ・ 同ト ・ ヨト ・ ヨト

ヘロト ヘワト ヘビト ヘビト

GENT

The exponentiation of ordinals

The exponentiation of two ordinals is defined by the following transfinite recursion:

$$\begin{split} \alpha^{\mathbf{0}} &= \mathbf{1} \\ \alpha^{\beta'} &= \alpha^{\beta} \cdot \alpha \\ \alpha^{\lambda} &= \sup\{\alpha^{\xi} \mid \mathbf{0} < \xi < \lambda\} \text{ if } \lambda \in \operatorname{Lim.} \end{split}$$

・ロト ・ 日本 ・ 日本 ・ 日本

Lemma

1 The function $\beta \mapsto \alpha^{\beta}$ is normal if $\alpha \geq 2$.

イロト 不同 とくほ とくほとう

Lemma

1 The function $\beta \mapsto \alpha^{\beta}$ is normal if $\alpha \geq 2$.

イロト 不得 とくほ とくほとう

Lemma

- **1** The function $\beta \mapsto \alpha^{\beta}$ is normal if $\alpha \geq 2$.
- $2 \ \alpha \leq \gamma \implies \alpha^{\beta} \leq \gamma^{\beta}.$
- 3 $\alpha^{\beta} \cdot \alpha^{\gamma} = \alpha^{\beta+\gamma}$.

イロト 不得 とくほ とくほとう

UNIVERSITEIT GENT

-

Lemma

- **1** The function $\beta \mapsto \alpha^{\beta}$ is normal if $\alpha \geq 2$.
- 2 $\alpha \leq \gamma \implies \alpha^{\beta} \leq \gamma^{\beta}$. 3 $\alpha^{\beta} \cdot \alpha^{\gamma} = \alpha^{\beta+\gamma}$. 4 $(\alpha^{\beta})^{\gamma} = \alpha^{\beta\cdot\gamma}$.

Lemma

The function β → α^β is normal if α ≥ 2.
 α ≤ γ ⇒ α^β ≤ γ^β.
 α^β ⋅ α^γ = α^{β+γ}.
 (α^β)^γ = α^{β·γ}.
 If β > β₀ > ··· > β_n and α > δ₀, ..., δ_n then α^β > α^{β₀} ⋅ δ₀ + ··· + α^{β_n} ⋅ δ_n.

イロト 不得 とくほ とくほう

GENT

Proof.

All proofs are routine. Assertion 4 is proved by induction on γ and assertion 5 is proved by induction on *n*. For the induction step argue as follows:

$$egin{array}{rcl} lpha^{eta} &\geq & lpha^{eta_0}\cdotlpha \ &\geq & lpha^{eta_0}\cdot(\delta_0+1) \ &> & lpha^{eta_0}\cdot\delta_0+\dots+lpha^{eta_n}\cdot\delta_n. \end{array}$$

・ロト ・ 日本 ・ 日本 ・ 日本

GEN

Cantor's theorem

1 For all $\alpha \ge 2$ and $\gamma \ge 1$ there exist uniquely determined β, δ, γ_0 such that $0 < \delta < \alpha, \gamma_0 < \alpha^{\beta}$ and

$$\gamma = \alpha^{\beta} \cdot \delta + \gamma_0.$$

イロト イヨト イヨト

Cantor's theorem

1 For all $\alpha \ge 2$ and $\gamma \ge 1$ there exist uniquely determined β, δ, γ_0 such that $0 < \delta < \alpha, \gamma_0 < \alpha^{\beta}$ and

$$\gamma = \alpha^{\beta} \cdot \delta + \gamma_0.$$

2 For all $\alpha \ge 2$ and $\gamma \ge 1$ there exist uniquely determined *n*, $\beta_0 > \cdots > \beta_n$, $0 < \delta_0, \ldots, \delta_n < \alpha$ such that

$$\gamma = \alpha^{\beta_0} \cdot \delta_0 + \dots + \alpha^{\beta_n} \cdot \delta_n$$

Cantor's theorem

1 For all $\alpha \ge 2$ and $\gamma \ge 1$ there exist uniquely determined β, δ, γ_0 such that $0 < \delta < \alpha, \gamma_0 < \alpha^{\beta}$ and

$$\gamma = \alpha^{\beta} \cdot \delta + \gamma_0.$$

2 For all $\alpha \ge 2$ and $\gamma \ge 1$ there exist uniquely determined *n*, $\beta_0 > \cdots > \beta_n$, $0 < \delta_0, \ldots, \delta_n < \alpha$ such that

$$\gamma = \alpha^{\beta_0} \cdot \delta_0 + \dots + \alpha^{\beta_n} \cdot \delta_n$$

Proof of the first assertion. We first prove existence. Since $\beta \mapsto \alpha^{\beta}$ is normal there exists a β such that $\alpha^{\beta} \leq \gamma < \alpha^{\beta+1}$.

イロト イポト イヨト イヨト

Proof of the first assertion. We first prove existence. Since $\beta \mapsto \alpha^{\beta}$ is normal there exists a β such that $\alpha^{\beta} \leq \gamma < \alpha^{\beta+1}$. Therefore there exists a δ such that $0 < \delta < \alpha$ and $\alpha^{\beta} \cdot \delta \leq \gamma < \alpha^{\beta} \cdot (\delta + 1)$ and so there exists a γ_0 such that $\gamma_0 < \alpha^{\beta}$ and $\alpha^{\beta} \cdot \delta + \gamma_0 \leq \gamma < \alpha^{\beta} \cdot \delta + \gamma_0 + 1$.

・ロン ・雪 と ・ ヨ と

Cantor's theorem

We now prove uniqueness.

・ロト ・ 同ト ・ ヨト・

Cantor's theorem

We now prove uniqueness. Assume that $\gamma = \alpha^{\beta} \cdot \delta + \gamma_0 = \alpha^{\beta_1} \cdot \delta_1 + \gamma_1$ where $0 < \delta, \delta_1 < \alpha$ and $\gamma_0 < \alpha^{\beta}$, $\gamma_1 < \alpha^{\beta_1}$. Since $0 < \delta < \alpha$ and $\gamma_0 < \alpha^{\beta}$ we find $\alpha^{\beta} \le \gamma < \alpha^{\beta+1}$.

・ロト ・ 日本 ・ 日本 ・ 日本

Cantor's theorem

We now prove uniqueness. Assume that $\gamma = \alpha^{\beta} \cdot \delta + \gamma_0 = \alpha^{\beta_1} \cdot \delta_1 + \gamma_1$ where $0 < \delta, \delta_1 < \alpha$ and $\gamma_0 < \alpha^{\beta}$, $\gamma_1 < \alpha^{\beta_1}$. Since $0 < \delta < \alpha$ and $\gamma_0 < \alpha^{\beta}$ we find $\alpha^{\beta} \le \gamma < \alpha^{\beta+1}$. Indeed,

$$\alpha^{\beta+1} = \alpha^{\beta} \cdot \alpha \ge \alpha^{\beta} (\delta+1) = \alpha^{\beta} \cdot \delta + \alpha^{\beta} > \alpha^{\beta} + \gamma_{0}$$

Similarly we find $\alpha^{\beta_1} \leq \gamma < \alpha^{\beta_1+1}$. Since exponentiation is normal we find $\beta = \beta_1$. So we see $\gamma = \alpha^{\beta} \cdot \delta + \gamma_0 = \alpha^{\beta} \cdot \delta_1 + \gamma_1$. This yields

$$\alpha^{\beta} \cdot \delta \leq \gamma < \alpha^{\beta} \cdot (\delta + 1)$$

$$\alpha^{\beta} \cdot \delta_{1} \leq \gamma < \alpha^{\beta} \cdot (\delta_{1} + 1)$$
UNVERSITE
GENT
UNVERSITE
UNV

hence $\delta = \delta_1$.

Cantor's theorem

We now prove uniqueness. Assume that $\gamma = \alpha^{\beta} \cdot \delta + \gamma_0 = \alpha^{\beta_1} \cdot \delta_1 + \gamma_1$ where $0 < \delta, \delta_1 < \alpha$ and $\gamma_0 < \alpha^{\beta}$, $\gamma_1 < \alpha^{\beta_1}$. Since $0 < \delta < \alpha$ and $\gamma_0 < \alpha^{\beta}$ we find $\alpha^{\beta} \le \gamma < \alpha^{\beta+1}$. Indeed,

$$\alpha^{\beta+1} = \alpha^{\beta} \cdot \alpha \ge \alpha^{\beta} (\delta+1) = \alpha^{\beta} \cdot \delta + \alpha^{\beta} > \alpha^{\beta} + \gamma_{0}$$

Similarly we find $\alpha^{\beta_1} \leq \gamma < \alpha^{\beta_1+1}$. Since exponentiation is normal we find $\beta = \beta_1$. So we see $\gamma = \alpha^{\beta} \cdot \delta + \gamma_0 = \alpha^{\beta} \cdot \delta_1 + \gamma_1$.

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Cantor's theorem

We now prove uniqueness. Assume that $\gamma = \alpha^{\beta} \cdot \delta + \gamma_0 = \alpha^{\beta_1} \cdot \delta_1 + \gamma_1$ where $0 < \delta, \delta_1 < \alpha$ and $\gamma_0 < \alpha^{\beta}$, $\gamma_1 < \alpha^{\beta_1}$. Since $0 < \delta < \alpha$ and $\gamma_0 < \alpha^{\beta}$ we find $\alpha^{\beta} \le \gamma < \alpha^{\beta+1}$. Indeed,

$$\alpha^{\beta+1} = \alpha^{\beta} \cdot \alpha \ge \alpha^{\beta} (\delta+1) = \alpha^{\beta} \cdot \delta + \alpha^{\beta} > \alpha^{\beta} + \gamma_{0}$$

Similarly we find $\alpha^{\beta_1} \leq \gamma < \alpha^{\beta_1+1}$. Since exponentiation is normal we find $\beta = \beta_1$. So we see $\gamma = \alpha^{\beta} \cdot \delta + \gamma_0 = \alpha^{\beta} \cdot \delta_1 + \gamma_1$. This yields

$$\begin{array}{l} \alpha^{\beta} \cdot \delta \leq \gamma < \alpha^{\beta} \cdot (\delta + 1) \\ \alpha^{\beta} \cdot \delta_{1} \leq \gamma < \alpha^{\beta} \cdot (\delta_{1} + 1) \end{array}$$

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

hence $\delta - \delta_{\star}$

We now arrive at $\gamma = \alpha^{\beta} \cdot \delta + \gamma_0 = \alpha^{\beta} \cdot \delta + \gamma_1$. Since the ordinal sum is normal in the second argument we find $\gamma_0 = \gamma_1$.

イロト 不得 とくほ とくほと

We now arrive at $\gamma = \alpha^{\beta} \cdot \delta + \gamma_0 = \alpha^{\beta} \cdot \delta + \gamma_1$. Since the ordinal sum is normal in the second argument we find $\gamma_0 = \gamma_1$. Proof of the second assertion by induction on γ . The previous assertion yields $\gamma = \alpha^{\beta} \cdot \delta + \gamma_0$ with $0 < \delta < \alpha$.

・ロト ・ 同ト ・ ヨト・

We now arrive at $\gamma = \alpha^{\beta} \cdot \delta + \gamma_0 = \alpha^{\beta} \cdot \delta + \gamma_1$. Since the ordinal sum is normal in the second argument we find $\gamma_0 = \gamma_1$. Proof of the second assertion by induction on γ . The previous assertion yields $\gamma = \alpha^{\beta} \cdot \delta + \gamma_0$ with $0 < \delta < \alpha$. Since $\gamma_0 < \gamma$ the induction hypothesis yields that $\gamma_0 = \alpha^{\beta_1} \cdot \delta_1 + \cdots + \alpha^{\beta_n} \cdot \delta_n$ so that $\gamma = \alpha^{\beta} \cdot \delta + \alpha^{\beta_1} \cdot \delta_1 + \cdots + \alpha^{\beta_n} \cdot \delta_n$. We find $\beta > \beta_1$ since $\alpha^{\beta} > \gamma_0$.

・ロト ・ 日本 ・ 日本 ・ 日本

We write $\alpha =_{CNF} \omega^{\alpha_0} k_0 + \cdots + \omega^{\alpha_n} k_n$ where $\alpha_0 > \cdots > \alpha_n$. We call this the Cantor normal form of α . Note that the CNF is unique by Cantor's theorem.

・ロト ・ 同ト ・ ヨト ・ ヨト

GENT

The class AP of additive principal numbers is defined by

$$\alpha \in \mathbf{AP} \iff \alpha > \mathbf{0} \land \forall \xi, \eta < \alpha : \xi + \eta < \alpha$$

It is easy to see that 1 is the first additive principal number. It is also easy to see that the other additive principal numbers are limit ordinals.

Lemma

1 $\alpha \mapsto \omega^{\alpha}$ is the ordering function of AP.

イロト 不得 とくほ とくほと

Lemma

- 1 $\alpha \mapsto \omega^{\alpha}$ is the ordering function of AP.
- $2 \ \alpha \in \mathbf{AP} \iff \forall \xi < \alpha : \xi + \alpha = \alpha.$

Proof of the first assertion. By induction on α . Let $F(\alpha) = \omega^{\alpha}$. The we have to show that *F* is a surjective and order preserving function from On onto AP.

Proof of the first assertion. By induction on α . Let $F(\alpha) = \omega^{\alpha}$. The we have to show that *F* is a surjective and order preserving function from On onto AP. We know already that *F* is order preserving. We still have to show that range F = AP.

Proof of the first assertion. By induction on α . Let $F(\alpha) = \omega^{\alpha}$. The we have to show that *F* is a surjective and order preserving function from On onto AP. We know already that *F* is order preserving. We still have to show that range F = AP. Suppose $\alpha = 0$. Then $\omega^{\alpha} = \omega^{0} = 1 \in AP$.

Proof of the first assertion. By induction on α . Let $F(\alpha) = \omega^{\alpha}$. The we have to show that *F* is a surjective and order preserving function from On onto AP. We know already that *F* is order preserving. We still have to show that range F = AP. Suppose $\alpha = 0$. Then $\omega^{\alpha} = \omega^{0} = 1 \in AP$. Suppose $\alpha = \beta + 1$ and let $\xi, \eta < \omega^{\beta+1} = \omega^{\beta}\omega$.

Proof of the first assertion. By induction on α . Let $F(\alpha) = \omega^{\alpha}$. The we have to show that *F* is a surjective and order preserving function from On onto AP. We know already that *F* is order preserving. We still have to show that range F = AP. Suppose $\alpha = 0$. Then $\omega^{\alpha} = \omega^{0} = 1 \in AP$. Suppose $\alpha = \beta + 1$ and let $\xi, \eta < \omega^{\beta+1} = \omega^{\beta}\omega$. Then there exist $m, n < \omega$ such that $\xi < \omega^{\beta}n$ and $\eta < \omega^{\beta}m$. Then $\xi + \eta < \omega^{\beta}n + \omega^{\beta}m = \omega^{\beta}(n + m)$.

Proof of the first assertion. By induction on α . Let $F(\alpha) = \omega^{\alpha}$. The we have to show that *F* is a surjective and order preserving function from On onto AP. We know already that *F* is order preserving. We still have to show that range F = AP. Suppose $\alpha = 0$. Then $\omega^{\alpha} = \omega^{0} = 1 \in AP$. Suppose $\alpha = \beta + 1$ and let $\xi, \eta < \omega^{\beta+1} = \omega^{\beta}\omega$. Then there exist $m, n < \omega$ such that $\xi < \omega^{\beta}n$ and $\eta < \omega^{\beta}m$. Then $\xi + \eta < \omega^{\beta}n + \omega^{\beta}m = \omega^{\beta}(n+m)$. Because $n + m < \omega$ we have $\omega^{\beta}(n+m) < \omega^{\beta}\omega = \omega^{\beta+1} = \omega^{\alpha}$. This yields $\omega^{\alpha} \in AP$.

Proof of the first assertion. By induction on α . Let $F(\alpha) = \omega^{\alpha}$. The we have to show that F is a surjective and order preserving function from On onto AP. We know already that F is order preserving. We still have to show that range F = AP. Suppose $\alpha = 0$. Then $\omega^{\alpha} = \omega^{0} = 1 \in AP$. Suppose $\alpha = \beta + 1$ and let $\xi, \eta < \omega^{\beta+1} = \omega^{\beta} \omega$. Then there exist $m, n < \omega$ such that $\xi < \omega^{\beta} n$ and $\eta < \omega^{\beta} m$. Then $\xi + \eta < \omega^{\beta} n + \omega^{\beta} m = \omega^{\beta} (n + m)$. Because $n + m < \omega$ we have $\omega^{\beta}(n+m) < \omega^{\beta}\omega = \omega^{\beta+1} = \omega^{\alpha}$. This yields $\omega^{\alpha} \in AP$. Assume now that $\alpha \in \text{Lim}$ and let $\xi, \eta < \omega^{\alpha}$.

Proof of the first assertion. By induction on α . Let $F(\alpha) = \omega^{\alpha}$. The we have to show that F is a surjective and order preserving function from On onto AP. We know already that F is order preserving. We still have to show that range F = AP. Suppose $\alpha = 0$. Then $\omega^{\alpha} = \omega^{0} = 1 \in AP$. Suppose $\alpha = \beta + 1$ and let $\xi, \eta < \omega^{\beta+1} = \omega^{\beta} \omega$. Then there exist $m, n < \omega$ such that $\xi < \omega^{\beta} n$ and $\eta < \omega^{\beta} m$. Then $\xi + \eta < \omega^{\beta} n + \omega^{\beta} m = \omega^{\beta} (n + m)$. Because $n + m < \omega$ we have $\omega^{\beta}(n+m) < \omega^{\beta}\omega = \omega^{\beta+1} = \omega^{\alpha}$. This yields $\omega^{\alpha} \in AP$. Assume now that $\alpha \in \text{Lim}$ and let $\xi, \eta < \omega^{\alpha}$. Then there exist $\alpha_1, \alpha_2 < \alpha$ with $\xi < \omega^{\alpha_1}$ and $\eta < \omega^{\alpha_2}$.

Proof of the first assertion. By induction on α . Let $F(\alpha) = \omega^{\alpha}$. The we have to show that F is a surjective and order preserving function from On onto AP. We know already that F is order preserving. We still have to show that range F = AP. Suppose $\alpha = 0$. Then $\omega^{\alpha} = \omega^{0} = 1 \in AP$. Suppose $\alpha = \beta + 1$ and let $\xi, \eta < \omega^{\beta+1} = \omega^{\beta} \omega$. Then there exist $m, n < \omega$ such that $\xi < \omega^{\beta} n$ and $\eta < \omega^{\beta} m$. Then $\xi + \eta < \omega^{\beta} n + \omega^{\beta} m = \omega^{\beta} (n + m)$. Because $n + m < \omega$ we have $\omega^{\beta}(n+m) < \omega^{\beta}\omega = \omega^{\beta+1} = \omega^{\alpha}$. This yields $\omega^{\alpha} \in AP$. Assume now that $\alpha \in \text{Lim}$ and let $\xi, \eta < \omega^{\alpha}$. Then there exist $\alpha_1, \alpha_2 < \alpha$ with $\xi < \omega^{\alpha_1}$ and $\eta < \omega^{\alpha_2}$. Then $\xi + \eta < \omega^{\alpha_1} + \omega^{\alpha_2} < \omega^{\max(\alpha_0,\alpha_1)+1} < \omega^{\alpha_1}$

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Proof of the first assertion. By induction on α . Let $F(\alpha) = \omega^{\alpha}$. The we have to show that F is a surjective and order preserving function from On onto AP. We know already that F is order preserving. We still have to show that range F = AP. Suppose $\alpha = 0$. Then $\omega^{\alpha} = \omega^{0} = 1 \in AP$. Suppose $\alpha = \beta + 1$ and let $\xi, \eta < \omega^{\beta+1} = \omega^{\beta} \omega$. Then there exist $m, n < \omega$ such that $\xi < \omega^{\beta} n$ and $\eta < \omega^{\beta} m$. Then $\xi + \eta < \omega^{\beta} n + \omega^{\beta} m = \omega^{\beta} (n + m)$. Because $n + m < \omega$ we have $\omega^{\beta}(n+m) < \omega^{\beta}\omega = \omega^{\beta+1} = \omega^{\alpha}$. This yields $\omega^{\alpha} \in AP$. Assume now that $\alpha \in \text{Lim}$ and let $\xi, \eta < \omega^{\alpha}$. Then there exist $\alpha_1, \alpha_2 < \alpha$ with $\xi < \omega^{\alpha_1}$ and $\eta < \omega^{\alpha_2}$. Then $\xi + \eta < \omega^{\alpha_1} + \omega^{\alpha_2} < \omega^{\max(\alpha_0,\alpha_1)+1} < \omega^{\alpha}$. Hence $\omega^{\alpha} \in AP$. VERSITEIT GENT

Finally suppose that $\alpha \in AP$. Let $\alpha =_{CNF} \omega^{\alpha_0} k_0 + \cdots + \omega^{\alpha_n} k_n$.

イロト 不得 とくほ とくほと

Finally suppose that $\alpha \in AP$. Let $\alpha =_{CNF} \omega^{\alpha_0} k_0 + \cdots + \omega^{\alpha_n} k_n$. If n > 0 or n = 0 and $k_0 > 1$ then $\alpha = \omega^{\alpha_0} + \omega^{\alpha_0} \cdot (k_0 - 1) + \cdots + \omega^{\alpha_n} k_n$ would show that $\alpha \notin AP$.

UNIVERSITEIT GENT

・ロン ・雪 と ・ ヨ と
Proof of the second assertion.

Suppose $\alpha \in AP$. Then there are two cases:

• $\alpha = 1$. This case is trivial because the only $\xi < \alpha$ is the ordinal 0 and in this case we have $0 + \alpha = \alpha$.

Proof of the second assertion.

Suppose $\alpha \in AP$. Then there are two cases:

■ α = 1. This case is trivial because the only ξ < α is the ordinal 0 and in this case we have 0 + α = α.</p>

•
$$\alpha \in \text{Lim. Suppose } \xi < \alpha.$$
 Then
 $\xi + \alpha = \sup\{\xi + \eta \mid \eta < \alpha\} \le \alpha.$

Proof of the second assertion.

Suppose $\alpha \in AP$. Then there are two cases:

■ α = 1. This case is trivial because the only ξ < α is the ordinal 0 and in this case we have 0 + α = α.</p>

•
$$\alpha \in \text{Lim. Suppose } \xi < \alpha$$
. Then
 $\xi + \alpha = \sup\{\xi + \eta \mid \eta < \alpha\} \le \alpha$. We have $\xi + \alpha \ge \alpha$ and so
 $\xi + \alpha = \alpha$.

Proof of the second assertion.

Suppose $\alpha \in AP$. Then there are two cases:

■ α = 1. This case is trivial because the only ξ < α is the ordinal 0 and in this case we have 0 + α = α.</p>

•
$$\alpha \in \text{Lim. Suppose } \xi < \alpha$$
. Then
 $\xi + \alpha = \sup\{\xi + \eta \mid \eta < \alpha\} \le \alpha$. We have $\xi + \alpha \ge \alpha$ and so
 $\xi + \alpha = \alpha$.

For the other direction, suppose $\xi + \alpha = \alpha$ for all $\xi < \alpha$.

Proof of the second assertion.

Suppose $\alpha \in AP$. Then there are two cases:

■ α = 1. This case is trivial because the only ξ < α is the ordinal 0 and in this case we have 0 + α = α.</p>

•
$$\alpha \in \text{Lim. Suppose } \xi < \alpha$$
. Then
 $\xi + \alpha = \sup\{\xi + \eta \mid \eta < \alpha\} \le \alpha$. We have $\xi + \alpha \ge \alpha$ and so
 $\xi + \alpha = \alpha$.

For the other direction, suppose $\xi + \alpha = \alpha$ for all $\xi < \alpha$. Suppose $\xi, \eta < \alpha$. Then $\xi + \alpha, \eta + \alpha = \alpha$ and thence $\xi + \eta < \xi + \alpha = \alpha$ so that $\alpha \in AP$.

We write
$$\alpha =_{NF} \alpha_0 + \cdots + \alpha_n$$
 if $\alpha = \alpha_0 + \cdots + \alpha_n$ and $\alpha_0 \ge \cdots \ge \alpha_n$ and $\alpha_0, \ldots, \alpha_n \in AP$.

Lemma

For every $\alpha > 0$ there exists uniquely determined ordinals $\alpha_0, \ldots, \alpha_n$ such that $\alpha =_{NF} \alpha_0 + \cdots + \alpha_n$.

イロト イポト イヨト イヨト

UNIVERSITEIT GENT

ъ

We write
$$\alpha =_{NF} \alpha_0 + \cdots + \alpha_n$$
 if $\alpha = \alpha_0 + \cdots + \alpha_n$ and $\alpha_0 \ge \cdots \ge \alpha_n$ and $\alpha_0, \ldots, \alpha_n \in AP$.

Lemma

For every $\alpha > 0$ there exists uniquely determined ordinals $\alpha_0, \ldots, \alpha_n$ such that $\alpha =_{NF} \alpha_0 + \cdots + \alpha_n$.

Proof. By looking at the Cantor normal form of α .

We write
$$\alpha =_{NF} \alpha_0 + \cdots + \alpha_n$$
 if $\alpha = \alpha_0 + \cdots + \alpha_n$ and $\alpha_0 \ge \cdots \ge \alpha_n$ and $\alpha_0, \ldots, \alpha_n \in AP$.

Lemma

For every $\alpha > 0$ there exists uniquely determined ordinals $\alpha_0, \ldots, \alpha_n$ such that $\alpha =_{NF} \alpha_0 + \cdots + \alpha_n$.

Proof. By looking at the Cantor normal form of α .

The natural sum of ordinals

The natural sum $\alpha \oplus \beta$ is defined by

UNIVERSITEIT GENT

・ロット (雪) (き) (き)

Lemma

1
$$\alpha \oplus \beta = \beta \oplus \alpha$$
.

・ロト ・四ト ・ヨト ・ヨト

Lemma

1
$$\alpha \oplus \beta = \beta \oplus \alpha$$
.
2 $\alpha \oplus (\beta \oplus \gamma) = (\alpha \oplus \beta) \oplus \gamma$.

・ロト ・回 ト ・ヨト ・ヨト

Lemma

- $1 \ \alpha \oplus \beta = \beta \oplus \alpha.$
- $\ 2 \ \alpha \oplus (\beta \oplus \gamma) = (\alpha \oplus \beta) \oplus \gamma.$
- 3 If $\alpha_0, \ldots, \alpha_n \in AP$ with $\alpha_0 \ge \cdots \ge \alpha_n$ then $\alpha_0 + \cdots + \alpha_n = \alpha_0 \oplus \cdots \oplus \alpha_n$.

イロト 不得 とくほと くほとう

UNIVERSITEIT GENT

э

Lemma

$$1 \ \alpha \oplus \beta = \beta \oplus \alpha.$$

$$2 \ \alpha \oplus (\beta \oplus \gamma) = (\alpha \oplus \beta) \oplus \gamma.$$

3 If
$$\alpha_0, \ldots, \alpha_n \in AP$$
 with $\alpha_0 \ge \cdots \ge \alpha_n$ then $\alpha_0 + \cdots + \alpha_n = \alpha_0 \oplus \cdots \oplus \alpha_n$.

UNIVERSITEIT GENT

э.

ヘロト 人間 トイヨト イヨト

Lemma

$$1 \quad \alpha \oplus \beta = \beta \oplus \alpha.$$

2
$$\alpha \oplus (\beta \oplus \gamma) = (\alpha \oplus \beta) \oplus \gamma.$$

3 If
$$\alpha_0, \ldots, \alpha_n \in AP$$
 with $\alpha_0 \ge \cdots \ge \alpha_n$ then $\alpha_0 + \cdots + \alpha_n = \alpha_0 \oplus \cdots \oplus \alpha_n$.

$$5 \ \alpha,\beta<\omega^\gamma \implies \alpha\oplus\beta<\omega^\gamma.$$

・ロト ・四ト ・ヨト ・ヨト

Lemma

1
$$\alpha \oplus \beta = \beta \oplus \alpha$$
.

3 If
$$\alpha_0, \ldots, \alpha_n \in AP$$
 with $\alpha_0 \ge \cdots \ge \alpha_n$ then $\alpha_0 + \cdots + \alpha_n = \alpha_0 \oplus \cdots \oplus \alpha_n$.

$$5 \ \alpha,\beta<\omega^\gamma \implies \alpha\oplus\beta<\omega^\gamma.$$

 $6 \quad \alpha + \beta \leq \alpha \oplus \beta.$

One can interprete the natural sum of ordinals α en β as union of the multisets of their exponents.

イロト 不得 とくほと くほとう

For $\alpha \in On$ we define functions $\varphi_{\alpha} : On \to On$ as follows.

- $\varphi_0 = \operatorname{Enum}_{\operatorname{AP}}.$
- $\Im \varphi_{\lambda} = \operatorname{Enum}_{\{\beta \in \operatorname{On:} (\forall \xi < \lambda) \beta = \varphi_{\xi} \beta\}}.$

 $\varphi\alpha\beta:=\varphi_{\alpha}\beta.$

UNIVERSITEIT GENT

э.

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Lemma The function φ_{α} is normal for every $\alpha \in On$.

イロト 不得 とくほ とくほと

Andreas Weiermann Ordinals and Hierarchies

Lemma The function φ_{α} is normal for every $\alpha \in On$.

イロト 不得 とくほ とくほと

Andreas Weiermann Ordinals and Hierarchies

Proof. By induction on α .

・ロト ・ ア・ ・ ヨト ・ ヨト

Proof. By induction on α . Let $Cr(\alpha)$ be the range of φ_{α} . One shows that $Cr(\alpha)$ is club for all α .

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Proof. By induction on α . Let $Cr(\alpha)$ be the range of φ_{α} . One shows that $Cr(\alpha)$ is club for all α . Closedness:

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Proof. By induction on α .

Let $Cr(\alpha)$ be the range of φ_{α} . One shows that $Cr(\alpha)$ is club for all α .

Closedness: Let us consider the case that $\alpha \in Lim$.

Proof. By induction on α .

Let $Cr(\alpha)$ be the range of φ_{α} . One shows that $Cr(\alpha)$ is club for all α .

Closedness: Let us consider the case that $\alpha \in Lim$. Let $A \subseteq Cr(\alpha) = \bigcap_{\xi < \alpha} Cr(\xi)$.

・ロト ・ 同ト ・ ヨト・

Proof. By induction on α .

Let $Cr(\alpha)$ be the range of φ_{α} . One shows that $Cr(\alpha)$ is club for all α .

Closedness: Let us consider the case that $\alpha \in Lim$. Let $A \subseteq Cr(\alpha) = \bigcap_{\xi < \alpha} Cr(\xi)$. Then $A \subseteq Cr(\xi)$ for all $\xi < \alpha$.

・ロト ・ 同ト ・ ヨト・

Proof. By induction on α .

Let $Cr(\alpha)$ be the range of φ_{α} . One shows that $Cr(\alpha)$ is club for all α .

Closedness: Let us consider the case that $\alpha \in Lim$. Let $A \subseteq Cr(\alpha) = \bigcap_{\xi < \alpha} Cr(\xi)$. Then $A \subseteq Cr(\xi)$ for all $\xi < \alpha$. Hence by i.h. sup $A \in Cr(\xi)$ for all $\xi < \alpha$ so that sup $A \in Cr(\alpha)$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Proof. By induction on α .

Let $Cr(\alpha)$ be the range of φ_{α} . One shows that $Cr(\alpha)$ is club for all α .

Closedness: Let us consider the case that $\alpha \in Lim$. Let $A \subseteq Cr(\alpha) = \bigcap_{\xi < \alpha} Cr(\xi)$. Then $A \subseteq Cr(\xi)$ for all $\xi < \alpha$. Hence by i.h. sup $A \in Cr(\xi)$ for all $\xi < \alpha$ so that sup $A \in Cr(\alpha)$. Unboundedness: Fix $\beta \in On$.

・ロト ・ 同ト ・ ヨト・

Proof. By induction on α .

Let $Cr(\alpha)$ be the range of φ_{α} . One shows that $Cr(\alpha)$ is club for all α .

Closedness: Let us consider the case that $\alpha \in Lim$. Let $A \subseteq Cr(\alpha) = \bigcap_{\xi < \alpha} Cr(\xi)$. Then $A \subseteq Cr(\xi)$ for all $\xi < \alpha$. Hence by i.h. sup $A \in Cr(\xi)$ for all $\xi < \alpha$ so that sup $A \in Cr(\alpha)$. Unboundedness: Fix $\beta \in On$. Let $\gamma_0 > \alpha$.

・ロト ・ 同ト ・ ヨト・

Proof. By induction on α .

Let $Cr(\alpha)$ be the range of φ_{α} . One shows that $Cr(\alpha)$ is club for all α .

Closedness: Let us consider the case that $\alpha \in Lim$. Let $A \subseteq Cr(\alpha) = \bigcap_{\xi < \alpha} Cr(\xi)$. Then $A \subseteq Cr(\xi)$ for all $\xi < \alpha$. Hence by i.h. sup $A \in Cr(\xi)$ for all $\xi < \alpha$ so that sup $A \in Cr(\alpha)$. Unboundedness: Fix $\beta \in On$. Let $\gamma_0 > \alpha$. By recursion let $\gamma_{n+1} := \sup\{\varphi_{\xi}\gamma_n : \xi < \alpha\}$. Let $\gamma = \sup \gamma_n$.

・ロン ・雪 と ・ ヨ と

Proof. By induction on α .

Let $Cr(\alpha)$ be the range of φ_{α} . One shows that $Cr(\alpha)$ is club for all α .

Closedness: Let us consider the case that $\alpha \in Lim$. Let $A \subseteq Cr(\alpha) = \bigcap_{\xi < \alpha} Cr(\xi)$. Then $A \subseteq Cr(\xi)$ for all $\xi < \alpha$. Hence by i.h. $\sup A \in Cr(\xi)$ for all $\xi < \alpha$ so that $\sup A \in Cr(\alpha)$. Unboundedness: Fix $\beta \in On$. Let $\gamma_0 > \alpha$. By recursion let $\gamma_{n+1} := \sup\{\varphi_{\xi}\gamma_n : \xi < \alpha\}$. Let $\gamma = \sup \gamma_n$. Then $\beta < \gamma$. Now let $\xi < \alpha$.

・ロン ・雪 と ・ ヨ と

Proof. By induction on α .

Let $Cr(\alpha)$ be the range of φ_{α} . One shows that $Cr(\alpha)$ is club for all α .

Closedness: Let us consider the case that $\alpha \in Lim$. Let $A \subseteq Cr(\alpha) = \bigcap_{\xi < \alpha} Cr(\xi)$. Then $A \subseteq Cr(\xi)$ for all $\xi < \alpha$. Hence by i.h. sup $A \in Cr(\xi)$ for all $\xi < \alpha$ so that sup $A \in Cr(\alpha)$. Unboundedness: Fix $\beta \in On$. Let $\gamma_0 > \alpha$. By recursion let $\gamma_{n+1} := \sup\{\varphi_{\xi}\gamma_n : \xi < \alpha\}$. Let $\gamma = \sup\gamma_n$. Then $\beta < \gamma$. Now let $\xi < \alpha$. Then $\varphi_{\xi}\gamma = \sup\varphi_{\xi}\gamma_n \le \sup\gamma_{n+1} = \gamma$.

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Proof. By induction on α .

Let $Cr(\alpha)$ be the range of φ_{α} . One shows that $Cr(\alpha)$ is club for all α .

Closedness: Let us consider the case that $\alpha \in Lim$. Let $A \subseteq Cr(\alpha) = \bigcap_{\xi < \alpha} Cr(\xi)$. Then $A \subseteq Cr(\xi)$ for all $\xi < \alpha$. Hence by i.h. sup $A \in Cr(\xi)$ for all $\xi < \alpha$ so that sup $A \in Cr(\alpha)$. Unboundedness: Fix $\beta \in On$. Let $\gamma_0 > \alpha$. By recursion let $\gamma_{n+1} := \sup\{\varphi_{\xi}\gamma_n : \xi < \alpha\}$. Let $\gamma = \sup\gamma_n$. Then $\beta < \gamma$. Now let $\xi < \alpha$. Then $\varphi_{\xi}\gamma = \sup\varphi_{\xi}\gamma_n \le \sup\gamma_{n+1} = \gamma$. Hence $\gamma \in Cr(\alpha)$.

・ロト ・ 同 ト ・ ヨ ト・

Lemma

 $\varphi\alpha\beta=\varphi\gamma\delta \text{ iff }$

1
$$\alpha < \gamma$$
 and $\beta = \varphi \gamma \delta$, or

2
$$\alpha = \gamma$$
 and $\beta = \delta$, or

$$\exists \gamma < \alpha \text{ and } \varphi \alpha \beta = \delta.$$

UNIVERSITEIT GENT

ъ

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Lemma

 $\varphi \alpha \beta = \varphi \gamma \delta$ iff

1
$$\alpha < \gamma$$
 and $\beta = \varphi \gamma \delta$, or

2
$$\alpha = \gamma$$
 and $\beta = \delta$, or

$$\exists \gamma < \alpha \text{ and } \varphi \alpha \beta = \delta.$$

Proof. If $\alpha < \gamma$ then $\varphi \alpha(\varphi \gamma \delta) = \varphi \gamma \delta$.

Andreas Weiermann

UNIVERSITEIT

46/84

Lemma

 $\varphi\alpha\beta=\varphi\gamma\delta$ iff

1
$$\alpha < \gamma$$
 and $\beta = \varphi \gamma \delta$, or

2
$$\alpha = \gamma$$
 and $\beta = \delta$, or

3
$$\gamma < \alpha$$
 and $\varphi \alpha \beta = \delta$.

Proof. If $\alpha < \gamma$ then $\varphi \alpha (\varphi \gamma \delta) = \varphi \gamma \delta$. Hence $\varphi \alpha \beta = \varphi \gamma \delta$ iff $\beta = \varphi \gamma \delta$.

UNIVERSITEIT GENT

э

・ロット (四)・ (日)・ (日)・

Lemma

 $\varphi\alpha\beta=\varphi\gamma\delta$ iff

1
$$\alpha < \gamma$$
 and $\beta = \varphi \gamma \delta$, or

2
$$\alpha = \gamma$$
 and $\beta = \delta$, or

3
$$\gamma < \alpha$$
 and $\varphi \alpha \beta = \delta$.

Proof. If $\alpha < \gamma$ then $\varphi \alpha(\varphi \gamma \delta) = \varphi \gamma \delta$. Hence $\varphi \alpha \beta = \varphi \gamma \delta$ iff $\beta = \varphi \gamma \delta$. The case $\gamma < \alpha$ is similar.

イロト 不得 とくほと くほとう

UNIVERSITEIT GENT

Lemma

 $\varphi\alpha\beta=\varphi\gamma\delta$ iff

1
$$\alpha < \gamma$$
 and $\beta = \varphi \gamma \delta$, or

2
$$\alpha = \gamma$$
 and $\beta = \delta$, or

 $\exists \gamma < \alpha \text{ and } \varphi \alpha \beta = \delta.$

Proof. If $\alpha < \gamma$ then $\varphi \alpha (\varphi \gamma \delta) = \varphi \gamma \delta$. Hence $\varphi \alpha \beta = \varphi \gamma \delta$ iff $\beta = \varphi \gamma \delta$. The case $\gamma < \alpha$ is similar. For $\alpha = \gamma$ the assertion is trivial.

GENT

・ロン ・雪 と ・ ヨ と
Lemma

 $\varphi\alpha\beta < \varphi\gamma\delta$ iff

$$1 \ \alpha < \gamma \text{ and } \beta < \varphi \gamma \delta, \text{ or }$$

$$2 \ \alpha = \gamma \text{ and } \beta < \delta, \text{ or }$$

$$\exists \gamma < \alpha \text{ and } \varphi \alpha \beta < \delta.$$

Proof. If $\alpha < \gamma$ then $\varphi \alpha(\varphi \gamma \delta) = \varphi \gamma \delta$.

Andreas Weiermann

UNIVERSITEIT

Lemma

 $\varphi\alpha\beta < \varphi\gamma\delta$ iff

1
$$\alpha < \gamma$$
 and $\beta < \varphi \gamma \delta$, or

2
$$\alpha = \gamma$$
 and $\beta < \delta$, or

$$\exists \gamma < \alpha \text{ and } \varphi \alpha \beta < \delta.$$

Proof. If $\alpha < \gamma$ then $\varphi \alpha (\varphi \gamma \delta) = \varphi \gamma \delta$. Hence $\varphi \alpha \beta < \varphi \gamma \delta$ iff $\beta < \varphi \gamma \delta$.

э

Lemma

 $\varphi\alpha\beta < \varphi\gamma\delta$ iff

1
$$\alpha < \gamma$$
 and $\beta < \varphi \gamma \delta$, or

2
$$\alpha = \gamma$$
 and $\beta < \delta$, or

$$\exists \ \gamma < \alpha \text{ and } \varphi \alpha \beta < \delta.$$

Proof. If $\alpha < \gamma$ then $\varphi \alpha(\varphi \gamma \delta) = \varphi \gamma \delta$. Hence $\varphi \alpha \beta < \varphi \gamma \delta$ iff $\beta < \varphi \gamma \delta$. The case $\gamma < \alpha$ is similar.

UNIVERSITEIT GENT

Lemma

 $\varphi\alpha\beta < \varphi\gamma\delta$ iff

1
$$\alpha < \gamma$$
 and $\beta < \varphi \gamma \delta$, or

2
$$\alpha = \gamma$$
 and $\beta < \delta$, or

$$\exists \ \gamma < \alpha \text{ and } \varphi \alpha \beta < \delta.$$

Proof. If $\alpha < \gamma$ then $\varphi \alpha (\varphi \gamma \delta) = \varphi \gamma \delta$. Hence $\varphi \alpha \beta < \varphi \gamma \delta$ iff $\beta < \varphi \gamma \delta$. The case $\gamma < \alpha$ is similar. For $\alpha = \gamma$ the assertion is trivial.

UNIVERSITEIT GENT

Lemma

For every $\gamma \in AP$ there exist unique α and $\beta < \gamma$ such that $\gamma = \varphi \alpha \beta$.

Proof. Existence: By induction on α one shows $\alpha \leq \varphi \alpha \mathbf{0}$ (exercise).

Lemma

For every $\gamma \in AP$ there exist unique α and $\beta < \gamma$ such that $\gamma = \varphi \alpha \beta$.

Proof. Existence: By induction on α one shows $\alpha \leq \varphi \alpha \mathbf{0}$ (exercise). Therefore $\gamma \leq \varphi \gamma \mathbf{0} < \varphi \gamma \gamma$.

GENT

・ロト ・ 同ト ・ ヨト ・ ヨト

Lemma

For every $\gamma \in AP$ there exist unique α and $\beta < \gamma$ such that $\gamma = \varphi \alpha \beta$.

Proof. Existence: By induction on α one shows $\alpha \leq \varphi \alpha 0$ (exercise). Therefore $\gamma \leq \varphi \gamma 0 < \varphi \gamma \gamma$. Let α be minimal such that $\gamma < \varphi \alpha \gamma$.

・ロト ・ 同ト ・ ヨト ・ ヨト

Lemma

For every $\gamma \in AP$ there exist unique α and $\beta < \gamma$ such that $\gamma = \varphi \alpha \beta$.

Proof. Existence: By induction on α one shows $\alpha \leq \varphi \alpha 0$ (exercise). Therefore $\gamma \leq \varphi \gamma 0 < \varphi \gamma \gamma$. Let α be minimal such that $\gamma < \varphi \alpha \gamma$. If $\alpha > 0$ then $\varphi \xi \gamma = \gamma$ for all $\xi < \alpha$.

・ロト ・ 同ト ・ ヨト ・ ヨト

Lemma

For every $\gamma \in AP$ there exist unique α and $\beta < \gamma$ such that $\gamma = \varphi \alpha \beta$.

Proof. Existence: By induction on α one shows $\alpha \leq \varphi \alpha 0$ (exercise). Therefore $\gamma \leq \varphi \gamma 0 < \varphi \gamma \gamma$. Let α be minimal such that $\gamma < \varphi \alpha \gamma$. If $\alpha > 0$ then $\varphi \xi \gamma = \gamma$ for all $\xi < \alpha$. Therefore in all cases $\gamma \in Cr\alpha$ and so there exists a β such that $\gamma = \varphi \alpha \beta$.

ヘロト ヘワト ヘビト ヘビト

Lemma

For every $\gamma \in AP$ there exist unique α and $\beta < \gamma$ such that $\gamma = \varphi \alpha \beta$.

Proof. Existence: By induction on α one shows $\alpha \leq \varphi \alpha 0$ (exercise). Therefore $\gamma \leq \varphi \gamma 0 < \varphi \gamma \gamma$. Let α be minimal such that $\gamma < \varphi \alpha \gamma$. If $\alpha > 0$ then $\varphi \xi \gamma = \gamma$ for all $\xi < \alpha$. Therefore in all cases $\gamma \in Cr\alpha$ and so there exists a β such that $\gamma = \varphi \alpha \beta$. Since $\gamma < \varphi \alpha \gamma$ we have $\beta < \gamma$.

・ロト ・ 日本 ・ 日本 ・ 日本

Uniqueness.

・ロト ・四ト ・ヨト ・ヨト

Uniqueness. Assume $\gamma = \varphi \alpha \beta = \varphi \xi \delta$ and $\beta, \delta < \gamma$.

Uniqueness. Assume $\gamma = \varphi \alpha \beta = \varphi \xi \delta$ and $\beta, \delta < \gamma$. Then a previous Lemma yields $\alpha = \xi$ and $\beta = \eta$.

Lemma

There exists $\Gamma_0 := \min\{\alpha : \alpha = \varphi \alpha \mathbf{0}\}.$

・ロト ・四ト ・ヨト ・ヨト

Lemma

There exists $\Gamma_0 := \min\{\alpha : \alpha = \varphi \alpha 0\}$. $\{\alpha : \alpha = \varphi \alpha 0\}$ is a club. Proof. Let $\gamma_0 := 0$ and $\gamma_{n+1} := \varphi_{\gamma_n} 0$.

UNIVERSITEIT

Lemma There exists $\Gamma_0 := \min\{\alpha : \alpha = \varphi \alpha 0\}$. $\{\alpha : \alpha = \varphi \alpha 0\}$ is a club. Proof. Let $\gamma_0 := 0$ and $\gamma_{n+1} := \varphi_{\gamma_n} 0$. Let $\gamma := \sup \gamma_n$.

Lemma

There exists $\Gamma_0 := \min\{\alpha : \alpha = \varphi \alpha 0\}$. $\{\alpha : \alpha = \varphi \alpha 0\}$ is a club. Proof. Let $\gamma_0 := 0$ and $\gamma_{n+1} := \varphi_{\gamma_n} 0$. Let $\gamma := \sup \gamma_n$. Then $\gamma = \varphi \gamma 0.$ (exercise).

UNIVERSITEIT GENT

Fundamental sequences and the Hardy hierarchy

From now on we restrict ourselves to ordinals below $\varphi 10 = \varepsilon_0$. Let $\alpha[n]$ is the *n*-th element of the fundamental sequence for $\alpha \in \text{Lim}$:

$$\alpha[n] = \begin{cases} \mathbf{0} & \text{if } \alpha \in \{\mathbf{0}, \mathbf{1}\} \\ \alpha_0 + \dots + \alpha_{m-1} + \alpha_m[n] & \text{if } \alpha =_{\mathrm{NF}} \alpha_0 + \dots + \alpha_m \\ \omega^{\alpha+1}[n] = \omega^{\alpha}(n+1) \\ \omega^{\lambda}[n] = \omega^{\lambda[n]} \text{ if } \lambda \in \mathrm{Lim.} \end{cases}$$

GENT

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

The Hardy hierarchy is defined as follows:

$$egin{aligned} & H_0(n) = n \ & H_{lpha+1}(n) = H_{lpha}(n+1) \ & H_{\lambda}(n) = H_{\lambda[n]}(n+1) \end{aligned}$$
 where $\lambda \in \operatorname{Lim}$

イロト イポト イヨト イヨト

UNIVERSITEIT

≣ •ી ૧.૯ 52/84

Let $\alpha = \omega^{\alpha_1} + \cdots + \omega^{\alpha_n}$ be in Cantor normal form. Then

$$N(\alpha) = n + N(\alpha_1) + \cdots + N(\alpha_n)$$

We say NF(α , β) if one the following conditions hold:

1 $\alpha = 0;$ 2 $\beta = 0;$ 3 $\alpha = \omega^{\alpha_1} + \dots + \omega^{\alpha_n}$ and $\beta = \omega^{\beta_1} + \dots + \omega^{\beta_n}$ and $\alpha_1 \ge \beta_1.$

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

The Bachmann property

Lemma

1
$$\alpha \in \text{Lim} \implies \alpha[n] < \alpha[n+1] \text{ and } \alpha[n] \rightarrow \alpha \text{ if } n \rightarrow \omega$$

2 $\alpha > 0 \implies N(\alpha[0]) < N(\alpha)$

Proof by induction on α .

UNIVERSITEIT GENT

・ロト ・ 日本 ・ 日本 ・ 日本

Lemma $\alpha[\mathbf{n}] < \beta < \alpha \implies \alpha[\mathbf{n}] \le \beta[\mathbf{0}].$

Lemma

 $\alpha[\mathbf{n}] < \beta < \alpha \implies \alpha[\mathbf{n}] \le \beta[\mathbf{0}].$

Proof. Assume that $\beta =_{\text{NF}} \beta_0 + \cdots + \beta_k$ with $k \ge 0$. There are the following three cases.

Lemma

 $\alpha[\mathbf{n}] < \beta < \alpha \implies \alpha[\mathbf{n}] \le \beta[\mathbf{0}].$

Proof. Assume that $\beta =_{\text{NF}} \beta_0 + \cdots + \beta_k$ with $k \ge 0$. There are the following three cases.

Case 1. $\alpha =_{NF} \alpha_0 + \cdots + \alpha_m$ with m > 0:

$$\alpha[\mathbf{n}] = \alpha_0 + \dots + \alpha_m[\mathbf{n}] < \beta_0 + \dots + \beta_k < \alpha_0 + \dots + \alpha_m$$

GENT

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Lemma

 $\alpha[\mathbf{n}] < \beta < \alpha \implies \alpha[\mathbf{n}] \le \beta[\mathbf{0}].$

Proof. Assume that $\beta =_{\text{NF}} \beta_0 + \cdots + \beta_k$ with $k \ge 0$. There are the following three cases.

Case 1. $\alpha =_{NF} \alpha_0 + \cdots + \alpha_m$ with m > 0:

$$\alpha[\mathbf{n}] = \alpha_0 + \cdots + \alpha_m[\mathbf{n}] < \beta_0 + \cdots + \beta_k < \alpha_0 + \cdots + \alpha_m$$

This yields $k \ge m$ en $\alpha_i = \beta_i$ for all i < m so that

 $\alpha_m[n] < \beta_m + \cdots + \beta_k < \alpha_m \implies \alpha_m[n] \le \beta_m < \alpha_m.$

GENT

・ロット (雪) () () () ()

Lemma

 $\alpha[\mathbf{n}] < \beta < \alpha \implies \alpha[\mathbf{n}] \le \beta[\mathbf{0}].$

Proof. Assume that $\beta =_{\text{NF}} \beta_0 + \cdots + \beta_k$ with $k \ge 0$. There are the following three cases.

Case 1. $\alpha =_{NF} \alpha_0 + \cdots + \alpha_m$ with m > 0:

$$\alpha[\mathbf{n}] = \alpha_0 + \cdots + \alpha_m[\mathbf{n}] < \beta_0 + \cdots + \beta_k < \alpha_0 + \cdots + \alpha_m$$

This yields $k \ge m$ en $\alpha_i = \beta_i$ for all i < m so that

$$\alpha_m[n] < \beta_m + \cdots + \beta_k < \alpha_m \implies \alpha_m[n] \le \beta_m < \alpha_m.$$

If k = m then $\alpha_m[n] < \beta_m < \alpha_m$.

Lemma

 $\alpha[\mathbf{n}] < \beta < \alpha \implies \alpha[\mathbf{n}] \le \beta[\mathbf{0}].$

Proof. Assume that $\beta =_{\text{NF}} \beta_0 + \cdots + \beta_k$ with $k \ge 0$. There are the following three cases.

Case 1. $\alpha =_{NF} \alpha_0 + \cdots + \alpha_m$ with m > 0:

$$\alpha[\mathbf{n}] = \alpha_0 + \cdots + \alpha_m[\mathbf{n}] < \beta_0 + \cdots + \beta_k < \alpha_0 + \cdots + \alpha_m$$

This yields $k \ge m$ en $\alpha_i = \beta_i$ for all i < m so that

$$\alpha_m[n] < \beta_m + \cdots + \beta_k < \alpha_m \implies \alpha_m[n] \le \beta_m < \alpha_m.$$

If k = m then $\alpha_m[n] < \beta_m < \alpha_m$. The induction hypothesis yields $\alpha_m[n] \le \beta_m[0] \le \alpha_m$. If k > m then $\beta_m + \cdots + \beta_k[0] \ge \beta_m$.

Case 2. Suppose now $\alpha = \omega^{\gamma+1}$.

Case 2. Suppose now $\alpha = \omega^{\gamma+1}$. Then

$$\alpha[\mathbf{n}] = \omega^{\gamma}(\mathbf{n} + \mathbf{1}) < \beta < \omega^{\gamma + 1}$$

Case 2. Suppose now $\alpha = \omega^{\gamma+1}$. Then

$$\alpha[\mathbf{n}] = \omega^{\gamma}(\mathbf{n} + \mathbf{1}) < \beta < \omega^{\gamma + 1}$$

This yields $\beta_0 = \cdots = \beta_n = \omega^{\gamma}$ and $\beta_{n+1} \neq 0$ for $k \ge n+1$ and thus

$$\omega^{\gamma}(n+1) \leq \beta_0 + \cdots + \beta_n + \cdots + \beta_k[0]$$

イロト 不得 とくほ とくほう

UNIVERSITEIT GENT

Case 3. Suppose $\alpha = \omega^{\lambda}$. Then

$$\alpha[\mathbf{n}] = \omega^{\lambda}[\mathbf{n}] = \omega^{\lambda[\mathbf{n}]} < \beta < \omega^{\lambda}$$

Case 3. Suppose $\alpha = \omega^{\lambda}$. Then

$$\alpha[\mathbf{n}] = \omega^{\lambda}[\mathbf{n}] = \omega^{\lambda[\mathbf{n}]} < \beta < \omega^{\lambda}$$

We have $\beta_0 = \omega^{\gamma} \implies \lambda[n] \leq \gamma$. If k > 0 then $\beta[0] \geq \beta_0 \geq \omega^{\lambda[n]}$.

Case 3. Suppose $\alpha = \omega^{\lambda}$. Then

$$\alpha[\mathbf{n}] = \omega^{\lambda}[\mathbf{n}] = \omega^{\lambda[\mathbf{n}]} < \beta < \omega^{\lambda}$$

We have $\beta_0 = \omega^{\gamma} \implies \lambda[n] \le \gamma$. If k > 0 then $\beta[0] \ge \beta_0 \ge \omega^{\lambda[n]}$. If k = 0 then $\lambda[n] < \gamma < \lambda$.

UNIVERSITEIT GENT

Case 3. Suppose $\alpha = \omega^{\lambda}$. Then

$$\alpha[\mathbf{n}] = \omega^{\lambda}[\mathbf{n}] = \omega^{\lambda[\mathbf{n}]} < \beta < \omega^{\lambda}$$

We have $\beta_0 = \omega^{\gamma} \implies \lambda[n] \leq \gamma$. If k > 0 then $\beta[0] \geq \beta_0 \geq \omega^{\lambda[n]}$. If k = 0 then $\lambda[n] < \gamma < \lambda$. The induction hypothesis yields $\lambda[n] \leq \gamma[0]$.

GENT

・ロン ・雪 と ・ ヨ と

Case 3. Suppose $\alpha = \omega^{\lambda}$. Then

$$\alpha[\mathbf{n}] = \omega^{\lambda}[\mathbf{n}] = \omega^{\lambda[\mathbf{n}]} < \beta < \omega^{\lambda}$$

We have $\beta_0 = \omega^{\gamma} \implies \lambda[n] \leq \gamma$. If k > 0 then $\beta[0] \geq \beta_0 \geq \omega^{\lambda[n]}$. If k = 0 then $\lambda[n] < \gamma < \lambda$. The induction hypothesis yields $\lambda[n] \leq \gamma[0]$. Thence

$$\omega^{\lambda[n]} \le \omega^{\gamma[0]} = \beta[0].$$

・ロン ・雪 と ・ ヨ と

GENT

Lemma $\alpha[n] < \beta < \alpha \implies N(\alpha[n]) < N(\beta).$ Proof. This follows from the previous two lemmas.

Lemma

$$\alpha < \beta \implies \alpha \leq \beta[N(\alpha)].$$

Proof. We obtain

 $\beta \in \text{Lim} \implies N(\beta[n]) < N(\beta[n+1]) \implies N(\alpha) \le N(\beta[N(\alpha)])$

Suppose $\beta[N(\alpha)] < \alpha < \beta$. This yields a contradiction.

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・
Lemma

$$\mathbf{1} \ H_{\alpha}(n) < H_{\alpha}(n+1)$$

$$2 \beta[m] < \alpha < \beta \implies H_{\beta[m]}(n+1) \le H_{\alpha}(n)$$

$$\exists \ \beta < \alpha \land N(\beta) \le n \implies H_{\beta}(n) < H_{\alpha}(n)$$

・ロト ・四ト ・ヨト ・ヨト

Lemma

$$\mathbf{1} \ H_{\alpha}(n) < H_{\alpha}(n+1)$$

$$2 \beta[m] < \alpha < \beta \implies H_{\beta[m]}(n+1) \le H_{\alpha}(n)$$

$$\exists \beta < \alpha \land N(\beta) \le n \implies H_{\beta}(n) < H_{\alpha}(n)$$

Proof. The first two assertions are proved by simultaneous induction on α .

UNIVERSITEIT

Lemma

$$\mathbf{1} \ H_{\alpha}(n) < H_{\alpha}(n+1)$$

$$2 \ \beta[m] < \alpha < \beta \implies H_{\beta[m]}(n+1) \le H_{\alpha}(n)$$

$$\exists \beta < \alpha \land N(\beta) \le n \implies H_{\beta}(n) < H_{\alpha}(n)$$

Proof. The first two assertions are proved by simultaneous induction on α . The first assertion is clear for $\alpha = 0$ and follows from the i.h. when $\alpha = \beta + 1$. If $\alpha \in \text{Lim}$ then the second assertion yields

$$\begin{aligned} H_{\alpha}(n) &= H_{\alpha[n]}(n+1) < H_{\alpha[n]}(n+2) < H_{\alpha[n+1]}(n+2) = H_{\alpha}(n+1). \\ \text{For a proof of the second assertion note } \beta[m] \leq \alpha[n] < \beta \\ H_{\beta[m]}(n+1) \leq H_{\alpha}n < H_{\alpha}[n](n+1) = H_{\alpha}(n). \end{aligned}$$

The third assertion follows by induction on λ . $\beta < \alpha \land N(\beta) \le n$ yields $\beta < \alpha[n]$ and hence $H_{\beta}(n) \le H_{\alpha}n < H_{\alpha}(n)$. **Crucial observation:** Let $k \ge n$ be minimal such that $\alpha[n] \dots [k-1] = 0$. Then

$$H_{\alpha}(n) = H_{\alpha[n]}(n+1) = H_{\alpha[n][n+1]}(n+2) = H_{\alpha[n]\dots[k-1]}(k) = k$$

GENT

ヘロト ヘワト ヘビト ヘビト

Lemma

1 NF
$$(\alpha, \beta) \implies H_{\alpha+\beta}(n) = H_{\alpha}(H_{\beta}(n)).$$

・ロト ・四ト ・ヨト ・ヨト

Lemma

1 NF
$$(\alpha, \beta) \implies H_{\alpha+\beta}(n) = H_{\alpha}(H_{\beta}(n)).$$

2 $H_{\omega^{\alpha+1}}(n) = H_{\omega^{\alpha}}^{n+1}(n+1)$ en $H_{\omega^{\lambda}}(n) = H_{\omega^{\lambda[n]}}(n+1).$

・ロト ・四ト ・ヨト ・ヨト

Lemma

- 1 NF $(\alpha, \beta) \implies H_{\alpha+\beta}(n) = H_{\alpha}(H_{\beta}(n)).$
- 2 $H_{\omega^{\alpha+1}}(n) = H_{\omega^{\alpha}}^{n+1}(n+1)$ en $H_{\omega^{\lambda}}(n) = H_{\omega^{\lambda[n]}}(n+1)$.
- For all primitive recursive functions *f* exists a *k* such that for all *x* we have *f*(*x*) < *H*_{w^k}(max *x*).

GENT

・ロト ・ 同ト ・ ヨト・

Lemma

- 1 NF $(\alpha, \beta) \implies H_{\alpha+\beta}(n) = H_{\alpha}(H_{\beta}(n)).$
- 2 $H_{\omega^{\alpha+1}}(n) = H_{\omega^{\alpha}}^{n+1}(n+1)$ en $H_{\omega^{\lambda}}(n) = H_{\omega^{\lambda[n]}}(n+1)$.
- 3 For all primitive recursive functions *f* exists a *k* such that for all \vec{x} we have $f(\vec{x}) < H_{\omega^k}(\max \vec{x})$.

Proof.

1 By induction on β .

・ロン ・雪 と ・ ヨ と

Lemma

- 1 NF $(\alpha, \beta) \implies H_{\alpha+\beta}(n) = H_{\alpha}(H_{\beta}(n)).$
- 2 $H_{\omega^{\alpha+1}}(n) = H_{\omega^{\alpha}}^{n+1}(n+1)$ en $H_{\omega^{\lambda}}(n) = H_{\omega^{\lambda[n]}}(n+1)$.
- 3 For all primitive recursive functions *f* exists a *k* such that for all \vec{x} we have $f(\vec{x}) < H_{\omega^k}(\max \vec{x})$.

Proof.

1 By induction on β .

2
$$H_{\omega^{\alpha+1}}(n) = H_{\omega^{\alpha+1}[n]}(n+1) = H_{\omega^{\alpha}(n+1)}(n+1) = H_{\omega^{\alpha}}^{n+1}(n+1).$$

・ロン ・雪 と ・ ヨ と

Lemma

- 1 NF $(\alpha, \beta) \implies H_{\alpha+\beta}(n) = H_{\alpha}(H_{\beta}(n)).$
- 2 $H_{\omega^{\alpha+1}}(n) = H_{\omega^{\alpha}}^{n+1}(n+1)$ en $H_{\omega^{\lambda}}(n) = H_{\omega^{\lambda[n]}}(n+1)$.
- 3 For all primitive recursive functions *f* exists a *k* such that for all \vec{x} we have $f(\vec{x}) < H_{\omega^k}(\max \vec{x})$.

Proof.

1 By induction on β .

2
$$H_{\omega^{\alpha+1}}(n) = H_{\omega^{\alpha+1}[n]}(n+1) = H_{\omega^{\alpha}(n+1)}(n+1) = H_{\omega^{\alpha}}^{n+1}(n+1).$$

3 This assertion follows from (2).

・ロト ・ 同ト ・ ヨト・

Lemma

$1 \ \beta < \alpha \land N(\beta) \le n \implies H_{\beta}(n) < H_{\alpha}(n).$

イロト 不得 とくほと くほとう

Lemma

1
$$\beta < \alpha \land N(\beta) \le n \implies H_{\beta}(n) < H_{\alpha}(n).$$

2 $\lambda > 0 \implies 1 + N(\lambda[0]) = N(\lambda).$

・ロト ・四ト ・ヨト ・ヨト

Lemma

1
$$\beta < \alpha \land N(\beta) \le n \implies H_{\beta}(n) < H_{\alpha}(n).$$

2 $\lambda > 0 \implies 1 + N(\lambda[0]) = N(\lambda).$

・ロト ・四ト ・ヨト ・ヨト

Proof of the first assertion. Suppose $\beta < \alpha$. The assertion is proved by induction on α . If $\alpha = 0$ then the assertion follows trivially. So suppose $\alpha > 0$.

ヘロト ヘワト ヘビト ヘビト

Proof of the first assertion. Suppose $\beta < \alpha$. The assertion is proved by induction on α . If $\alpha = 0$ then the assertion follows trivially. So suppose $\alpha > 0$. We find

$$H_{\beta}(n) < H_{\beta}(n+1) \stackrel{\text{IH}}{\leq} H_{\alpha[n]}(n+1) = H_{\alpha}(n)$$

GEN

ヘロト ヘワト ヘビト ヘビト

Proof of assertion two by induction on λ .

ヘロト ヘロト ヘヨト ヘヨト

Proof of assertion two by induction on λ . If $\lambda = 0$ then the theorem is trivial. So suppose that $\lambda = \alpha + 1$. Then $\lambda[0] = \alpha$

$$1 + N(\lambda[0]) = 1 + N(\alpha) = N(\alpha + 1) = N(\lambda)$$

・ロト ・ 同ト ・ ヨト・

Proof of assertion two by induction on λ . If $\lambda = 0$ then the theorem is trivial. So suppose that $\lambda = \alpha + 1$. Then $\lambda[0] = \alpha$

$$1 + N(\lambda[0]) = 1 + N(\alpha) = N(\alpha + 1) = N(\lambda)$$

If $\lambda = \omega^{\alpha+1}$ then $\lambda[0] = \omega^{\alpha}$ and

$$1 + N(\lambda[0]) = 2 + N(\alpha) = 1 + N(\lambda)$$

GENT

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Proof of assertion two by induction on λ . If $\lambda = 0$ then the theorem is trivial. So suppose that $\lambda = \alpha + 1$. Then $\lambda[0] = \alpha$

$$1 + N(\lambda[0]) = 1 + N(\alpha) = N(\alpha + 1) = N(\lambda)$$

If
$$\lambda = \omega^{\alpha+1}$$
 then $\lambda[0] = \omega^{\alpha}$ and
 $1 + N(\lambda[0]) = 2 + N(\alpha) = 1 + N(\lambda)$

If $\lambda=\omega^{\alpha}$ where $\alpha\in {\rm Lim}$ then we have

$$1 + N(\lambda[0]) = 1 + N(\omega^{\alpha[0]}) = 2 + N(\alpha[0]) \stackrel{\text{IH}}{=} 1 + N(\alpha) = 1 + N(\alpha)$$

Lemma

$\quad \mathbf{H}_{\alpha}(n) \leq H_{\omega^{\alpha}}(n).$

ヘロン 人間 とくほ とくほと

Lemma

1
$$H_{\alpha}(n) \leq H_{\omega^{\alpha}}(n).$$

2 $H_{\alpha}(n) \leq H_{\alpha \oplus \beta}(n).$

・ロト ・四ト ・ヨト ・ヨト

Lemma

1 $H_{\alpha}(n) \leq H_{\omega^{\alpha}}(n).$ 2 $H_{\alpha}(n) \leq H_{\alpha \oplus \beta}(n).$ 3 $N(\alpha) \leq H_{\alpha}(n).$

Lemma

1 $H_{\alpha}(n) \leq H_{\omega^{\alpha}}(n).$ 2 $H_{\alpha}(n) \leq H_{\alpha \oplus \beta}(n).$ 3 $N(\alpha) \leq H_{\alpha}(n).$

Proof of the first assertion. If $\alpha = 0$ then $H_0(n) = n < H_1(n)$.

イロト 不得 とくほ とくほう

Proof of the first assertion. If $\alpha = 0$ then $H_0(n) = n < H_1(n)$. For $\alpha = \beta + 1$ we find

$$H_{\omega^{\alpha}}(n)=H_{\omega^{\beta}(n+1)}(n)=H_{\omega^{\beta}}^{n+1}(n+1)\stackrel{\mathsf{IH}}{\geq}H_{\beta}(n+1)=H_{\alpha}(n).$$

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Proof of the first assertion. If $\alpha = 0$ then $H_0(n) = n < H_1(n)$. For $\alpha = \beta + 1$ we find

$$H_{\omega^{\alpha}}(n) = H_{\omega^{\beta}(n+1)}(n) = H_{\omega^{\beta}}^{n+1}(n+1) \stackrel{\mathsf{IH}}{\geq} H_{\beta}(n+1) = H_{\alpha}(n).$$

.. .

If α is a limit, then:

$$H_{\alpha}(n) = H_{\alpha[n]}(n+1) \leq H_{\omega^{\alpha[n]}}(n+1) = H_{\omega^{\alpha}}(n)$$

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Proof of the first assertion. If $\alpha = 0$ then $H_0(n) = n < H_1(n)$. For $\alpha = \beta + 1$ we find

$$H_{\omega^{\alpha}}(n)=H_{\omega^{\beta}(n+1)}(n)=H_{\omega^{\beta}}^{n+1}(n+1)\stackrel{\mathrm{IH}}{\geq}H_{\beta}(n+1)=H_{\alpha}(n).$$

...

If α is a limit, then:

$$H_{\alpha}(n) = H_{\alpha[n]}(n+1) \leq H_{\omega^{\alpha[n]}}(n+1) = H_{\omega^{\alpha}}(n)$$

Proof of the second assertion. Suppose $\alpha = \omega^{\alpha_1} + \cdots + \omega^{\alpha_m}$ and $\beta = \omega^{\alpha_{m+1}} + \cdots + \omega^{\alpha_{m+n}}$.

ヘロア 人間 アメヨア 人口 ア

Proof of the first assertion. If $\alpha = 0$ then $H_0(n) = n < H_1(n)$. For $\alpha = \beta + 1$ we find

$$H_{\omega^{\alpha}}(n)=H_{\omega^{\beta}(n+1)}(n)=H_{\omega^{\beta}}^{n+1}(n+1)\stackrel{\mathrm{IH}}{\geq} H_{\beta}(n+1)=H_{\alpha}(n).$$

If α is a limit, then:

$$H_{\alpha}(n) = H_{\alpha[n]}(n+1) \leq H_{\omega^{\alpha[n]}}(n+1) = H_{\omega^{\alpha}}(n)$$

Proof of the second assertion. Suppose $\alpha = \omega^{\alpha_1} + \cdots + \omega^{\alpha_m}$ and $\beta = \omega^{\alpha_{m+1}} + \cdots + \omega^{\alpha_{m+n}}$. Then

$$H_{\alpha}(n) = H_{\omega^{\alpha_1}}(\dots H_{\omega^{\alpha_m}}(n)\dots)$$
$$H_{\alpha\oplus\beta} = H_{\omega^{\alpha_{\pi(1)}}}(\dots H_{\omega^{\alpha_{\pi(n+m)}}}(n)\dots)$$

where π is an permutation so that $\alpha_{\pi(1)} \ge \cdots \ge \alpha_{\pi(n+m)}$. It is easy term to see that the assertion follows.

Proof of the third assertion.

イロト 不得 とくほと くほとう

Proof of the third assertion. If $\alpha = 0$ then the assertion is clear. For successors $\alpha + 1$ we find

$$N(\alpha + 1) = 1 + N((\alpha + 1)[0]) \le H_{(\alpha + 1)[0]}(0) \le H_{(\alpha + 1)[0]}(1) \le H_{\alpha + 1}(0)$$

イロト 不得 とくほ とくほと

Proof of the third assertion. If $\alpha = 0$ then the assertion is clear. For successors $\alpha + 1$ we find

$$N(\alpha + 1) = 1 + N((\alpha + 1)[0]) \le H_{(\alpha+1)[0]}(0) \le H_{(\alpha+1)[0]}(1) \le H_{\alpha+1}(0)$$

If α is a limit:

 $N(\alpha) = 1 + N(\alpha[0]) \le 1 + H_{\alpha[0]}(0) \le H_{\alpha[0]}(1) = H_{\alpha}(0) \le H_{\alpha}(n)$

イロト 不得 とくほ とくほとう

IVERSITEIT GENT

Applications

Now we study majorization properties for the Hardy hierarchy.

$$\begin{aligned} F^{\alpha}(x) &= \max(\{F(x)+1\} \cup \{C(F^{\gamma},F^{\delta})(x):\\ \gamma,\delta < \alpha \wedge N(\gamma),N(\delta) \leq F(x)\}) \end{aligned}$$

ヘロト ヘワト ヘビト ヘビト

Applications

Now we study majorization properties for the Hardy hierarchy.

$$\begin{aligned} F^{\alpha}(x) &= \max(\{F(x)+1\} \cup \{C(F^{\gamma},F^{\delta})(x):\\ \gamma,\delta < \alpha \wedge N(\gamma),N(\delta) \leq F(x)\}) \end{aligned}$$

ヘロト ヘワト ヘビト ヘビト

Lemma

Suppose that *F* is weakly increasing and fulfilling $F(x) \ge x$.

1
$$\alpha < \beta \implies F^{\alpha}(\mathbf{x}) \leq F^{\beta}(\mathbf{x}).$$

Lemma

Suppose that *F* is weakly increasing and fulfilling $F(x) \ge x$.

1
$$\alpha < \beta \implies F^{\alpha}(\mathbf{x}) \leq F^{\beta}(\mathbf{x}).$$

2
$$4k \le H_{\omega 2}(k)$$
 and $8k \le H_{\omega 3}(k)$ or more generally $2^i k \le H_{\omega i}(k)$.

UNIVERSITEIT GENT

Lemma

Suppose that *F* is weakly increasing and fulfilling $F(x) \ge x$.

1
$$\alpha < \beta \implies F^{\alpha}(x) \le F^{\beta}(x).$$

2 $4k \le H_{\omega 2}(k)$ and $8k \le H_{\omega 3}(k)$ or more generally $2^{i}k \le H_{\omega i}(k).$

$$\exists F \leq H_{\alpha} \implies F^{\beta}(x) \leq H_{\omega^{\alpha \oplus \beta+1}+8}(x).$$

Lemma

Suppose that *F* is weakly increasing and fulfilling $F(x) \ge x$.

1
$$\alpha < \beta \implies F^{\alpha}(x) \leq F^{\beta}(x).$$

2 $4k \leq H_{\omega 2}(k)$ and $8k \leq H_{\omega 3}(k)$ or more generally $2^{i}k \leq H_{\omega i}(k).$

$$\exists F \leq H_{\alpha} \implies F^{\beta}(x) \leq H_{\omega^{\alpha \oplus \beta+1}+8}(x).$$

イロト イポト イヨト イヨト

Proof of the first assertion. By induction on $\alpha.$ For $\alpha=$ 0 we obtain

$$F^{lpha}(x) = F(x) + 1 \leq F^{eta}(x)$$

イロト 不得 とくほ とくほと

Proof of the first assertion. By induction on $\alpha.$ For $\alpha=$ 0 we obtain

$$F^{\alpha}(x) = F(x) + 1 \leq F^{\beta}(x)$$

For $\alpha > 0$ we find

$$F^{\alpha}(x) = F(x) + 1$$

or

$$\mathcal{F}^{lpha}(x) = \mathcal{F}^{\gamma}(\mathcal{F}^{\delta}(x)) + \mathcal{F}^{\gamma}(x) + \mathcal{F}^{\delta}(x)$$

for $\gamma, \delta < \alpha$ with $N(\gamma), N(\delta) \leq F(x)$.

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Proof of the second assertion. We compute:

$$\begin{aligned} H_{\omega}(k) &= H_{\omega[k]}(k+1) = H_{k+1}(k+1) = H_k(k+2) = H_{k-1}(k+3) = \\ H_{\omega 2}(k) &= H_{(\omega 2)[k]}(k+1) = H_{\omega+k+1}(k+1) = H_{\omega}(2k+2) = H_{\omega[2k+2]}(k+3) \\ &= H_{2k+3}(2k+3) = 4k+6 \\ H_{\omega 3}(k) &= H_{\omega 2+k+1}(k+1) = H_{\omega 2}(2k+2) \geq 4(2k+2) \geq 8k \end{aligned}$$

UNIVERSITEIT

ъ

イロト 不得 とくほ とくほと

Proof of the third assertion. By induction on β we prove for all $x \ge 8$,

$$F^{\beta}(x) \leq H_{\omega^{\alpha \oplus \beta+1}}(x)$$

and this yields the assertion.

・ロト ・ 同ト ・ ヨト・

Proof of the third assertion. By induction on β we prove for all $x \ge 8$,

$$F^{\beta}(x) \leq H_{\omega^{\alpha \oplus \beta+1}}(x)$$

and this yields the assertion. For $\beta = 0$ we obtain:

$$egin{aligned} \mathcal{F}^0(x) &= \mathcal{F}(x) + 1 \leq \mathcal{H}_lpha(x) + 1 \leq \mathcal{H}_{lpha + 1}(x) \leq \mathcal{H}_{lpha \oplus eta + 1}(x) \ &\leq \mathcal{H}_{\omega^lpha \oplus eta + 1}(x) \end{aligned}$$

イロト 不得 とくほと くほとう

Proof of the third assertion. By induction on β we prove for all $x \ge 8$,

$$F^{\beta}(x) \leq H_{\omega^{\alpha \oplus \beta+1}}(x)$$

and this yields the assertion. For $\beta = 0$ we obtain:

$$egin{aligned} \mathcal{F}^0(x) &= \mathcal{F}(x) + 1 \leq \mathcal{H}_lpha(x) + 1 \leq \mathcal{H}_{lpha + 1}(x) \leq \mathcal{H}_{lpha \oplus eta + 1}(x) \ &\leq \mathcal{H}_{\omega^lpha \oplus eta + 1}(x) \end{aligned}$$

For $\beta > 0$ we have

$$\mathcal{F}^eta(x) = \mathcal{F}^\gamma(\mathcal{F}^\delta(x)) + \mathcal{F}^\gamma(x) + \mathcal{F}^\delta(x)$$

for $\gamma, \delta < \beta$. Let $\xi = \max(\gamma, \delta)$. Then we obtain

$$F^{\beta}(x) \leq F^{\xi}(F^{\xi}(x)) \cdot 3 \leq F^{\xi}(F^{\xi}(x)) \cdot 4$$

The induction hypothesis and (2) yield

$$egin{aligned} \mathcal{F}^{\xi}(\mathcal{F}^{\xi}(x)) \cdot &4 \leq H_{\omega^2}(H_{\omega^{lpha \oplus \xi + 1}}(H_{\omega^{lpha \oplus \xi + 1}}(x))) \ &\leq H_{\omega^{lpha \oplus \xi + 1}}(H_{\omega^{lpha \oplus \xi + 1}}(H_{\omega^{lpha \oplus \xi + 1}}(x)))) \end{aligned}$$

(日) (日) (日) (日) (日)

The induction hypothesis and (2) yield

$$egin{aligned} \mathcal{F}^{\xi}(\mathcal{F}^{\xi}(x)) \cdot &4 \leq H_{\omega^2}(H_{\omega^{lpha \oplus \xi+1}}(H_{\omega^{lpha \oplus \xi+1}}(x))) \ &\leq H_{\omega^{lpha \oplus \xi+1}}(H_{\omega^{lpha \oplus \xi+1}}(H_{\omega^{lpha \oplus \xi+1}}(x)))) \end{aligned}$$

Because of $H_{\alpha}(H_{\beta}(x)) = H_{\alpha+\beta}(x)$ for $NF(\alpha, \beta)$ we see $F^{\xi}(F^{\xi}(x)) \cdot 4 \leq H_{\omega^{\alpha \oplus \xi} \cdot 4}$

・ロット (四)・ (日)・ (日)・

The induction hypothesis and (2) yield

$$egin{aligned} \mathcal{F}^{\xi}(\mathcal{F}^{\xi}(x)) \cdot &4 \leq H_{\omega^2}(H_{\omega^{lpha \oplus \xi + 1}}(H_{\omega^{lpha \oplus \xi + 1}}(x))) \ &\leq H_{\omega^{lpha \oplus \xi + 1}}(H_{\omega^{lpha \oplus \xi + 1}}(H_{\omega^{lpha \oplus \xi + 1}}(x)))) \end{aligned}$$

Because of $H_{\alpha}(H_{\beta}(x)) = H_{\alpha+\beta}(x)$ for $NF(\alpha,\beta)$ we see

$$F^{\xi}(F^{\xi}(x)) \cdot 4 \leq H_{\omega^{lpha \oplus \xi} \cdot 4}$$

Moreover we find

$$egin{aligned} & \mathsf{N}(\omega^{lpha\oplus\xi+1}) = \mathsf{4}(\mathsf{1} + \mathsf{N}(lpha) \oplus \mathsf{N}(\xi) + \mathsf{1}) \leq \mathsf{8}(\mathsf{2}H_lpha(x)) = \mathsf{1}\mathsf{6}H_lpha(x) \ & \leq H_{\omega\mathsf{4}}(H_lpha(x)) \leq H_{\omega^{lpha\opluseta}\mathsf{5}}(x) \end{aligned}$$

Thus $F^{\beta}(x) \leq H_{\omega^{\alpha \oplus \xi+1}4}(H_{\omega^{\alpha \oplus \beta}5}(x)).$

The induction hypothesis and (2) yield

$$egin{aligned} \mathcal{F}^{\xi}(\mathcal{F}^{\xi}(x)) \cdot &4 \leq H_{\omega^2}(H_{\omega^{lpha \oplus \xi + 1}}(H_{\omega^{lpha \oplus \xi + 1}}(x))) \ &\leq H_{\omega^{lpha \oplus \xi + 1}}(H_{\omega^{lpha \oplus \xi + 1}}(H_{\omega^{lpha \oplus \xi + 1}}(x)))) \end{aligned}$$

Because of $H_{\alpha}(H_{\beta}(x)) = H_{\alpha+\beta}(x)$ for $NF(\alpha,\beta)$ we see

$$F^{\xi}(F^{\xi}(x)) \cdot 4 \leq H_{\omega^{lpha \oplus \xi} \cdot 4}$$

Moreover we find

$$egin{aligned} & \mathsf{N}(\omega^{lpha\oplus\xi+1}) = \mathsf{4}(\mathsf{1} + \mathsf{N}(lpha) \oplus \mathsf{N}(\xi) + \mathsf{1}) \leq \mathsf{8}(\mathsf{2}H_lpha(x)) = \mathsf{1}\mathsf{6}H_lpha(x) \ & \leq H_{\omega\mathsf{4}}(H_lpha(x)) \leq H_{\omega^{lpha\opluseta}\mathsf{5}}(x) \end{aligned}$$

Thus $F^{\beta}(x) \leq H_{\omega^{\alpha \oplus \xi+1}4}(H_{\omega^{\alpha \oplus \beta}5}(x)).$

Now we can show that $F^{\beta}(x) \leq H_{\omega^{\alpha \oplus \beta}4}(H_{\omega^{\alpha \oplus \beta}5}(x))$. For $\xi < \beta$ we have $\xi + 1 \leq \beta$ and there are two options:

 $\blacksquare \text{ If } \xi + 1 = \beta \text{ then } H_{\omega^{\alpha \oplus \beta + 1} 4}(H_{\omega^{\alpha \oplus \beta 5}}(x)) = H_{\omega^{\alpha \oplus \beta 4}}(H_{\omega^{\alpha \oplus \beta 5}}(x)).$

・ロン ・雪 と ・ ヨ と

Now we can show that $F^{\beta}(x) \leq H_{\omega^{\alpha \oplus \beta}4}(H_{\omega^{\alpha \oplus \beta}5}(x))$. For $\xi < \beta$ we have $\xi + 1 \leq \beta$ and there are two options:

If
$$\xi + 1 = \beta$$
 then $H_{\omega^{\alpha \oplus \xi + 1}4}(H_{\omega^{\alpha \oplus \beta}5}(x)) = H_{\omega^{\alpha \oplus \beta}4}(H_{\omega^{\alpha \oplus \beta}5}(x)).$

If ξ + 1 < β then H_{ωα⊕ξ+14}(H_{ωα⊕β5}(x)) = H_{ωα⊕β4}(H_{ωα⊕β5}(x)) since the norm of the leftmost ordinal is controlled by the argument.

・ロット (雪) (き) (き)

Now we can show that $F^{\beta}(x) \leq H_{\omega^{\alpha \oplus \beta}4}(H_{\omega^{\alpha \oplus \beta}5}(x))$. For $\xi < \beta$ we have $\xi + 1 \leq \beta$ and there are two options:

If
$$\xi + 1 = \beta$$
 then $H_{\omega^{\alpha \oplus \xi + 1}4}(H_{\omega^{\alpha \oplus \beta}5}(x)) = H_{\omega^{\alpha \oplus \beta}4}(H_{\omega^{\alpha \oplus \beta}5}(x)).$

If ξ + 1 < β then H_{ωα⊕ξ+14}(H_{ωα⊕β5}(x)) = H_{ωα⊕β4}(H_{ωα⊕β5}(x)) since the norm of the leftmost ordinal is controlled by the argument. Finally we see

$$egin{aligned} \mathcal{F}^eta(x) &\leq \mathcal{H}_{\omega^lpha\opluseta}(x) \leq \mathcal{H}_{\omega^lpha\opluseta^{+1}}(x) \leq \mathcal{H}_{\omega^lpha\opluseta^{+1}+1}(x+8) \ &\leq \mathcal{H}_{\omega^lpha\opluseta^{+1}+1}(x+7) \leq \cdots \leq \mathcal{H}_{\omega^lpha\opluseta^{+1}+8}(x) \end{aligned}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

The Goodstein sequences

Let $m[k \leftarrow k + 1]$ be the result of first writing *m* hereditarily in base *k* normal form and then second replacing base *k* by k + 1.

The Goodstein sequences

Let $m[k \leftarrow k + 1]$ be the result of first writing *m* hereditarily in base *k* normal form and then second replacing base *k* by k + 1. Let $m_0 := m$ and $m_{k+1} := m_k[k + 2 \leftarrow k + 3] - 1$.

・ロット (雪) (き) (き)

The Goodstein sequences

Let $m[k \leftarrow k + 1]$ be the result of first writing *m* hereditarily in base *k* normal form and then second replacing base *k* by k + 1. Let $m_0 := m$ and $m_{k+1} := m_k[k + 2 \leftarrow k + 3] - 1$. Then the assertion $\forall m \exists k m_k = 0$ is true but not provable in first order Peano arithmetic.

$$P_{\mathbf{x}}\alpha = \begin{cases} 0 & \text{if } \alpha = \mathbf{0} \\ \beta & \text{if } \alpha = \beta + \mathbf{1} \\ P_{\mathbf{x}}(\lambda[\mathbf{x}]) & \text{if } \lambda \in Lim. \end{cases}$$

・ロト ・回 ト ・ヨト ・ヨト

The modified Hardy hierarchy is defined as follows:

Andreas Weie

$$egin{aligned} &h_0(n) = n \ &h_{lpha+1}(n) = h_{lpha}(n+1) \ &h_{\lambda}(n) = h_{\lambda[n]}(n) \end{aligned}$$
 where $\lambda \in \operatorname{Lim}$

UNIVERSITEIT GENT

77/84

-

The slow growing hierarchy is defined as follows:

$$egin{aligned} G_0(n) &= 0 \ G_{lpha+1}(n) &= 1 + G_lpha(n) \ G_\lambda(n) &= G_{\lambda[n]}(n) \end{aligned} ext{ where } \lambda \in \operatorname{Lim} \end{aligned}$$

イロト イポト イヨト イヨト

UNIVERSITEIT GENT

ъ

Lemma

1 If
$$\alpha > 0$$
 then $H_{\alpha}(x) = H_{P_x \alpha}(x+1)$.

2 Let $k \ge n$ be minimal such that $P_k \dots P_{n+1} P_n \alpha = 0$. Then

 $h_{\alpha}(n) = k$

Lemma $H_{\alpha}(x) \leq h_{\alpha}(x+1) \leq H_{\alpha}(x+1).$

UNIVERSITEIT GENT

ъ

イロト 不得 とくほ とくほう

Lemma Write $G_x \alpha = G_\alpha(x)$. Then $P_x G_x \alpha = G_x P_x \alpha$.

イロト 不得 とくほと くほとう

Lemma If $NF(\omega^{\alpha}, \beta)$ then $G_x(\omega^{\alpha} + \beta) = (x + 1)^{G_x \alpha} + G_x \beta$.

ヘロン 人間 とくほ とくほと

Lemma

The termination of the Goodstein sequences follows from the totality of the function $x \mapsto H_{\varepsilon_0}(x)$.

Proof by putting the last lemmata together.

Lemma

The termination of the Goodstein sequences follows from the totality of the function $x \mapsto H_{\varepsilon_0}(x)$.

Proof by putting the last lemmata together. Let *m* be given.

Lemma

The termination of the Goodstein sequences follows from the totality of the function $x \mapsto H_{\varepsilon_0}(x)$.

Proof by putting the last lemmata together. Let m be given. Write m in base 2 representation.

Andreas Weiermann

Lemma

The termination of the Goodstein sequences follows from the totality of the function $x \mapsto H_{\varepsilon_0}(x)$.

Proof by putting the last lemmata together. Let *m* be given. Write *m* in base 2 representation. Let α be the result of replacing in this representation 2 by ω .

Andreas Weiermann

Lemma

The termination of the Goodstein sequences follows from the totality of the function $x \mapsto H_{\varepsilon_0}(x)$.

Proof by putting the last lemmata together. Let *m* be given. Write *m* in base 2 representation. Let α be the result of replacing in this representation 2 by ω . Then $m = G_1(\alpha)$.

Lemma

The termination of the Goodstein sequences follows from the totality of the function $x \mapsto H_{\varepsilon_0}(x)$.

Proof by putting the last lemmata together. Let *m* be given. Write *m* in base 2 representation. Let α be the result of replacing in this representation 2 by ω . Then $m = G_1(\alpha)$. Then $m_1 = G_2(\alpha) - 1 = P_2G_2(\alpha) = G_2P_2\alpha$ and $m_2 = G_3P_2\alpha - 1 = G_3P_3P_2\alpha$.

・ロン ・雪 と ・ ヨ と

Lemma

The termination of the Goodstein sequences follows from the totality of the function $x \mapsto H_{\varepsilon_0}(x)$.

Proof by putting the last lemmata together. Let *m* be given. Write *m* in base 2 representation. Let α be the result of replacing in this representation 2 by ω . Then $m = G_1(\alpha)$. Then $m_1 = G_2(\alpha) - 1 = P_2G_2(\alpha) = G_2P_2\alpha$ and $m_2 = G_3P_2\alpha - 1 = G_3P_3P_2\alpha$. The $m_k = 0$ iff $P_{k+1} \dots P_3P_2\alpha = 0$.

・ロン ・雪 と ・ ヨ と

Lemma

The termination of the Goodstein sequences follows from the totality of the function $x \mapsto H_{\varepsilon_0}(x)$.

Proof by putting the last lemmata together. Let *m* be given. Write *m* in base 2 representation. Let α be the result of replacing in this representation 2 by ω . Then $m = G_1(\alpha)$. Then $m_1 = G_2(\alpha) - 1 = P_2G_2(\alpha) = G_2P_2\alpha$ and $m_2 = G_3P_2\alpha - 1 = G_3P_3P_2\alpha$. The $m_k = 0$ iff $P_{k+1} \dots P_3P_2\alpha = 0$. This *k* corresponds to $h_{\alpha}(k)$ so essentially to $H_{\alpha}(k)$.

GENT

・ロト ・ 同ト ・ ヨト・

THANKS - PERSONAL INFORMATION

Thank you for listening. The results of this talk will be covered next term in a lecture in Ghent. Interested (master,PhD) students or others are welcome.

Andreas Weiermann Andreas.Weiermann@UGent.be

Department Mathematics Ghent University Krijgslaan 281 Building S22 9000 Ghent Belgium