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Yablo’s paradox

Y0 For any k > 0, Yk is false.
Y1 For any k > 1, Yk is false.
Y2 For any k > 2, Yk is false.

...
Yn For any k > n , Yk is false.

...

Suppose Yn .

So for any j > n , ¬Yj .

So ¬Yn+1 and for any j > n + 1, ¬Yj .

So Yn+1. Contradiction.

So ¬Yn unconditionally.

So ∃k > n Yk . Rinse and repeat.
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Background assumptions (Ketland, 2005)

Uniform disquotation
∀x (Y(x) ≡ Tr(Y(x)))

Local disquotation
For any particular n , assume Y(n̄) ≡ Tr(Y(n̄)).

ω-rule
If for any n ϕ(n̄), derive ∀xϕ(x).
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Finitistic way out?

The idea
If the world is finite, there are only finitely many Yablo
sentences, and the last one is vacuously true.

The challenge
Make sense of arithmetic in a formal finitistic setting.

The strategy
There could be more things: potential infinity.
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Arithmetization of Yablo sentences
Theorem
Let T be a first-order theory in the language LTr , containing Q
(nice). Then, for any LTr-formula ϕ(x ,y) there is a LTr-formula
ψ(x) such that:

T ` ψ(x) ≡ ϕ(x ,pψ(x)q).

Notation (“quantification over numerals”)

Qx P(pϕ(ẋ)q), where Q ∈ {∀,∃}, reads:
For all natural numbers x (there exists a natural number x such
that), the result of substituting a numeral denoting x for a vari-
able free in ϕ has property P.

Definition (Yablo formula/sentence)

Y(x) is a Yablo formula in T iff

T ` ∀x(Y(x) ≡ ∀w > x¬Tr(pY(ẇ)q)).
Yablo sentences are of the form Y(n̄).
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Existence of Yablo Formulas (Priest, 1997)

Theorem
If T is nice, there exists a Yablo formula in T.

Proof.
Let ϕ(x ,y) = ∀w > x ¬Tr(sub(y ,pyq,name(w))).
By the Diagonal Lemma, there is a formula Y(x) s.t.:

T ` Y(x) ≡ ∀w > x ¬Tr(sub(pY(x)q,pyq,name(w))).

T ` Y(x) ≡ ∀w > x ¬Tr(pY(ẇ)q).
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ω-inconsistency of Yablo formulas (Ketland, 2005)

Statement

Definition (ω-consistency)

T is ω-consistent iff there is no ϕ(x) s.t. simultaneously:
∀n ∈ω T ` ¬ϕ(n)

T ` ∃xϕ(x)
T is ω-inconsistent o/w.

Definition (PAF)
Let LF be standard language extended with F .

PAF := PA∪ {F(n) ≡ ∀x > n ¬F(x) : n ∈ω}

Theorem
PAF is ω-inconsistent.
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ω-inconsistency of Yablo formulas (Ketland, 2005)

Proof

Work in PAF. Fix an n ∈ω and assume F(n).
∀x > n ¬F(x). (?)

In particular, ∀x > n + 1¬F(x).

This is equivalent to F(n + 1).

But from (?), ¬F(n + 1) follows. Contradiction.

So unconditionally ¬F(n):
∀n ∈ω PAF ` ¬F(n). (1)

By definition of PAF:

∀n ∈ω PAF ` ∃x > n F(x).
In particular:

PAF ` ∃x F(x). (2)

(1) + (2)⇒ ω-inconsistency.
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The consistency of Yablo formulas

Theorem
PAF is consistent.

Proof.
Take a nonstandard modelM of PA.

Pick a nonstandard a ∈M , let A = {a}.
Put FM = A .

∀n ∈ω (M,A) |= ¬F(n).

But also, (M,A) |= ∃x F(x).

Moreover, ∀n ∈ω (M,A) |= ∃x > n F(x).

Hence ∀n ∈ω (M,A) |= F(n) ≡ ∀x > n ¬F(x)
(both sides are false).

So (M,A) |= PAF and PAF is consistent.
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Adding local disquotation

Definition
AD = {Tr(pϕq) ≡ ϕ : ϕ ∈ SentL}

YD = {Tr(pY(n)q) ≡ Y(n) : Y(n) belongs to the Yablo sequence}.

Definition (PAD)

PAT is obtained from PA by adding Tr (induction!)
PAD = PAT∪AD ∪YD .
PA−

D
is PAD with induction without Tr .

Theorem
PAD is ω-inconsistent.
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Adding local disquotation

Theorem
PAD is ω-inconsistent.

Proof.
Existence of YF entails:

∀n ∈ω PAD ` Y(n) ≡ ∀x > n ¬Tr(pY(ẋ)q).

By the inclusion of YD we get:
∀n ∈ω PAD ` Tr(pY(n)q) ≡ ∀x > n ¬Tr(pY(ẋ)q).

Let F(x) := Tr(pY(ẋ)q):
∀n ∈ω PAD ` F(n) ≡ ∀x > n¬F(x).

So PAD contains PAF (which is ω-inconsistent).
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Let F(x) := Tr(pY(ẋ)q):
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The consistency of PA−
D

Theorem
PA−

D
is consistent.

Proof.
Take a nonstandardM of PA.

Let t(x) := pY(ẋ)q. By overspill, there are nonstandard
b and c such that tM(b) = c .

Let TrM = S = ThL(M)∪ {c}. Clearly, (M,S) |= AD .
∀n ∈ω (M,S) |= ∃x > n Tr(pY(ẋ)q)

∀n ∈ω (M,S) |= ¬Y(n̄)
Standard Y(n) are not in S , so:

∀n ∈ω (M,S) |= ¬Tr(pY(n̄)q).

So (M,S) |= YD (UYD fails here).
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∀n ∈ω (M,S) |= ∃x > n Tr(pY(ẋ)q)

∀n ∈ω (M,S) |= ¬Y(n̄)

Standard Y(n) are not in S , so:
∀n ∈ω (M,S) |= ¬Tr(pY(n̄)q).

So (M,S) |= YD (UYD fails here).
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The consistency of PAD

Theorem
PAD is consistent.

Proof.
By finite satisfiability (put only the last Yablo sentence in the
extension of Tr , check induction holds), and compactness.
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Conservativeness of PAD

Theorem
PAD is a conservative extension of PA.

Proof.
Suppose PA 0 ϕ.

So PA∪ {¬ϕ} is consistent.

For a nonstandardM of PA,M |= ¬ϕ.

There is an elementarily equivalentM′ such that
(M′ ,TrM

′
) |= PAD.

(M′ ,TrM
′
) 6|= ϕ, and so PAD 0 ϕ.
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Uniform Yablo Disquotation yields contradiction

Definition
UYD = ∀x(Tr(pY(ẋ)q) ≡ Y(x))

Theorem
Let S = PAT+ UYD. S is inconsistent.

Work in S.
∀x (Y(x) ≡ ∀w > x¬Tr(pY(ẇ)q)) [Yablo existence]

UYD gives ∀x (Y(x) ≡ ∀w > x ¬Y(w)).

So ∀x (Y(x) ≡ ∀w > x∃z > w Tr(pY(ż)q)) [unraveling].

By UYD: ∀x (Y(x) ≡ ∀w > x ∃z > w Y(z))

So ∀x (Y(x) ≡ ∃w > x Y(w))

∀x ((∀w > x¬Y(w)) ≡ (∃w > xY(w)))
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UYD gives ∀x (Y(x) ≡ ∀w > x ¬Y(w)).

So ∀x (Y(x) ≡ ∀w > x∃z > w Tr(pY(ż)q)) [unraveling].
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Local disquotation with ω-rule is inconsistent

Theorem
Let PAω−D = (PAT− ∪ AD∪ YD)ω. PAω−D is inconsistent.
(AD is not needed.)

Proof idea.
∀n ∈ω PA

ω−
D ` ¬Y(n) [internalized standard reasoning]

∀n ∈ω PA
ω−
D ` ¬Tr(pY(n)q) [Y disquotation]

PA
ω−
D ` ∀x ¬Tr(pY(ẋ)q) [ω-rule]

In particular: PAω−D ` Y(23)
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Classical set-up vs. Yablo

Even those theories which prove the existence of Yablo
sentences are still consistent.

They’re ω-inconsistent with local Yablo disquotation,
though.

One way to obtain a contradiction: uniform Yablo
disquotation.

Another one: local disquotation and ω − rule .
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sl-semantics (Mostowski, 2001a,b, 2016)

Definition (FM -domains)
Take a relational arithmetical language.

FM(N) = {Nn : n = 1,2, ...}
Nn = ({0,1, ...,n −1},+(n),×(n),0(n),s(n),<(n)).

Definition (sl -theory of FM(N))

Satisfaction in finite points in FM(N) is standard.

FM(N) |=sl ϕ iff ∃m ∀k (k ≥m ⇒ Nk |= ϕ)

sl(FM(N)) = {ϕ ∈ SentL : FM(N) |=sl ϕ}

Definition (FM(N)T )

An FM(N)T -domain is a set of (Nk ,Tk ) containing a unique
member for each k ∈ω, where Tk ⊆ {0, ...,k −1} .
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Things that are kinda the same

Syntax is still representable.

Truth is still undefinable.

Diagonal lemma still sl -holds.

Theorem (sl-Yablo existence)

There exists a formula Y(x) s.t. for any FM(N)T -domain:

∀n ∈ω FM(N)T |=sl Y(n) ≡ ∀x (x > n⇒¬Tr(pY(ẋ)q))
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YS are non-trivially false in the limit

Theorem
For any class K of finite models, if K |=sl AD + YD, then:
∀n ∈ω K |=sl ¬Y(n). AD is not essential.

Reason.
The standard argument still flies, mutatis mutandis.

Theorem
There is an FM-domain sl-satisfying AD∪ YD.

Reason.
In each point take truth to refer to all existing codes of true
arithmetical formula, and the code of the last YS.
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There is no free lunch

Theorem
There is an FM-domain sl-satisfying AD∪ YD.

Theorem (The cost)
The sl-theory of this model is ω-inconsistent.

Reason.
Each particular YS is sl -fails.

In each finite point, the last YS is satisfied.

Some YS is true sl -holds.

Fact (Cheap shot)
n is the greatest number sl-fails, for any n.

The greatest number exists sl -holds.
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Modal interpretation of quantifiers (Urbaniak, 2016)

Definition (Accessibility relation in FM-domains)

R(M ,N) iff M ⊆ N .
For Nm , Nn ∈ FM(N) this boils down to m ≤ n .

Definition (m-semantics)

If ϕ is atomic, then (K,M) |=m ϕ, iff M |= ϕ.

Clauses for boolean connectives are standard.

(K,M) |=m ∃xϕ(x) iff there are N ∈ K and a ∈ N s.t.
R(M ,N) and (K,N) |=m ϕ[a].

Definition (msl -theory)
msl(FM(N)) = {ϕ : ∃n ∀k k ≥ n⇒ (FM(N),Nk ) |=m ϕ}

Example
(∃x ∀y x ≥ y) ∈ sl(FM(N)),<msl(FM(N))
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If ϕ is atomic, then (K,M) |=m ϕ, iff M |= ϕ.

Clauses for boolean connectives are standard.

(K,M) |=m ∃xϕ(x) iff there are N ∈ K and a ∈ N s.t.
R(M ,N) and (K,N) |=m ϕ[a].

Definition (msl -theory)
msl(FM(N)) = {ϕ : ∃n ∀k k ≥ n⇒ (FM(N),Nk ) |=m ϕ}

Example
(∃x ∀y x ≥ y) ∈ sl(FM(N)),<msl(FM(N))
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Arithmetic regained

Theorem
msl(FM(N)) = Th(N)

Reason.
Finite points are submodels of N.

Q-free ϕ are preserved for parameters in a point.

∃xϕ true in N has a finite witness, which belongs to some
finite point.
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YS & the modal interpretation

Theorem

If YD ⊆msl(FM(N)Y ), then:

∀n ∈ω Y(n) <msl(FM(N)Y )

Proof.

Suppose ∃n Y(n) ∈msl(FM(NY )).

∃l ∀k ≥ l Nk |=m Y(n)

Pick a witness. ∀k ≥ l Nk |=m ∀x (x > n→¬Tr(Y(x))).

∀k ≥ l∀p ≥ k∀a < p Np |=m a > n→¬Tr(Y(a)).
∀p ≥ l ∀a ∈ (n ,p)Np |= ¬Tr(Y(a))

YD: ∀p ≥ l ∀a ∈ (n ,p)Np |=m ¬Y(a)

Np |=m ∃x > a Tr(Y(x)) (content of ¬Y(a))

∃q ≥ p ∃b < q Nq |=m b > a ∧Tr(Y(b))

∃q ≥ p ∃b ∈ (a ,q)Nq |=m Tr(Y(b)) Contradiction.
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No LYD

Theorem

There is no FM(N)Y -domain such that YD ⊆msl(FM(N)Y ).

Proof.
Suppose o/w.

Previous theorem: ∀n ∀l ∃k ≥ l Nk 6|=m Y(n)

∀n∀l∃p ≥ l∃a > n Np |=m Tr(Y(a)) (content of YS)

YD: ∀n∀l∃p ≥ l∃a > n Np |=m Y(a).

Let n = l = 0: ∃p ,a > 0∀q ≥ p Nq |=m ∀x > a ¬Tr(Y(x))

Pick witness a > 0. Y(a) ∈msl(FM(N)Y ). Contradiction!
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Summing up

Standard setting
LAD and LYD are consistent, yet ω-inconsistent.
Adding ω-rule or UYD gives inconsistency.

sl -semantics
YS are all false, the sl -theory is consistent, but ω-inconsistent.
Also, sl(FM(N)) itself is ω-inconsistent.

m-semantics
Arithmetic regained, adding LAD and LYD gives inconsistency.
UYD or ω-rule are not needed.
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Thank you! Questions?

Finite model in concreto

A finite sequence of finite books each saying that all the ones behind it are
false. The last one is right.
(Or so we like to think.)
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