
Program Extraction

Monika Seisenberger

Swansea University

Proof Society Summer School, Ghent, 2–5 September 2018

1 / 66

Outline of the tutorial

Part 1 Extraction of Programs from Constructive Proofs:

1.1 Introduction, Curry Howard-Correspondence,
Realizability Interpretation

1.2 Tool support, Examples, Extension to inductive
Definitions

Part 2 Extraction of Programs from Classical Proofs

2.1 A-translation, Choice principles
2.2 Applications for both parts

2 / 66

Part 1: Extraction of Programs from Constructive Proofs

Intuition of the connection between a proof and a program

Brouwer-Heyting-Kolmogorov Interpretation:
assigns a constructive meaning to each logical connective and quantifier.

A proof of a conjunction A∧B is given by a pair (p1, p2) such that p1

proves A and p2 proves B.

A proof of a disjunction A ∨ B is given by (i , p) where either i = 0
and p proves A or i = 1 and p proves B.

A proof an existence statement ∃xA is given by a witness a and a
proof that A(a) holds.

A proof of an universal statement ∀xA is given by a “construction or
method” transforming an arbitrary individual a into a proof a A(a)

A proof of an implication A→ B is given by a construction or method
that transforms a proof of A into a proof of B.

¬A is treated like A→ ⊥. There is no proof of ⊥. For prime formulas the
notion of proof is supposed to be given. Note there is no explanation of
what amounts to a “construction or method.”

3 / 66

Part 1: Extraction of Programs from Constructive Proofs

A first example

Example (Quotient and Remainder)

∀ a, b. 0 < b → ∃ q, r . a = q ∗ b + r ∧ r < b.

Proof: Ind(a). Base a = 0: take q = 0, r = 0.
Step: Given q, r such that a = q ∗ b + r and r < b, find new q′, r ′ for a + 1

Program extraction will yield a program with solves the computational
problem:

Input: two numbers a,b
Output: a pair of numbers (q,r) with the desired property.

In the following, we will demonstrate what we need on the formal side to get to
this program. We first explain the logical system, in particular how to store proofs
as proof terms, then we show how to extract the provably correct program.

4 / 66

Part 1: Extraction of Programs from Constructive Proofs

A first example

Example (Quotient and Remainder)

∀ a, b. 0 < b → ∃ q, r . a = q ∗ b + r ∧ r < b.

Proof: Ind(a). Base a = 0: take q = 0, r = 0.
Step: Given q, r such that a = q ∗ b + r and r < b, find new q′, r ′ for a + 1

Program extraction will yield a program with solves the computational
problem:

Input: two numbers a,b
Output: a pair of numbers (q,r) with the desired property.

In the following, we will demonstrate what we need on the formal side to get to
this program. We first explain the logical system, in particular how to store proofs
as proof terms, then we show how to extract the provably correct program.

4 / 66

Part 1: Extraction of Programs from Constructive Proofs

Methods to make the constructive content explicit

There are various methods to make the constructive content of a proof
explicit

Cut elimination

Realizability (Kleene, Kreisel),

Dialectica interpretation (Goedel)

Proofs as Programs in Type Theory

Classical Realizability (Krivine)

In this tutorial we focus on realizability as it is the most direct technique. The
technique will be demonstrated in the interactive theorem prover Minlog, which
can extract programs from both constructive and classical proofs. Other theorem
provers like Coq or Agda could also be used for the constructive examples. [Note
Adga would lead to dependently typed programs.]

5 / 66

Part 1: Extraction of Programs from Constructive Proofs

Logic Background

Our proof calculus is HAµ which is an extension of Heyting Arithmetic in
finite types, HAω (see Troelstra’73 or Troelstra/vanDalen‘88) by
inductively defined types.
Cf also: Theory of Computable Functionals (in Schwichtenberg/Wainer,
Proofs and Computations, Perspectives in Logic,‘12)

Definition (Types)

Types are generated from inductive types, via × and →, that is, if ρ and σ
are types, then so are ρ× σ and ρ→ σ; in short: types are

µ| ρ× σ | ρ→ σ.

Note for our first example we only need the two inductive types Bool =
True + False, and Nat = Zero + Succ(Nat). [You may skip the next slide.]

6 / 66

Part 1: Extraction of Programs from Constructive Proofs

Extended Heyting Arithmetic (cont.)

Inductive types in their most general form look as follows. [That means the user
can define further inductive types according to this construction, and inductive
types of this form will later also be automatically generated as realizers for
inductive definitions.]

Definition (Inductive Type)

A new inductive type µ is introduced by the following equation:

µ = c1

(
~ρ1, ~σ11 → µ, . . . , ~σ1m1 → µ

)
+ · · · +

cn
(
~ρn, ~σn1 → µ, . . . , ~σnmn → µ

)
where for all i < n, j < mi such that 0 ≤ mi , n, ~ρi and ~σij are lists of types built
from previously defined types only. Then, µ is the type whose elements are
generated from the constructors

ci : ~ρi →
−−−−→
~σi → µ→ µ.

7 / 66

Part 1: Extraction of Programs from Constructive Proofs

Extended Heyting Arithmetic (cont.)

Definition (Terms)

are built from typed variables and constants via λ-abstraction, application,
pairing and projection, that is, terms are

x | c |λxt | st | 〈s, t〉 |πi (t).

For each ground type µ and type τ we have a recursion operator Rµ,τ . If

~ρi →
−−−−→
~σi → µ→ µ is the type of the i-th constructor ci of µ, then the i-th

step type δi is ~ρi →
−−−−→
~σi → µ→

−−−−→
~σi → τ → τ and the recursion operator has

the type
Rµ,τ : δ1 → · · · → δn → µ→ τ.

Analogously, we also have a case distinction operator

Cµ,τ : δ1 → · · · → δn → µ→ τ

where the i-th step type δi simplifies to ~ρi →
−−−−→
~σi → µ→ τ. 8 / 66

Part 1: Extraction of Programs from Constructive Proofs

Conversions

The conversion rules are

(λxt)s 7→ t[x/s]

(λxt)x 7→ t, x 6∈ FV(t)

πi (〈t0, t1〉) 7→ ti , i = 0, 1

〈π0(t), π1(t)〉 7→ t

With regard to the recursion operator, assuming that ~t consists of
parameter arguments t1

P , . . . , tm
P and recursive arguments t1

R , . . . , tn
R ,

we have the conversion rule

Rµ,τ~s(ci~t) 7→ si~t(Rµ,τ~s ◦ t1
R) . . . (Rµ,τ~s ◦ tn

R)

where rσ→τ ◦ t~ρ→σ := λ~y ~ρ.(r(t~y)).
The analogous rule for the case distinction operator is

Cµ,τ~s(ci~t) 7→ si~t.

9 / 66

Part 1: Extraction of Programs from Constructive Proofs

Formulas

Definition (Formulas)

Let P be a set of predicate symbols, each of a fixed arity ~ρ = ρ1, . . . , ρn.
We always assume P to contain a nullary predicate symbol ⊥ and a
predicate symbol atom of arity boole. Formulas are built from atomic
formulas P(~t) (P ∈ P) via implication, conjunction and quantification.
Hence formulas are

P(~t) |A→ B |A ∧ B | ∀xρA | ∃xρA.

where in P(~t) we assume that P is of arity ~ρ and the terms ~t = t1, . . . , tn
are of types ρ1, . . . , ρn respectively.

10 / 66

Part 1: Extraction of Programs from Constructive Proofs

Definition (Type of a Formula)

is either a type or the symbol ∗ (for “not computationally meaningful”).

τ(P(~t)) :=

{
τ0(P) if P ∈ P with assigned τ0(P)
∗ otherwise.

τ(A→ B) :=


τ(B) if τ(A) = ∗,
∗ if τ(B) = ∗,
τ(A)→ τ(B) otherwise.

τ(A0 ∧ A1) :=

{
τ(Ai) if τ(A1−i) = ∗,
τ(A0)× τ(A1) otherwise.

τ(∀xρA) :=

{
∗ if τ(A) = ∗,
ρ→ τ(A) otherwise.

τ(∃xρA) :=

{
ρ if τ(A) = ∗,
ρ× τ(A) otherwise.

11 / 66

Part 1: Extraction of Programs from Constructive Proofs

Natural Deduction

Definition (Proofs)

Proofs are presented as lambda terms via the Curry-Howard
Correspondence.

uA | cA (c an axiom)

| (λuAdB)A→B | (dA→BeA)B |
(〈dA, eB〉)A∧B | (π0(dA∧B))A | π1((dA∧B))B |
(d∀xAt)A(t) | (λxd)∀xA, x 6∈ FV(C) for uC ∈ FA(d)

where for a given derivation d , FA(d) is the set of free assumptions in d .

12 / 66

Part 1: Extraction of Programs from Constructive Proofs

Axioms

1) For existential quantifier:

(∃+
x ,A) ∀x .A→ ∃xA

(∃−x ,A,B) ∃xA→ (∀x .A→ B)→ B, (x 6∈ FV(B))

2) Logical axioms Truth: T and efq-axioms ⊥ → A for any formula A.
3) Axioms for equality, such as reflexivity, transitivity, symmetry and
compatibility, e.g.,

(Compat) ∀~x , x , y .x = y → P(x)→ P(y).

4) For each algebra, µ, we have axioms for case distinction and induction,
denoted by Casesµ,A and Indµ,A.

13 / 66

Part 1: Extraction of Programs from Constructive Proofs

First, the existential quantifier are treated by the axioms:

(∃+
x ,A) ∀x .A→ ∃xA

(∃−x ,A,B) ∃xA→ (∀x .A→ B)→ B, (x 6∈ FV(B))

(∃nc+
x ,A) ∀ncx .A→ ∃ncxA

(∃nc−
x ,A,B) ∃ncxA→ (∀ncx .A→ B)→ B, (x 6∈ FV(B))

14 / 66

Part 1: Extraction of Programs from Constructive Proofs

Realizability: Definition (Extracted Program)

Given a derivation d of a computationally meaningful formula A, we
inductively define the extracted term (“program”) [[d]] of type τ(A).

[[uA]] := x
τ(A)
A (preassigned)

[[λuAd]] :=

{
[[d]] if τ(A) = ∗,
λx

τ(A)
u [[d]] otherwise.

[[dA→Be]] :=

{
[[d]] if τ(A) = ∗,
[[d]][[e]] otherwise.

[[〈dA0
0 , dA1

1 〉]] :=

{
[[di]] if τ(A1−i) = ∗
〈[[d0]], [[d1]]〉 otherwise.

[[πi (dA0∧A1)]] :=

{
[[d]] if τ(A1−i) = ∗
πi [[d]] otherwise.

[[(λxd)∀xA]] := λx [[d]],

[[d∀xAt]] := [[d]]t. 15 / 66

Part 1: Extraction of Programs from Constructive Proofs

Extracted terms (realizers) for axioms

1) The extracted terms for the ∃-axioms are

[[∃+
xρ,A]] :=

{
λxρx if τ(A) = ∗,
λxρλy τ(A)〈x , y〉 otherwise.

[[∃−xρ,A,B]] :=

{
λxρλf ρ→τ(B)fx if τ(A) = ∗,
λzρ×τ(A)λf ρ→τ(A)→τ(B)f π0(z)π1(z) otherwise.

2) For a formula A with τ(A) 6= ∗, the efq axioms F → A and ⊥ → A are
realized by a canonical inhabitant of the type τ(A).
3) The compatibility axiom, ∀nc~x , x , y .x = y → A(x)→ A(y), is realized
by λxτ(A)x .
4) Induction and case distinction on an inductive datatype µ, Indµ,A and
Casesµ,A, correspond to recursion on this datatype, Rµ,τ(A), case
distinction, Cµ,τ(A), respectively.

16 / 66

Part 1: Extraction of Programs from Constructive Proofs

Modified Realizability (Kreisel)

For every formula A we define a formula r mr A where r is either a term
of type τ(A) or the symbol ε depending on whether or not A is
computationally meaningful.

We assume that for each predicate P : ρ1, . . . , ρn with computational
content we have enriched our language by a predicate P̃ of arity
τ0(P), ρ1, . . . , ρn.

r mr P(~t) :=

{
P̃(r , ~t) if P(~t) has computational content
P(~t) otherwise

[For our first example, we do no have any atomic formulas/predicates with
computational content.]

17 / 66

Part 1: Extraction of Programs from Constructive Proofs

Modified Realizability (cont)

r mr (A→ B) :=


ε mr A→ r mr B if τ(A) = ∗,
∀x .x mr A→ ε mr B if τ(A) 6= ∗ = τ(B),
∀x .x mr A→ rx mr B otherwise.

r mr (A0 ∧ A1) :=

{
r mr A1−i ∧ ε mr Ai if τ(Ai) = ∗,
π0(r) mr A0 ∧ π1(r) mr A1 otherwise.

r mr ∀xA :=

{
∀x .ε mr A if τ(A) = ∗,
∀x .rx mr A, otherwise.

r mr ∃x A :=

{
ε mr A[x/r] if τ(A) = ∗,
π1(r) mr A[x/π0(r)] otherwise.

18 / 66

Part 1: Extraction of Programs from Constructive Proofs

Correctness of the Extracted Program

Theorem (Soundness Theorem)

If d is a proof of a formula A, then we can derive [[d]] mr A from the
assumptions {ū : xu mr C | uC ∈ FA(d) }, where xu := ε if uC is an
assumption variable for a formula C without computational content.

Proof.

By induction on the structure of d . (On board.)

Theorem (Extraction Theorem)

From a proof d of ∀x∃yB(x , y), B computationally meaningless, from
computationally meaningless assumptions {C}, one can extract a closed
term [[d]] such that the formula ∀xB(x , [[d]]) is provable from {C}.

19 / 66

Part 1: Extraction of Programs from Constructive Proofs Optimizations

Non-computational quantifiers

Idea: if in an forall introduction, apart from the usual variable condition, we know
in addition that the variable is not used free in any term used in the proof so far,
we mark this situation with a label nc to the formula. (Formal property, see slide
24. We briefly go through the definitions again add modify them accordingly.)

Definition (Formulas with nc-quantifiers)

In the definition of formulas we introduce two sorts of quantifiers, the usual
quantifiers ∀,∃ and quantifiers ∀nc, ∃nc carrying no computational content.

Hence formulas are (extended to)

P(~t) |A→ B |A ∧ B | ∀xρA | ∀ncxρA | ∃ncxρA | ∃ncxρA

where in P(~t) we assume that P is of arity ~ρ and the terms ~t = t1, . . . , tn are of
types ρ1, . . . , ρn respectively.

20 / 66

Part 1: Extraction of Programs from Constructive Proofs Optimizations

For formulas with a quantifier containing no computational content the
obvious definition is

τ(∀ncxρ A) := τ(A)
τ(∃ncxρ A) := τ(A)

21 / 66

Part 1: Extraction of Programs from Constructive Proofs Optimizations

Definition (Extracted Program incl nc quantifiers)

[[(λxd)∀xA]] := λx [[d]],

[[d∀xAt]] := [[d]]t.

[[(λxd)∀
ncxA]] := [[d]],

[[d∀
ncxAt]] := [[d]].

22 / 66

Part 1: Extraction of Programs from Constructive Proofs Optimizations

Definition (Proofs incl nc quantifiers)

Proofs are presented as lambda terms via the Curry-Howard
Correspondence.

uA | cA (c an axiom) | (λuAdB)A→B | (dA→BeA)B |
(〈dA, eB〉)A∧B | (π0(dA∧B))A | π1((dA∧B))B |
(d∀xAt)A(t) | (d∀

ncxAt)A(t) |
(λxd)∀xA, x 6∈ FV(C) for uC ∈ FA(d) |
(λxd)∀

ncxA, x 6∈ CV(d) ∪ FV(C) for uC ∈ FA(d)

where CV(d) is defined as follows:

23 / 66

Part 1: Extraction of Programs from Constructive Proofs Optimizations

If τ(A) 6= ∗, then

(ass) FA(u) := {u} CV(u) := ∅
(ax) FA(c) := ∅ CV(c) := ∅
(→+) FA(λu.d) := FA(d)\{u} CV(λu.d) := CV(d)
(→−) FA(de) := FA(d) ∪ FA(e) CV(de) := CV(d) ∪ CV(e)
(∧+) FA(〈d , e〉) := FA(d) ∪ FA(e) CV(〈d , e〉) := CV(d) ∪ CV(e)
(∧−) FA(πi (d)) := FA(d) CV(πi (d)) := CV(d)
(∀+) FA((λx .d)∀xA) := FA(d) CV((λx .d)∀xA) := CV(d)\{x}
(∀nc+) FA((λx .d)∀

ncxA) := FA(d) CV((λx .d)∀
ncxA) := CV(d)

(∀−) FA(d∀xAt) := FA(d) CV(d∀xAt) := CV(d) ∪ FV(t)
(∀nc−) FA(d∀

ncxAt) := FA(d) CV(d∀
ncxAt) := CV(d)

Otherwise, i.e., if τ(A) = ∗, we set CV(dA) := ∅ and FA(dA) is defined as
above.

24 / 66

Part 1: Extraction of Programs from Constructive Proofs Optimizations

Definition (Modified Realizability) (cont)

r mr ∀xA :=

{
∀x .ε mr A if τ(A) = ∗,
∀x .rx mr A, otherwise.

r mr ∃x A :=

{
ε mr A[x/r] if τ(A) = ∗,
π1(r) mr A[x/π0(r)] otherwise.

In the case of quantifiers without computational content we set

r mr ∀ncx A := ∀x . r mr A
r mr ∃ncx A := ∃x . r mr A.

25 / 66

Part 1: Extraction of Programs from Constructive Proofs Optimizations

DEMO (Interactive proof and extracted program
for quotient and remainder example)

in the interactive proof assistant Minlog
www.minlog-system.de

26 / 66

Tool support: Minlog

The interactive proof assistant: Minlog

Formal system = Heyting Arithmetic in finite types HAω

= Functional term language with structural recursion
Intuitionistic logic + Induction

+ Classical logic via axioms

+ Constants, free predicate variables,
+ Inductive types, Inductively defined predicates
+ New: extension to Coinduction

Model: partial continuous functionals in finite types.

Proofs are represented as lambda terms (Curry-Howard)

- Can be checked,
- normalized (Normalization-by-Evaluation)
- manipulated for program development, etc

Automatization available.

27 / 66

Extension to Inductive Definitions

Inductive Definitions

Definition (Inductively defined predicates)

An inductively defined predicate I : ρ1, . . . , ρl is introduced by n closure
axioms, K1[I], . . . ,Kn[I],1 ≤ n, (also called introduction axioms), where

Ki [I] := ∀xi .Ai → (∀yi .Bi → I (si))→ I (ti).

Given a predicate P, let Ki [P] be the formula which is obtained by
replacing the predicate I in Ki [I] by P. Then, the induction principle (also
called elimination axiom) is

K1[P]→ . . .→ Kn[P]→ ∀nc~z .I (~z)→ P(~z).

28 / 66

Extension to Inductive Definitions

Definition (The type of an inductively defined predicate)

In the general case of an inductive predicate I with computational content,
given by the axioms K1[I], . . . ,Kn[I] where

Ki [I] := ∀~xi ~ρi , ∀nc~xi
′~ρi ′ .
−→
Ai →

−−−−−−−−−−−−−−−−−−→
∀~yi ~σi ,∀nc~yi

′~σi ′ .
−→
Bi → I (~si)→ I (~ti),

we set
τ0(I) := µ,

where µ is either inductively defined by

µ = c1

(
~ρ1, τ(

−→
A1),

−−−−−−−−−−−−→
~σ1 → τ(

−→
B1)→ µ

)
+ · · · +

cn
(
~ρn, τ(

−→
An),

−−−−−−−−−−−−→
~σn → τ(

−→
Bn)→ µ

)
with new constructors c1, . . . , cn or it is an existing inductive type with
constructors of the same type. Here, we have written τ(~A) for
τ(~A1), . . . , τ(~A|~A|) and τ(~B)→ µ for τ(~B1)→ · · · → τ(~B|~B|)→ µ.

For an inductive predicate without computational content the obvious
definition is

τ0(I) := ∗.

29 / 66

Extension to Inductive Definitions

Given an inductively defined predicate I , we need realizers for the closure
axioms K1[I], . . . ,Kn[I] and the induction principle IndI ,P . Assume that we
have assigned an algebra µ with constructors c1, . . . , cn to this predicate,
i.e., that we are dealing with a predicate with computational content.
Then we set

[[Ki [I]]] := ci

and the induction principle corresponds to recursion on µ, more precisely,

[[IndI ,P]] := Rµ,τ(P).

Proof.

Omitted.

30 / 66

Extension to Inductive Definitions

Another example: Reverse

Prove that every list can be reversed.

Goal: ∀v∃wRev(v ,w)

where the predicate Rev is axiomatized by

Rev(Nil,Nil)

Rev(v ,w)→ Rev(v : + : [a], a :: w)

Proof: By induction on v . Base: Clear.
Step: Fix a,v and IH: ∃wRev(v ,w) and show ∃w ′Rev(a :: v ,w ′).
Solution: take w ′ = w : + : [a].

31 / 66

Extension to Inductive Definitions

Another example: Reverse

Prove that every list can be reversed.

Goal: ∀v∃wRev(v ,w)

where the predicate Rev is axiomatized by

Rev(Nil,Nil)

Rev(v ,w)→ Rev(v : + : [a], a :: w)

Proof: By induction on v . Base: Clear.
Step: Fix a,v and IH: ∃wRev(v ,w) and show ∃w ′Rev(a :: v ,w ′).
Solution: take w ′ = w : + : [a].

31 / 66

Extension to Inductive Definitions

Extracted Minlog term

Reverse:=

((listrec |Nil|)

(lambda (n1)

(lambda (v2)

(lambda (v3) ((|ListAppend| v3) ((|Cons| n1) |Nil|))))))

More readable as recursive equations:

Reverse Nil = Nil
Reverse (Cons n1 v2) = (Reverse v2) : + : (Cons n1 Nil)

32 / 66

Extension to Inductive Definitions

Extracted Minlog term

Reverse:=

((listrec |Nil|)

(lambda (n1)

(lambda (v2)

(lambda (v3) ((|ListAppend| v3) ((|Cons| n1) |Nil|))))))

More readable as recursive equations:

Reverse Nil = Nil
Reverse (Cons n1 v2) = (Reverse v2) : + : (Cons n1 Nil)

33 / 66

Part 2: Extraction of Programs from classical proofs

Example: Reverse with a classical proof

Goal: ∀v∃clwRev(v ,w)

Proof: Assume that there is a list v0 which cannot be reversed and
show a contradiction.

Then we can show that all initial segments of v0 cannot be reversed either,
i.e.

∀u, v . v ++ u = v0 → ∀w ¬Rev(v ,w).

By induction on u (using the assumption that v0 cannot be reversed).
We get a contraction because Nil can be reversed.

Question: How does the program extracted from such a proof look?

34 / 66

Part 2: Extraction of Programs from classical proofs

A-Translation

Idea: Start with classical proof, G quantifier free.

`c ∃clyG
=⇒

Double Negation Translation `m (∀y .G¬¬ → ⊥)→ ⊥.
=⇒

Replace ⊥ by arbitrary X `m (∀y . (G¬¬)X → X)→ X .
=⇒

Friedman X := ∃yG `m (∀y . (G¬¬)∃yG → ∃yG)→ ∃yG .
=⇒

Premise provable ` ∃yG .

A-translation = Double negation translation + Friedman Trick

35 / 66

Part 2: Extraction of Programs from classical proofs

Refined A-Translation

Refinement: allow assumptions D, let D, G be as general as possible, i.e.
only do double negations where necessary.

Theorem (Berger, Buchholz, Schwichtenberg)

Let D be a definite formula, G be a goal formula:

`m D → (∀y .G → ⊥)→ ⊥.

Then, we can extract

a program p and get a proof ` D → G [y/p]

Definitions of definite and goal formulas on the next slide.

36 / 66

Part 2: Extraction of Programs from classical proofs

Definition (Relevant and irrelevant formulas)

A formula is relevant if it “ends”with ⊥. More precisely, (Ir)relevant
formulas are defined inductively by the clauses

⊥ is relevant, all other atomic formulas are irrelevant,

if C is (ir)relevant and B is arbitrary, then B → C is (ir)relevant,

if, C0 and C1 are (ir)relevant, then C0 ∧ C1 is (ir)relevant.

if C is (ir)relevant, then ∀xC is (ir)relevant.

Definition (Definite and goal formulas)

D := P | G → D (provided D not rel. ⇒ G irrel.) | D ∧ D | ∀xD.

G := P | D → G (prov. D not rel.⇒ D dec.) | G ∧ G | ∀xG (prov. G irr.)

37 / 66

Part 2: Extraction of Programs from classical proofs

Extracted program from classical proof ∀v∃clwRev(v ,w)

Reverse:=

(lambda (v0)

((((listrec (lambda (v1) v1))

(lambda (n1)

(lambda (v2)

(lambda (f3) (lambda (v4) (f3 (n1::v4)))))))

v0)

|Nil|))

More readable as recursive equations:
Reverse v0 = reverse v0 Nil

reverse Nil v1 = v1

reverse (n1 :: v2) v4 = reverse v2(n1 :: v4)

Linear instead of quadratic program!
38 / 66

Part 2: Extraction of Programs from classical proofs Optimizations

Program extraction from classical proofs

Note this result is only possible if we make use of the ∀nc quantifier. (Can
be assigned automatically!)

Goal: ∀v∃clwRev(v ,w)

Proof: Assume that there is a list v0 which cannot be reversed and
show a contraction.

Then we proved that all initial segments of v0 cannot be reversed either,
i.e.

∀u, ∀ncv . v ++ u = v0 → ∀w ¬Rev(v ,w).

39 / 66

Part 2: Extraction of Programs from classical proofs Optimizations

The use of the (non-computational) nc-quantifier in the proof is essential!

Otherwise we would extract:

Reverse2v0 = reverse2 v0 Nil Nil

reverse2 Nil v1 v2 = v2

reverse2 (Cons n1 v2)v4 v5 = reverse2 v2

v4 ++ [n1]
(n1 :: v5)

40 / 66

Part 2: Extraction of Programs from classical proofs Optimizations

Application: Higman’s Lemma

Definition (Wqo)

A quasiorder (A,≤A) (i.e. ≤A refl and trans.) is a well quasiorder (wqo),
if every infinite sequence of elements in A is good, i.e.,

∀(ai)i<ω ∃i , j . i < j → ai ≤A aj

Lemma (Higman’s Lemma)

If (A,≤A) is a wqo, then also the set of finite lists with element in A
(A∗,≤A∗) is a wqo.

Proof: Use minimal-bad-sequence argument (Sketched on board).

Question: What is the program extracted from such a proof?

Demo in the interactive theorem prover Minlog; to understand extracted program

we look at a simpler problem on the following slides.
41 / 66

Part 2: Extraction of Programs from classical proofs Classical Dependent Choice

Formal proof with Classical Dependent Choice

In the proof we used the following instance of dependent choice:

DC′ B([]) ∧ ∀ns(B(ns)→ ∃n B(ns ∗ n))→ ∃g∀k B(ḡk)

DC′ follows from the more common scheme of DC:

∀n∀xρ∃yρAn(x , y)→ ∃f nat→ρ. f (0) = xρ0 ∧ ∀nAn(f (n), f (n + 1))

42 / 66

Part 2: Extraction of Programs from classical proofs Classical Dependent Choice

Why are choice principles problematic for A-translation?

DC′X is not an instance of DC′ anymore [in contrast to induction
axioms, for example]

DC′ is not a definite formula, nor can it be transformed into one using
the usual double negation translation.

Solution: Define realizer directly for the A-translated version of the
choice principle.

See Beradi, Bezem, Coquand, further developed by Berger, Oliva

43 / 66

Part 2: Extraction of Programs from classical proofs Classical Dependent Choice

A-Translation - extended.

What if we want to use assumptions which are neither definite, nor can be
translated into a definite formula?

Theorem

Let A be an arbitrary formula, but assume that we have a system ∆ and a
term t such that

∆ ` t mr AX .

Let D be a definite formula,
let G be a goal formula, and assume that

`m A→ D → (∀y .G → ⊥)→ ⊥.

Then, there is a program p such that

∆ ` D → G [y/p]
44 / 66

Part 2: Extraction of Programs from classical proofs The infinite pigeon principle

Example: The infinite pigeon hole principle

Thm

Every boolean valued sequence f nat→boole has a constant infinite
subsequence, i.e. there are infinitely many indices where the sequence is
either constant true or constant false.

Corollary (Finite Version)

For each boolean sequence f nat→boole and each number n
there is a constant subsequence of length n,
i.e. there is a list of indices ns = [n0, . . . nn−1] and a boolean value a
such that ∀i < n. f (ns i) = a.

Example

f = T F T T F T T F F . . .
n = 4

ns = [n0, . . . , n3] = [0, 2, 3, 6] 45 / 66

Part 2: Extraction of Programs from classical proofs The infinite pigeon principle

A proof of the infinite pigeon principle using dependent
choice.

Thm

Every boolean valued sequence f nat→boole has a constant infinite
subsequence, i.e. there are infinitely many indices where the sequence is
constant.

Informal proof: One of the following two cases must hold:
1

FTFFTF . . .TTTTTTTTTTTTT

The sequence f becomes constant T from a certain point on, then we
have a subsequence which is always T .

2

FTFFTFTTTFFTFTTTTT F TT F T . . .

Or ∀x∃y > x .f (y) = F . Then, using classical dependent choice, we
have a subsequence which is constant F .

46 / 66

Part 2: Extraction of Programs from classical proofs Classical Dependent Choice

Formal proof with Classical Dependent Choice

Formally we prove:

∀f nat→boole ∀n ∃ns list nat. |ns| = n ∧ Inc ns ∧ Cst f ns.

were Incns (indices ns are increasing) and Cstf ns (f is constant on ns) are
defined appropriately.

We used the following instance of dependent choice:

DC′ B([]) ∧ ∀ns(B(ns)→ ∃n B(ns ∗ n))→ ∃g∀k B(ḡk)

with B(ns) := ¬¬ (Inc ns ∧ Cst f ns).
∗ denotes the cons operation on lists.

47 / 66

Part 2: Extraction of Programs from classical proofs Classical Dependent Choice

Realizer for DC’

Theorem

Using modified bar recursion, define ΨG0,G ,Y (t) :=

Ỹ (t#λn.〈0ρ,H(G (π0 ◦ t, ([G0]#(π1 ◦ t))|t|, λxρ, zσ.ΨG0,G ,Y (t ∗ 〈x , z〉)))〉)

where

Ỹ (β) := Y (π0 ◦ β, [G0]#(π1 ◦ β))
H realizes X → BX .
denotes concatenation of lists (2.arg. poss. inf.)
π0/π1 are used for projections.

Then
λG0,G ,Y .ΨG0,G ,Y [] mr DC′X

where (DC’) is used with a relevant formula B.

48 / 66

Part 2: Extraction of Programs from classical proofs Classical Dependent Choice

Realizer for DC’: Axioms needed

Let # denote concatenation, ∗ concatenation of one elt.

1 Modified bar recursion at type ρ with the defining equation:

Ψ(Y ,G , s)
τ
= Y (s#λk .G (k, s, λx .Ψ(Y ,G , s ∗ x))).

2 Principle of continuity:
∀F (nat→ρ)→τ, αnat→ρ∃n∀β(ᾱn=β̄n→ F (α)=F (β)).

3 Principle of relativised quantifier free bar induction

∀α ∈ S∃nP(ᾱn)
∀s ∈ S .∀x(S(s ∗ x)→ P(s ∗ x))→ P(s)

S([])

P([])

49 / 66

Part 2: Extraction of Programs from classical proofs Discussion of extracted program

(lambda (f0)

(lambda (n1)

((((|Psi| (lambda (ns2) ns2))

(lambda (ns2)

(lambda (z3)

(lambda (|(nat=>(tsil nat=>tsil nat)=>tsil nat)_4|)

((((natrec n1) (lambda (ns5) ns5))

(lambda (n5)

(lambda (z6)

(lambda (ns7)

(if (f0 ((|natPlus| (|Next| ns2)) n5))

(z6 ns7)

(z3 ((|(nat=>(tsil nat=>tsil nat)=>tsil nat)_4|

((|natPlus| (|Next| ns2)) n5))

(lambda (ns8) ns8))))))))

((fbar (|natPlus| (|Next| ns2))) n1))))))

(lambda (e2)

(lambda (|(nat=>tsil nat=>tsil nat)_3|)

((|(nat=>tsil nat=>tsil nat)_3| n1) ((fbar e2) n1)))))

|Lin|)))

50 / 66

Part 2: Extraction of Programs from classical proofs Discussion of extracted program

Extracted term in Minlog: n = 3 and general case

n = 3:

f = TTTTTTTTT...

ns = [0,1,2]

f = FFFFFFFFFFFFF...

ns = [2,5,8]

General case: the programs finds

either n connected indices belonging to T ’s,

or n non-connected indices belonging to F ’s.

Discuss efficiency Scheme vs Haskell.

51 / 66

Part 2: Extraction of Programs from classical proofs Discussion of extracted program

Importance of evaluation strategy: Scheme vs Haskell

If n = 5, which indices would be found by the following function?

F TTT . . . F T T . . . F . . .
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 . . .

ns = [1, 2, 3, 4, 5]

F TTTT F T . . . F T T . . . F . . .
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 . . .

ns = [11, 12, 13, 14, 15]

Number of calls to f ? :
In Haskell: 12 - called at: 4 3 2 1 0 5 10 15 14 13 12 11

In Scheme: 1980.
52 / 66

Application: Extraction of a SAT solving algorithm

Extraction of a SAT solving algorithm

Basic definitions:

A literal l is either a positive variable +v or a negative variable −v .
The opposite value of a literal is defined as: +̄v = −v , −̄v = +v .

A clause C is defined as a set of literals {l1, . . . , lk} (representing
their disjunction).

A formula is a set of clauses (representing their conjunction).

An example of a formula:

{{l11}, {l21}, {¬l11,¬l21}}

to be read as
l11 ∧ l21 ∧ {¬l11 ∨ ¬l21}

SAT problem: is there a valuation for these variables satisfying the
formula?

53 / 66

Application: Extraction of a SAT solving algorithm

The need for verified SAT algorithms.

∗ SAT algorithms are both part of safety critical software and also used
for the verification and certification thereof.

∗ They are nowadays highly optimized for speed, which makes the
introduction of errors more likely and their verification more difficult.

∗ Beside correctness also totality is an issue. Eg 2012 SAT competition
www.smt.org many systems were not total, returning ”unknown” for
certain inputs.

54 / 66

Application: Extraction of a SAT solving algorithm

DPLL and Related Work

Most modern SAT solvers are based on the DPLL algorithm (Davies,
Putnam, Logemann, Loveland 1960/1962)
The DPLL algorithm has been verified in both Coq and Isabelle.

Both of these approaches formally state the algorithm before verifying it.
However, in contrast to this, the algorithm can also be extracted.

55 / 66

Application: Extraction of a SAT solving algorithm

DPLL Proof System

The DPLL proof system is defined by an inductive definition and proves
unsatisfiability:

Γ, l ` ∆
(Unit)

Γ ` ∆, {l}
Γ, l ` ∆,C

(Red)
Γ, l ` ∆, (l̄ ,C)

Γ, l ` ∆
(Elim)

Γ, l ` ∆, (l ,C)

(Conflict)
Γ ` ∆, ∅

Γ, l ` ∆ Γ, l̄ ` ∆
(Split)

Γ ` ∆

Here Γ is a valuation (set of literals, with values already assigned) and ∆
is a formula (clause set) .

56 / 66

Application: Extraction of a SAT solving algorithm

Valuations and Models

A valuation Γ, i.e., set of literals {l1, . . . , lk} is consistent iff
l ∈ Γ→ l̄ /∈ Γ. Let Cons be the set of all consistent Valuations.

A model is a total function M which maps literals to booleans and
satisfies the following property ∀l , M. Ml ↔ ¬(M l̄)

Two abbreviations:

For a given valuation Γ, ∀l ∈ Γ M l is abbreviated as M |= Γ.

For a given formula ∆, ∀C ∈ ∆ ∃l ∈ C M l is abbreviated as M |= ∆.

We call a valuation Γ and a formula ∆ compatible if there exists a model
satisfying both, i.e.

∃M.M |= Γ ∧M |= ∆, i .e.

∃M.M |= Γ ∧ ∀C ∈ ∆ ∃l ∈ C M l .

57 / 66

Application: Extraction of a SAT solving algorithm

Formalising and Proving Completeness

The expected statement of completeness is: ∀Γ ∈ Cons,∀∆.

incompatible(Γ; ∆)→ Γ ` ∆

We proved the following classically equivalent but constructively stronger
statement: ∀Γ ∈ Cons,∀∆.

compatible(Γ; ∆) ∨ Γ ` ∆

Program extraction yields a program that either yields a model if Γ and ∆
are compatible (∃M.M |= Γ ∧M |= ∆) or a derivation if incompatible.

58 / 66

Application: Extraction of a SAT solving algorithm

Formalising and Proving Completeness

The expected statement of completeness is: ∀Γ ∈ Cons,∀∆.

incompatible(Γ; ∆)→ Γ ` ∆

We proved the following classically equivalent but constructively stronger
statement: ∀Γ ∈ Cons,∀∆.

compatible(Γ; ∆) ∨ Γ ` ∆

Program extraction yields a program that either yields a model if Γ and ∆
are compatible (∃M.M |= Γ ∧M |= ∆) or a derivation if incompatible.

58 / 66

Application: Extraction of a SAT solving algorithm

Proof of Completeness Theorem

Theorem: ∀Γ ∈ Cons, ∀∆,Θ. ∅ /∈ Θ ∧ Var(Γ) ∩ Var(Θ) = ∅ →

(Γ ` ∆ ∪Θ) ∨ ∃M.M |= Γ ∧M |= ∆ ∪Θ,

We aim to perform the proof in such a way that an efficient program is
extracted:

1. Since performing a split is the only computational expensive
operation, we only apply it when it is absolutely necessary.

2. We perform an optimization on the proof level by partitioning the
clauses into ’clean’ and ’unclean’ clauses, where a clause is called
clean if we cannot apply Elim, Reduce or Unit to that clause.

59 / 66

Application: Extraction of a SAT solving algorithm

Extracted Solver

We run the extracted solver using pigeon hole formulae

PHP(n,m) := {li ,1 ∨ . . . ∨ li ,m|1 ≤ i ≤ n}

∪{¬li ,k ∨ ¬lj ,k |1 ≤ i < j ≤ n, 1 ≤ k ≤ m}

Intuitively, PHP(n,m) states ”it is not possible to put n pigeons into m
holes and only have one pigeon in each hole”

60 / 66

Application: Extraction of a SAT solving algorithm

Extracted Program (cont.)

On satisfiable formulae:

PHP(2, 2) PHP(3, 3) PHP(4, 4) PHP(5, 5) PHP(6, 6)

< 1 Sec < 1 Sec 5.45 26.09 1:34.11

On unsatisfiable formulae:

PHP(2, 1) PHP(3, 2) PHP(4, 3) PHP(5, 4) PHP(6, 5)

< 1 Sec 1.17 33.62 13:54 5:35:41

61 / 66

Application: Extraction of a SAT solving algorithm

Extraction to Haskell:

Formula Minlog ∀ Minlog ∀nc Haskell Haskell (-fllvm)

Witness Witness Witness Yes/No Witness Yes/No

PHP(4,3) 33.62s 11.61s 0.019s 0.006s 0.015s 0.004s
PHP(4,4) 5.45s 5.25s 0.019s 0.010s 0.014s 0.007s
PHP(5,4) 13m54s 2m41s 0.055s 0.020s 0.036s 0.012s
PHP(5,5) 26.09s 25.03s 0.024s 0.015s 0.020s 0.010s
PHP(6,5) 5h35m41s 37m25s 0.367s 0.066s 0.279s 0.039s
PHP(6,6) 1m34.11s 1m24.88s 0.035s 0.025 0.025s 0.015s

PHP(8,8) - - 0.054s 0.029s 0.040s 0.025s
PHP(9,8) - - - 1m21.915s - 32.062s
PHP(9,9) - - 0.064s 0.042s 0.052s 0.030s

PHP(10,9) - - - 102m 16s - 15m 5s

62 / 66

Application: Extraction of a SAT solving algorithm

Performance compared to Versat

Versat was formalized and verified in the dependently typed programming
language Guru and translated into C-code.

Formula ∀nc compiled (Yes/No) Versat

PHP(7,6) 0.226s 0.089s
PHP(8,7) 2.42s 0.794s
PHP(9,8) 32.062s 17.217s

PHP(10,9) 15m 5s 15m 46s

63 / 66

Application: Extraction of a SAT solving algorithm

Comparison to Industrial Tool

Case study on the Verification of Railway Interlockings.
Contains 14726 clauses and 8166 variables.
Verified 109 safety conditions.
The hardest, called SC1, is unsatisfiable (due to the underspecification of
the system which does not include all physical invariants).

Formula ∀nc compiled SCADE

Yes/No Witness SAT/Counter Example

SC1 8s 12s <1s

64 / 66

Program Extraction

Program Extraction - Research Agenda

Establish Program Extraction from Formal Proofs as a Competitive
Method for Program Development and Verification

The concrete steps are:

Extend theory to cover a large range of proofs (→ Inductive and
coinductive Defs, Classical reasoning, Imperative programs, Higher
Order Logic)

Use it to reveal unknown computational content in proofs
(Mathematics), but also apply to industrial problems.

Highlight advantages over other methods of program
development and verification: get algorithms for free.

Improve feasibility; provide suitable tool support.

65 / 66

Program Extraction References

G. Kreisel. On weak completeness of intuitionistic predicate logic. The
Journal of Symbolic Logic, 27:139–158, 1962.
A. S. Troelstra. Metamathematical Investigation of Intuitionistic
Arithmetic and Analysis, volume 344 of LNM. Springer, 1973.
H. Schwichtenberg and S. Wainer, Proofs and Computations,
Perspectives in Logic, Association for Symbolic Logic and Cambridge
University Press, 2012.
U. Berger, W. Buchholz, and H. Schwichtenberg, Refined Program
Extraction from Classical Proofs, APAL 114:3–25, 2002.
U. Berger, K. Miyamoto, M. Seisenberger, and H. Schwichtenberg,
Minlog - A tool for program extraction supporting algebras and
coalgebras, LNCS 6859, pp. 393-399, 2011.
L. Crosilla, H. Schwichtenberg, M. Seisenberger, A Tutorial for
Minlog,Version 5.0, available at www.minlog-system.de
M. Seisenberger, Programs from Proofs using Classical Dependent
Choice. APAL 153:97–110, 2008.
U. Berger, A. Lawrence, F. Nordvall Forsberg, and M. Seisenberger,
Extracting Verified Decision Procedures: DPLL and Resolution, LMCS
11(1), 2015. 66 / 66

	Part 1: Extraction of Programs from Constructive Proofs
	Optimizations

	Tool support: Minlog
	Extension to Inductive Definitions
	Part 2: Extraction of Programs from classical proofs
	Optimizations
	Classical Dependent Choice
	The infinite pigeon principle
	Classical Dependent Choice
	Discussion of extracted program

	Application: Extraction of a SAT solving algorithm
	Program Extraction
	References

