Incompleteness in the finite domain

Pavel Pudlák¹

Institute of Mathematics, Czech Academy of Sciences, Prague

Ghent, September 2018

¹author supported by the ERC advanced grant "FEALORA" (\equiv) (\equiv) (\equiv) \approx (\odot) (\circ)

[1]

Overview

- 1. syntactic versus semantic incompleteness
- 2. **TFNP** problems and unprovable $\forall \Sigma_1^b$ sentences
- 3. $\forall \Sigma_1^b$ sentences provable in fragments of Bounded arithmetic
- 4. pairs of disjoint **NP** sets and unprovable $\forall \Sigma_0^b$ sentences

(ロ) (型) (主) (主) (三) の

Two types of incompleteness

- 1. "syntactic" self-referential sentences, consistency statements (typically, Π_1 sentences)
- 2. "semantic" unprovability of fast growing computable functions (Π_2 sentences)

Two types of incompleteness

- 1. "syntactic" self-referential sentences, consistency statements (typically, Π_1 sentences)
- "semantic" unprovability of fast growing computable functions (Π₂ sentences)

Type 2: Given a formal theory T, diagonalize over all computable functions that are provably total in T to obtain a computable function f growing faster.

Note that

$$T \not\vdash \forall x \exists y \ \phi(x, y)$$

for every Σ_1 formula ϕ that defines f in \mathbb{N} .

うせん 聞い ふぼう ふぼう ふしゃ

Proof theoretical ordinal of T: the least constructive ordinal α such that T does not prove that an ordering of type α is well-founded for any Σ_1 definition of the ordering.

 $\mathsf{semantic} \mapsto \mathsf{computational} \ \mathsf{content}$

Σ_i^b formulas

Consider arithmetical formulas in a language L where function symbols are polynomial time computable functions.

Suppose *L* also contains a symbol for function that grows like $\log_2 x$, we will denote it by |x| ("the length of the number *x*).

bounded quantifiers - as usual.

sharply bounded quantifiers – $\forall x \leq |t|$, $\exists x \leq |t|$, where t is a term (not containing x)

prenex formula ϕ is \sum_{i}^{b} if it has *i* alternation of bounded quantifiers, starting with \exists and ignoring the sharply bounded ones strict \sum_{i}^{b} formula is a \sum_{i}^{b} where all sharply bounded quantifiers are after non-sharply bounded ones

Unprovable $\forall \Sigma_1^b$ sentences

Instead of Π_2 sentences, we are interested in Π_1 sentences of the form $\forall x.\phi(x)$ where $\phi(x)$ is Σ_1^b .

Unprovable $\forall \Sigma_1^b$ sentences

Instead of Π_2 sentences, we are interested in Π_1 sentences of the form $\forall x.\phi(x)$ where $\phi(x)$ is Σ_1^b .

Consistency statements can be represented in this form, but we want "semantic independence".

Σ_1^b formulas

 Σ_i^b define **NP** predicates, i.e.,

```
\exists y(|y| \leq p(|x|) \land \psi(x, y)),
```

where ${\it p}$ is a polynomial and ψ is a binary relation computable in polynomial time.

Σ_1^b formulas

 Σ_i^b define **NP** predicates, i.e.,

```
\exists y(|y| \leq p(|x|) \land \psi(x, y)),
```

where ${\it p}$ is a polynomial and ψ is a binary relation computable in polynomial time.

Why a sentence of the form

```
\forall x \exists y (|y| \leq p(|x|) \land \psi(x, y)),
```

is unprovable in T?

Σ_1^b formulas

 Σ_i^b define **NP** predicates, i.e.,

```
\exists y(|y| \leq p(|x|) \land \psi(x, y)),
```

where ${\it p}$ is a polynomial and ψ is a binary relation computable in polynomial time.

Why a sentence of the form

```
\forall x \exists y (|y| \leq p(|x|) \land \psi(x, y)),
```

is unprovable in T?

Conjecture

... because finding y, for a given x, is computationally difficult.

TFNP

Definition

1. A **TFNP** problem is given by a binary relation *R* and a polynomial *p* such that

$$\mathbb{N} \models \forall x \exists y (|y| \le p(|x|) \land R(x, y)).$$

The computational task associated with the problem is, given x, to construct y such that $|y| \le p(|x|) \land R(x, y)$.

2. A **TFNP** problem (R, p) is polynomially reducible to (Q, r), if (R, p) can be solved in polynomial time using an oracle for (Q, r).

▲ロト ▲暦 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● の Q @

TFNP

Questions

- Can every TFNP problem be solved in polynomial time?
- Does there exist a complete TFNP problem?

TFNP

Questions

- Can every TFNP problem be solved in polynomial time?
- Does there exist a complete TFNP problem?

Facts

- Cryptography is only possible if there are hard **TFNP** problems.
- Many apparently distinct subclasses have been studied (PLS, PPA, PPAD, PPP, ...).
- ► The existence of hard TFNPs follows from P≠NP∩coNP, but apparently not from other standard hypotheses such as P≠NP.

The TFNP conjecture

Conjecture

For every consistent theory² T there exists a **TFNP** problem (R, p) such that for no formalization of R by a Σ_1^b formula ψ , T proves that the problem is total; i.e.,

$$T
eq \forall x \exists y (|y| \leq p(|x|) \land \psi(x, y)).$$

²finitely axiomatized, arithmetical, sufficiently strong, i.e., $T \supseteq S_2^1, \Box = S_2^0, \Box = S_2^0$

The TFNP conjecture

Conjecture

For every consistent theory² T there exists a **TFNP** problem (R, p) such that for no formalization of R by a Σ_1^b formula ψ , T proves that the problem is total; i.e.,

$$T \not\vdash \forall x \exists y (|y| \leq p(|x|) \land \psi(x, y)).$$

Theorem

The conjecture above is equivalent to:

there is no complete problem in TFNP.

²finitely axiomatized, arithmetical, sufficiently strong, i.e., $T \supseteq S_2^1, \in \mathbb{R}$

some evidence for the TFNP conjecture

Buss' hierarchy of fragments of Bounded Arithmetic:

$$S_2^i := BASIC + \Sigma_i^b - PIND$$

some evidence for the TFNP conjecture

Buss' hierarchy of fragments of Bounded Arithmetic:

$$S_2^i := BASIC + \Sigma_i^b - PIND$$

Theorem

The provably total **TFNP** problems of S_2^i are exactly the problems from **GPLS**_{*i*-1}.

It seems very plausible that the classes increase as i grows.

• **GPLS**₀ - problems solvable in polynomial time.

GPLS_i

- ► **GPLS**₀ problems solvable in polynomial time.
- GPLS₁ (= PLS) problems reducible to problems of the following type:

An instance is given by polynomial time functions v(x, y), h(x, y). For a given *a*, find *b* such that

 $v(a, b) \leq v(a, h(a, b)).$

[13]

GPLS_i

- ► **GPLS**₀ problems solvable in polynomial time.
- GPLS₁ (= PLS) problems reducible to problems of the following type:

An instance is given by polynomial time functions v(x, y), h(x, y). For a given *a*, find *b* such that

 $v(a, b) \leq v(a, h(a, b)).$

A solution always exists: for a given *a*, take *b* such that v(a, b) attains the minimum.

・ロト ・ 日 ・ ・ 田 ・ ・ 日 ・ ・ の へ の

• **GPLS**₂ - problems reducible to problems of the following type:

An instance is given by polynomial time functions $v(x, y, z), h_1(x, y), h_2(x, y, z)$. For a given *a*, find b_1, b_2 such that

 $v(a,b,h_2(a,b,c)) \leq v(a,h_1(a,b),c).$

• **GPLS**₂ - problems reducible to problems of the following type:

An instance is given by polynomial time functions $v(x, y, z), h_1(x, y), h_2(x, y, z)$. For a given *a*, find b_1, b_2 such that

 $v(a,b,h_2(a,b,c)) \leq v(a,h_1(a,b),c).$

A solution always exists:

For a, b, let $\gamma(a, b)$ be such that $v(a, b, \gamma(a, b))$ attains the maximum.

For a given *a*, let *b* be such that $v(a, b, \gamma(a, b))$ attains the minimum, and let $c = \gamma(a, b)$. Then we have

$$\mathsf{v}(\mathsf{a},\mathsf{b},\mathsf{h}_2(\mathsf{a},\mathsf{b},\mathsf{c})) \leq \mathsf{v}(\mathsf{a},\mathsf{b},\gamma(\mathsf{a},\mathsf{b})) \leq \mathsf{v}(\mathsf{a},\mathsf{h}_1(\mathsf{a},\mathsf{b}),\gamma(\mathsf{a},\mathsf{b})) =$$

 $v(a, h_1(a, b), c).$

Problem Construct an oracle A such that $\mathbf{GPLS}_{i}^{A} \neq \mathbf{GPLS}_{i+1}^{A}$.

We only know A such that $\mathbf{GPLS}_0^A \neq \mathbf{GPLS}_1^A$.

Problem Construct an oracle A such that $\mathbf{GPLS}_{i}^{A} \neq \mathbf{GPLS}_{i+1}^{A}$.

We only know A such that $\mathbf{GPLS}_0^A \neq \mathbf{GPLS}_1^A$.

Theorem

There exists an oracle A such that **TFNP**^A does not have a complete problem.

<□▶ <□▶ < □▶ < □▶ < □▶ = の

[15]

Herbrand Consistency Search

Proposition

Let $\Phi := \forall x_1 \dots \forall x_n . \psi(x_1, \dots, x_k)$ be a universal sentence. Then Φ is consistent iff for every family of terms $\{t_{ij}\}$,

$$\bigwedge_{i=1}^{n} \psi(t_{i1}, \dots, t_{ik}) \tag{1}$$

is propositionally satisfiable.

Herbrand Consistency Search

Proposition

Let $\Phi := \forall x_1 \dots \forall x_n . \psi(x_1, \dots, x_k)$ be a universal sentence. Then Φ is consistent iff for every family of terms $\{t_{ij}\}$,

$$\bigwedge_{i=1}^{n} \psi(t_{i1}, \dots, t_{ik}) \tag{1}$$

is propositionally satisfiable.

Definition (Herbrand Consistency Search, $HCS(\Phi)$)

Given a consistent universal sentence $\forall x_1 \dots \forall x_n . \psi(x_1, \dots, x_k)$ and a family of terms $\{t_{ij}\}$, find an assignment of propositional values to the atomic formulas that makes (1) true.

Fact

If Φ is consistent and sufficiently strong, then Φ does not prove that HCS(Φ) is total for the natural formalization of HCS(Φ).

[17]

Fact

If Φ is consistent and sufficiently strong, then Φ does not prove that HCS(Φ) is total for the natural formalization of HCS(Φ).

Conjecture

A consistent Φ does not prove that $HCS(\Phi)$ is total for any formalization of $HCS(\Phi)$ by a Σ_1^b formula.

<□> <@> < 注→ < 注→ < 注→ < 注→ ○ 注 → ○

Universal-P sentences

$\forall x.\phi(x),$

where ϕ defines a set in **P**, provably in a weak theory, e.g., S_2^1 .

Universal-P sentences

$\forall x.\phi(x),$

where ϕ defines a set in **P**, provably in a weak theory, e.g., S_2^1 .

We want to know if

 $\mathbb{N} \models \forall x.\phi(x).$

Universal-P sentences

$\forall x.\phi(x),$

where ϕ defines a set in **P**, provably in a weak theory, e.g., S_2^1 .

We want to know if

$$\mathbb{N} \models \forall x.\phi(x).$$

No computational content unless ϕ has some special structure.

example: disjoint pairs of **NP** sets Let $A, B \in \mathbf{NP}$, let

$$\phi(x) := x \notin A \lor x \notin B.$$

Thus

$$\forall x.\phi(x) \equiv A \cap B = \emptyset,$$

and $\phi(x)$ is provably a **coNP** predicate, hence $\forall x.\phi(x)$ can be represented by a universal-**P** sentence.

example: disjoint pairs of **NP** sets Let $A, B \in \mathbf{NP}$, let

$$\phi(x) := x \notin A \lor x \notin B.$$

Thus

$$\forall x.\phi(x) \equiv A \cap B = \emptyset,$$

and $\phi(x)$ is provably a **coNP** predicate, hence $\forall x.\phi(x)$ can be represented by a universal-**P** sentence.

The computational problem: given x, decide the disjunction.³

³Point to one of the two sets in which x is not contained $\Rightarrow \langle z \rangle \langle z \rangle \langle z \rangle \langle z \rangle$

example: disjoint pairs of **NP** sets

Let $A, B \in \mathbf{NP}$, let

$$\phi(x) := x \notin A \lor x \notin B.$$

Thus

$$\forall x.\phi(x) \equiv A \cap B = \emptyset,$$

and $\phi(x)$ is provably a **coNP** predicate, hence $\forall x.\phi(x)$ can be represented by a universal-**P** sentence.

The computational problem: given x, decide the disjunction.³

(A, B) is polynomially reducible to (C, D), if there exists a polynomial time computable f such that

 $f(A) \subseteq C$ and $f(B) \subseteq D$.

Questions

- Are there pairs for which the problem is not solvable in polynomial time?
- Does there exist a complete pair?

Fact

► The existence of a hard disjoint NP pair follows from NP∩coNP≠P.

equivalent conjectures

Conjecture

There is no complete disjoint NP pair.

Conjecture

For every consistent⁴ theory T, there exists a pair of disjoint NP sets (A, B) such that for no formalization of A and B by Σ_1^b formulas, T proves $A \cap B = \emptyset$.

Hard disjoint NP pairs

- cryptographic conjectures give us sets A ∈ NP∩coNP\P; for such an A, the pair (A, A) is hard;
- 2. pairs from reflection principles, called canonical pairs;
- 3. combinatorial pairs ???

Reflection principles

Let Prf(x, y) be a formalization of y is a proof of x. Let Sat(x, z) be a formalization of x is satisfied by z. Reflection principle:

 $Prf(x, y) \rightarrow Sat(x, z)$

Reflection principles

Let Prf(x, y) be a formalization of y is a proof of x. Let Sat(x, z) be a formalization of x is satisfied by z. Reflection principle:

 $\neg Prf(x, y) \lor Sat(x, z)$

Reflection principles

Let Prf(x, y) be a formalization of y is a proof of x. Let Sat(x, z) be a formalization of x is satisfied by z. Reflection principle:

$\neg Prf(x, y) \lor Sat(x, z)$

To get a pair of disjoint **NP** sets we need to bound the length of the proof y in the length of x. We can

- consider only proofs of quadratic length, or
- pad x to $x0^n$ and bound $|y| \le n$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の

Questions

- Are such canonical pairs hard?
- Can we find combinatorial characterizations of them?

Questions

- Are such canonical pairs hard?
- Can we find combinatorial characterizations of them?

Facts

- From some cryptographic conjectures, we can prove that canonical pairs of bounded depth Frege proof systems are hard.
- It seems that already the canonical pair of Resolutions is hard.
- We have characterizations of canonical pairs of bounded depth Frege proof systems in terms of some combinatorial games.

Problem

How much stronger a theory S must be than T in order to prove the disjointness of more disjoint **NP** pairs?

Problem

How much stronger a theory S must be than T in order to prove the disjointness of more disjoint **NP** pairs?

A plausible conjecture is that $S \vdash Con(T)$ suffices.

Finite consistency statements

Let $Con_T(n)$ denote that there is no *T*-proof of contradiction of length $\leq n$.

Theorem

If T is sequential and finitely axiomatized, then $Con_T(n)$ has proofs of length $\leq p(n)$ for some polynomial.

Finite consistency statements

Let $Con_T(n)$ denote that there is no *T*-proof of contradiction of length $\leq n$.

Theorem

If T is sequential and finitely axiomatized, then $Con_T(n)$ has proofs of length $\leq p(n)$ for some polynomial.

Theorem

If there does not exist a complete disjoint **NP** pair, then for every S there exists T such that $Con_T(n)$ does not have polynomial length S-proofs.

Finite consistency statements

Let $Con_T(n)$ denote that there is no *T*-proof of contradiction of length $\leq n$.

Theorem

If T is sequential and finitely axiomatized, then $Con_T(n)$ has proofs of length $\leq p(n)$ for some polynomial.

Theorem

If there does not exist a complete disjoint NP pair, then for every S there exists T such that $Con_T(n)$ does not have polynomial length S-proofs.

Question How much stronger must T be than S.

Conjecture

 $Con_{S+Con_{S}}(n)$ does not have polynomial length S-proofs.

Conjecture

 $Con_{S+Con_{S}}(n)$ does not have polynomial length S-proofs.

Theorem (Ehrenfeucht-Mycielski)

If T is stronger than S, then T has uncomputable speed-up over S w.r.t. sentences provable in both theories.

Conjecture

 $Con_{S+Con_{S}}(n)$ does not have polynomial length S-proofs.

Theorem (Ehrenfeucht-Mycielski)

If T is stronger than S, then T has uncomputable speed-up over S w.r.t. sentences provable in both theories.

Theorem (Hrubeš)

There exists a Π_1 sentence ϕ unprovable in S such that $Con_{S+\phi}(n)$ have polynomial length proofs.

<ロ> <回> <回> <回> <回> <回> <回> <回> <回> <回> <

 $\boldsymbol{\phi}$ is a modification of the Rosser sentence.

Conclusions

- We argued that particular Π₁ sentences could be independent due to semantic properties connected with computational complexity.

Conclusions

- We argued that particular Π₁ sentences could be independent due to semantic properties connected with computational complexity.
- We cannot prove such conjectures because they are typically much stronger than P≠NP.

Thank you

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● のへで

[29]