Modal Quantifiers, Potential Infinity, and Yablo sequences

Michał Tomasz Godziszewski (University of Warsaw) Rafał Urbaniak (Ghent University, University of Gdańsk)

Proof Society Summer School 2018

◆□▶ ◆□▶ ◆ ■▶ ◆ ■▶ ● ■ · · · ○ へ ○ · 1/29

Outline

Yablo's paradox

Arithmetization of Yablo sentences

Potentially infinite domains and sl-semantics

Modal interpretation of quantifiers in potentially infinite domains

LYD makes YS msl-fail

Summing up

 Y_n For any k > n, Y_k is false.

•

÷

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ < 三 > ○ < ○ 3/29

• Suppose Y_n .

- Suppose Y_n .
- So for any $j > n, \neg Y_j$.

- Suppose *Y_n*.
- So for any $j > n, \neg Y_j$.
- So $\neg Y_{n+1}$ and for any j > n+1, $\neg Y_j$.

- Suppose Y_n.
- So for any $j > n, \neg Y_j$.
- So $\neg Y_{n+1}$ and for any j > n+1, $\neg Y_j$.
- So Y_{n+1} . Contradiction.

- Suppose Y_n.
- So for any $j > n, \neg Y_j$.
- So $\neg Y_{n+1}$ and for any j > n+1, $\neg Y_j$.
- So Y_{n+1} . Contradiction.
- So $\neg Y_n$ unconditionally.

$$\begin{array}{ll} Y_0 & \text{For any } k > 0, \ Y_k \text{ is false.} \\ Y_1 & \text{For any } k > 1, \ Y_k \text{ is false.} \\ Y_2 & \text{For any } k > 2, \ Y_k \text{ is false.} \\ & \vdots \\ Y_n & \text{For any } k > n, \ Y_k \text{ is false.} \\ & \vdots \end{array}$$

- Suppose Y_n .
- So for any $j > n, \neg Y_j$.
- So $\neg Y_{n+1}$ and for any j > n+1, $\neg Y_j$.
- So Y_{n+1} . Contradiction.
- So $\neg Y_n$ unconditionally.
- So $\exists k > n Y_k$. Rinse and repeat.

Background assumptions (Ketland, 2005)

Uniform disquotation $\forall x (Y(x) \equiv Tr(Y(x)))$

Background assumptions (Ketland, 2005)

Uniform disquotation $\forall x (Y(x) \equiv Tr(Y(x)))$

Local disquotation

For any particular *n*, assume $Y(\bar{n}) \equiv Tr(Y(\bar{n}))$.

Background assumptions (Ketland, 2005)

Uniform disquotation $\forall x (Y(x) \equiv Tr(Y(x)))$

Local disquotation

For any particular *n*, assume $Y(\bar{n}) \equiv Tr(Y(\bar{n}))$.

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ 三三 - のへで - 4/29

ω -rule

If for any $n \varphi(\bar{n})$, derive $\forall x \varphi(x)$.

Finitistic way out?

The idea

If the world is finite, there are only finitely many Yablo sentences, and the last one is vacuously true.

◆□ → < 団 → < 茎 → < 茎 → < 茎 → < ○ < ○ 5/29</p>

Finitistic way out?

The idea

If the world is finite, there are only finitely many Yablo sentences, and the last one is vacuously true.

The challenge

Make sense of arithmetic in a formal finitistic setting.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - - のへで 5/29

Finitistic way out?

The idea

If the world is finite, there are only finitely many Yablo sentences, and the last one is vacuously true.

The challenge

Make sense of arithmetic in a formal finitistic setting.

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ◆ ○ ● ◆ ○ 5/29

The strategy

There **could** be more things: **potential infinity**.

Arithmetization of Yablo sentences

Theorem

Let T be a first-order theory in the language \mathcal{L}_{Tr} , containing Q (nice). Then, for any \mathcal{L}_{Tr} -formula $\varphi(x, y)$ there is a \mathcal{L}_{Tr} -formula $\psi(x)$ such that: $\Gamma \vdash \psi(x) \equiv \varphi(x, \overline{\neg \psi(x)} \neg).$

Notation ("quantification over numerals")

 $Qx P(\ulcorner \varphi(\dot{x})\urcorner)$, where $Q \in \{\forall, \exists\}$, reads: For all natural numbers x (there exists a natural number x such that), the result of substituting a numeral denoting x for a variable free in φ has property P.

Definition (Yablo formula/sentence)

Y(x) is a Yablo formula in T iff

$$\mathsf{T} \vdash \forall x (Y(x) \equiv \forall w > x \neg Tr(\overline{\ulcorner Y(\dot{w}) \urcorner})).$$

Yablo sentences are of the form $Y(\bar{n})$.

Existence of Yablo Formulas (Priest, 1997)

Theorem If T is nice, there exists a Yablo formula in T.

◆□ → ◆□ → ◆ ■ → ▲ ■ → ● ● ○ へ ○ 7/29

Existence of Yablo Formulas (Priest, 1997)

Theorem

If T is nice, there exists a Yablo formula in T.

Proof.

- Let $\varphi(x,y) = \forall w > x \neg Tr(sub(y, \ulcorner y \urcorner, name(w))).$
- By the Diagonal Lemma, there is a formula Y(x) s.t.:

$$\mathsf{T} \vdash \mathsf{Y}(x) \equiv \forall w > x \neg \mathsf{Tr}(\mathsf{sub}(\overline{\ulcorner \mathsf{Y}(x)}, \ulcorner y \urcorner, \mathsf{name}(w))).$$

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ 三三 - のへで - 7/29

•
$$T \vdash Y(x) \equiv \forall w > x \neg Tr(\overline{\ulcorner Y(\dot{w}) \urcorner}).$$

ω -inconsistency of Yablo formulas (Ketland, 2005) Statement

Definition (ω -consistency)

T is ω -consistent iff there is no $\varphi(x)$ s.t. simultaneously: $\forall n \in \omega \ \mathsf{T} \vdash \neg \varphi(\overline{n})$ $\mathsf{T} \vdash \exists x \varphi(x)$

T is ω -inconsistent o/w.

ω -inconsistency of Yablo formulas (Ketland, 2005) Statement

Definition (ω -consistency)

T is ω -consistent iff there is no $\varphi(x)$ s.t. simultaneously:

 $\forall n \in \omega \ \mathsf{T} \vdash \neg \varphi(\overline{n})$ $\mathsf{T} \vdash \exists x \varphi(x)$

T is ω -inconsistent o/w.

Definition (PA_F)

Let \mathcal{L}_F be standard language extended with F.

 $\mathsf{PA}_{\mathsf{F}} := \mathsf{PA} \cup \{ F(\overline{n}) \equiv \forall x > \overline{n} \neg F(x) : n \in \omega \}$

ω -inconsistency of Yablo formulas (Ketland, 2005) Statement

Definition (ω -consistency)

T is ω -consistent iff there is no $\varphi(x)$ s.t. simultaneously:

 $\forall n \in \omega \ \mathsf{T} \vdash \neg \varphi(\overline{n})$ $\mathsf{T} \vdash \exists x \varphi(x)$

T is ω -inconsistent o/w.

Definition (PA_F)

Let \mathcal{L}_F be standard language extended with F.

$$\mathsf{PA}_{\mathsf{F}} := \mathsf{PA} \cup \{ F(\overline{n}) \equiv \forall x > \overline{n} \neg F(x) : n \in \omega \}$$

Theorem

 PA_F is ω -inconsistent.

• Work in PA_F. Fix an $n \in \omega$ and assume $F(\overline{n})$.

$$\forall x > \overline{n} \neg F(x). \tag{(\star)}$$

• Work in PA_F. Fix an
$$n \in \omega$$
 and assume $F(\overline{n})$.
 $\forall x > \overline{n} \neg F(x)$.

• In particular, $\forall x > \overline{n+1} \neg F(x)$.

(*)

• Work in PA_F. Fix an $n \in \omega$ and assume $F(\overline{n})$. $\forall x > \overline{n} \neg F(x)$.

(*)

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 臣 · ⑦ �(?) 9/29

• In particular,
$$\forall x > \overline{n+1} \neg F(x)$$
.

• This is equivalent to $F(\overline{n+1})$.

• Work in PA_F. Fix an $n \in \omega$ and assume $F(\overline{n})$.

$$\forall x > \overline{n} \neg F(x). \tag{(\star)}$$

▲□▶▲□▶▲■▶▲■▶ ■ の�@ 9/29

- In particular, $\forall x > \overline{n+1} \neg F(x)$.
- This is equivalent to $F(\overline{n+1})$.
- But from (\star) , $\neg F(\overline{n+1})$ follows. Contradiction.

• Work in PA_F . Fix an $n \in \omega$ and assume $F(\overline{n})$.

$$\forall x > \overline{n} \neg F(x). \tag{(\star)}$$

▲□▶▲□▶▲■▶▲■▶ ■ の�� 9/29

- In particular, $\forall x > \overline{n+1} \neg F(x)$.
- This is equivalent to $F(\overline{n+1})$.
- But from (\star) , $\neg F(\overline{n+1})$ follows. Contradiction.
- So unconditionally $\neg F(\overline{n})$:

• Work in PA_F . Fix an $n \in \omega$ and assume $F(\overline{n})$.

$$\forall x > \overline{n} \neg F(x). \tag{(\star)}$$

- In particular, $\forall x > \overline{n+1} \neg F(x)$.
- This is equivalent to $F(\overline{n+1})$.
- But from (\star) , $\neg F(\overline{n+1})$ follows. Contradiction.

• So unconditionally
$$\neg F(\overline{n})$$
:
 $\forall n \in \omega \ \mathsf{PA}_{\mathsf{F}} \vdash \neg F(\overline{n}).$ (1)

• Work in PA_F . Fix an $n \in \omega$ and assume $F(\overline{n})$.

$$\forall x > \overline{n} \neg F(x). \tag{(\star)}$$

- In particular, $\forall x > \overline{n+1} \neg F(x)$.
- This is equivalent to $F(\overline{n+1})$.
- But from (\star) , $\neg F(\overline{n+1})$ follows. Contradiction.
- So unconditionally $\neg F(\overline{n})$:

$$\forall n \in \omega \ \mathsf{PA}_{\mathsf{F}} \vdash \neg F(\overline{n}). \tag{1}$$

• By definition of PA_F:

$$\forall n \in \omega \ \mathsf{PA}_{\mathsf{F}} \vdash \exists x > \overline{n} F(x).$$

• Work in PA_F . Fix an $n \in \omega$ and assume $F(\overline{n})$.

$$\forall x > \overline{n} \neg F(x). \tag{(\star)}$$

- In particular, $\forall x > \overline{n+1} \neg F(x)$.
- This is equivalent to $F(\overline{n+1})$.
- But from (\star) , $\neg F(\overline{n+1})$ follows. Contradiction.
- So unconditionally $\neg F(\overline{n})$:

$$\forall n \in \omega \ \mathsf{PA}_{\mathsf{F}} \vdash \neg F(\overline{n}). \tag{1}$$

• By definition of PA_F:

$$\forall n \in \omega \ \mathsf{PA}_{\mathsf{F}} \vdash \exists x > \overline{n} F(x).$$

In particular:

$$\mathsf{PA}_{\mathsf{F}} \vdash \exists x \, F(x). \tag{2}$$

▲□▶▲□▶▲≧▶▲≧▶ ≧ のへで 9/29

• Work in PA_F . Fix an $n \in \omega$ and assume $F(\overline{n})$.

$$\forall x > \overline{n} \neg F(x). \tag{(\star)}$$

- In particular, $\forall x > \overline{n+1} \neg F(x)$.
- This is equivalent to $F(\overline{n+1})$.
- But from (\star) , $\neg F(\overline{n+1})$ follows. Contradiction.
- So unconditionally $\neg F(\overline{n})$:

$$\forall n \in \omega \ \mathsf{PA}_{\mathsf{F}} \vdash \neg F(\overline{n}). \tag{1}$$

• By definition of PA_F:

$$\forall n \in \omega \ \mathsf{PA}_{\mathsf{F}} \vdash \exists x > \overline{n} F(x).$$

In particular:

$$\mathsf{PA}_{\mathsf{F}} \vdash \exists x \, F(x). \tag{2}$$

• $(1) + (2) \Rightarrow \omega$ -inconsistency.

Theorem PA_F is consistent.

Theorem PA_F is consistent.

Proof.

 $\bullet\,$ Take a nonstandard model ${\cal M}$ of PA.

Theorem PA_F is consistent.

- $\bullet\,$ Take a nonstandard model ${\cal M}$ of PA.
- Pick a nonstandard $a \in M$, let $A = \{a\}$.

Theorem PA_F is consistent.

- $\bullet\,$ Take a nonstandard model ${\cal M}$ of PA.
- Pick a nonstandard $a \in M$, let $A = \{a\}$.

• Put
$$F^{\mathcal{M}} = A$$
.

Theorem

PA_F is consistent.

- $\bullet\,$ Take a nonstandard model ${\cal M}$ of PA.
- Pick a nonstandard $a \in M$, let $A = \{a\}$.

• Put
$$F^{\mathcal{M}} = A$$

•
$$\forall n \in \omega (\mathcal{M}, A) \models \neg F(n).$$

Theorem

PA_F is consistent.

- Take a nonstandard model ${\cal M}$ of PA.
- Pick a nonstandard $a \in M$, let $A = \{a\}$.
- Put $F^{\mathcal{M}} = A$.
- $\forall n \in \omega (\mathcal{M}, A) \models \neg F(n).$
- But also, $(\mathcal{M}, A) \models \exists x F(x)$.
The consistency of Yablo formulas

Theorem

PA_F is consistent.

- Take a nonstandard model ${\cal M}$ of PA.
- Pick a nonstandard $a \in M$, let $A = \{a\}$.
- Put $F^{\mathcal{M}} = A$.
- $\forall n \in \omega (\mathcal{M}, A) \models \neg F(n).$
- But also, $(\mathcal{M}, A) \models \exists x F(x)$.
- Moreover, $\forall n \in \omega (\mathcal{M}, A) \models \exists x > n F(x)$.

The consistency of Yablo formulas

Theorem

PA_F is consistent.

- Take a nonstandard model ${\cal M}$ of PA.
- Pick a nonstandard $a \in M$, let $A = \{a\}$.
- Put $F^{\mathcal{M}} = A$.
- $\forall n \in \omega (\mathcal{M}, A) \models \neg F(n).$
- But also, $(\mathcal{M}, A) \models \exists x F(x)$.
- Moreover, $\forall n \in \omega \ (\mathcal{M}, A) \models \exists x > n F(x)$.
- Hence $\forall n \in \omega$ $(\mathcal{M}, A) \models F(n) \equiv \forall x > n \neg F(x)$ (both sides are false).

The consistency of Yablo formulas

Theorem

PA_F is consistent.

- Take a nonstandard model ${\cal M}$ of PA.
- Pick a nonstandard $a \in M$, let $A = \{a\}$.
- Put $F^{\mathcal{M}} = A$.
- $\forall n \in \omega (\mathcal{M}, A) \models \neg F(n).$
- But also, $(\mathcal{M}, A) \models \exists x F(x)$.
- Moreover, $\forall n \in \omega (\mathcal{M}, A) \models \exists x > n F(x)$.
- Hence $\forall n \in \omega$ $(\mathcal{M}, A) \models F(n) \equiv \forall x > n \neg F(x)$ (both sides are false).
- So $(\mathcal{M}, A) \models PA_F$ and PA_F is consistent.

Definition $AD = \{Tr(\overline{\neg \varphi \neg}) \equiv \varphi : \varphi \in Sent_{\mathcal{L}}\}$ $YD = \{Tr(\overline{\neg Y(\overline{n})} \neg) \equiv Y(\overline{n}) : Y(\overline{n}) \text{ belongs to the Yablo sequence}\}.$

Definition $AD = \{Tr(\overline{\neg \varphi \neg}) \equiv \varphi : \varphi \in Sent_{\mathcal{L}}\}$ $YD = \{Tr(\overline{\neg Y(\overline{n})} \neg) \equiv Y(\overline{n}) : Y(\overline{n}) \text{ belongs to the Yablo sequence}\}.$

$Definition \left(PA_{D}\right)$

PAT is obtained from PA by adding *Tr* (induction!) $PA_D = PAT \cup AD \cup YD$. PA_D^- is PA_D with induction without *Tr*.

Definition $AD = \{Tr(\overline{\ulcorner \varphi \urcorner}) \equiv \varphi : \varphi \in Sent_{\mathcal{L}}\}$

 $YD = \{Tr(\ulcorner Y(\overline{n})\urcorner) \equiv Y(\overline{n}) : Y(\overline{n}) \text{ belongs to the Yablo sequence}\}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�� 11/29

$Definition \left(PA_{D}\right)$

PAT is obtained from PA by adding *Tr* (induction!) $PA_D = PAT \cup AD \cup YD$. PA_D^- is PA_D with induction without *Tr*.

Theorem

 PA_D is ω -inconsistent.

Theorem

 PA_D is ω -inconsistent.

Proof.

• Existence of YF entails:

$$\forall n \in \omega \ \mathsf{PA}_{\mathsf{D}} \vdash Y(\overline{n}) \equiv \forall x > \overline{n} \neg Tr(\overline{\ulcorner Y(\dot{x}) \urcorner}).$$

Theorem

 PA_D is ω -inconsistent.

Proof.

• Existence of YF entails:

$$\forall n \in \omega \ \mathsf{PA}_{\mathsf{D}} \vdash Y(\overline{n}) \equiv \forall x > \overline{n} \neg Tr(\overline{\ulcorner Y(\dot{x}) \urcorner}).$$

• By the inclusion of YD we get: $\forall n \in \omega \operatorname{PA}_{D} \vdash \operatorname{Tr}(\overline{\ulcorner Y(\overline{n})}\urcorner) \equiv \forall x > \overline{n} \neg \operatorname{Tr}(\overline{\ulcorner Y(\dot{x})}\urcorner).$

Theorem

 PA_D is ω -inconsistent.

Proof.

• Existence of YF entails:

$$\forall n \in \omega \ \mathsf{PA}_{\mathsf{D}} \vdash \mathsf{Y}(\overline{n}) \equiv \forall x > \overline{n} \neg \mathsf{Tr}(\overline{\ulcorner \mathsf{Y}(\dot{x})} \urcorner).$$

• By the inclusion of *YD* we get:

$$\forall n \in \omega \operatorname{PA}_{\mathrm{D}} \vdash \operatorname{Tr}(\overline{\ulcorner Y(\overline{n})\urcorner}) \equiv \forall x > \overline{n} \neg \operatorname{Tr}(\overline{\ulcorner Y(\dot{x})\urcorner})$$

• Let
$$F(x) := Tr(\overline{\ulcorner Y(\dot{x}) \urcorner})$$
:
 $\forall n \in \omega \ \mathsf{PA}_{\mathsf{D}} \vdash F(\overline{n}) \equiv \forall x > \overline{n} \neg F(x).$

Theorem

 PA_D is ω -inconsistent.

Proof.

• Existence of YF entails:

$$\forall n \in \omega \ \mathsf{PA}_{\mathsf{D}} \vdash \mathsf{Y}(\overline{n}) \equiv \forall x > \overline{n} \neg \mathsf{Tr}(\overline{\ulcorner \mathsf{Y}(\dot{x})} \urcorner).$$

• By the inclusion of YD we get:

$$\forall n \in \omega \operatorname{PA}_{D} \vdash \operatorname{Tr}(\overline{\ulcorner Y(\overline{n})\urcorner}) \equiv \forall x > \overline{n} \neg \operatorname{Tr}(\overline{\ulcorner Y(\dot{x})\urcorner})$$

• Let $F(x) := Tr(\overline{\lceil Y(\dot{x}) \rceil})$:

$$\forall n \in \omega \ \mathsf{PA}_{\mathsf{D}} \vdash F(\overline{n}) \equiv \forall x > \overline{n} \neg F(x).$$

• So PA_D contains PA_F (which is ω -inconsistent).

The consistency of PA_D⁻

Theorem PA⁻_n is consistent. The consistency of PA_D⁻

Theorem PA_n⁻ is consistent.

Proof.

 $\bullet~$ Take a nonstandard ${\cal M}$ of PA.

Theorem PA_n⁻ is consistent.

- Take a nonstandard $\mathcal M$ of PA.
- Let t(x) := ¬Y(x)¬. By overspill, there are nonstandard b and c such that t^M(b) = c.

Theorem PA_n⁻ is consistent.

- Take a nonstandard $\mathcal M$ of PA.
- Let t(x) := ¬Y(x)¬. By overspill, there are nonstandard b and c such that t^M(b) = c.

• Let
$$Tr^{\mathcal{M}} = S = Th_{\mathcal{L}}(\mathcal{M}) \cup \{c\}$$
. Clearly, $(\mathcal{M}, S) \models AD$
 $\forall n \in \omega \ (\mathcal{M}, S) \models \exists x > n \ Tr(\ulcorner Y(\dot{x})\urcorner)$
 $\forall n \in \omega \ (\mathcal{M}, S) \models \neg Y(\bar{n})$

Theorem PA_{n}^{-} is consistent.

- Take a nonstandard ${\cal M}$ of PA.
- Let t(x) := ¬Y(x)¬. By overspill, there are nonstandard b and c such that t^M(b) = c.
- Let *Tr^M* = *S* = *Th*_L(*M*) ∪ {*c*}. Clearly, (*M*, *S*) ⊨ *AD*. ∀*n* ∈ ω (*M*, *S*) ⊨ ∃*x* > *n Tr*(^ΓY(*x*)[¬]) ∀*n* ∈ ω (*M*, *S*) ⊨ ¬*Y*(*n*)
 Standard Y(*n*) are not in *S*, so: ∀*n* ∈ ω (*M*, *S*) ⊨ ¬*Tr*(^ΓY(*n*)[¬]).

Theorem PA_{n}^{-} is consistent.

Proof.

- Take a nonstandard ${\cal M}$ of PA.
- Let t(x) := ¬Y(x)¬. By overspill, there are nonstandard b and c such that t^M(b) = c.

• Let
$$Tr^{\mathcal{M}} = S = Th_{\mathcal{L}}(\mathcal{M}) \cup \{c\}$$
. Clearly, $(\mathcal{M}, S) \models AD$.
 $\forall n \in \omega \ (\mathcal{M}, S) \models \exists x > n \ Tr(\ulcorner Y(\dot{x})\urcorner)$
 $\forall n \in \omega \ (\mathcal{M}, S) \models \neg Y(\bar{n})$
• Standard $Y(n)$ are not in *S*, so:

$$\forall n \in \omega \ (\mathcal{M}, S) \models \neg Tr(\ulcorner Y(\bar{n})\urcorner).$$

• So $(\mathcal{M}, S) \models YD$ (UYD fails here).

Theorem

PA_D is consistent.

The consistency of PA_D

Theorem

PA_D is consistent.

Proof.

By finite satisfiability (put only the last Yablo sentence in the extension of *Tr*, check induction holds), and compactness.

Theorem

 PA_D is a conservative extension of PA.

Conservativeness of PA_D

Theorem

 PA_D is a conservative extension of PA.

Proof.

• Suppose $\mathsf{PA} \nvDash \varphi$.

Theorem

PA_D is a conservative extension of PA.

- Suppose $\mathsf{PA} \nvDash \varphi$.
- So $\mathsf{PA} \cup \{\neg \varphi\}$ is consistent.

Theorem

PA_D is a conservative extension of PA.

Proof.

- Suppose $\mathsf{PA} \nvDash \varphi$.
- So $\mathsf{PA} \cup \{\neg \varphi\}$ is consistent.
- For a nonstandard \mathcal{M} of PA, $\mathcal{M} \models \neg \varphi$.

・ロト <
同 ト <
三 ト <
三 ・
う へ ²
・ 29

Theorem

PA_D is a conservative extension of PA.

Proof.

- Suppose $\mathsf{PA} \nvDash \varphi$.
- So $\mathsf{PA} \cup \{\neg \varphi\}$ is consistent.
- For a nonstandard \mathcal{M} of PA, $\mathcal{M} \models \neg \varphi$.
- There is an elementarily equivalent \mathcal{M}' such that $(\mathcal{M}', Tr^{\mathcal{M}'}) \models PA_D$.

Theorem

PA_D is a conservative extension of PA.

Proof.

- Suppose $\mathsf{PA} \nvDash \varphi$.
- So $\mathsf{PA} \cup \{\neg \varphi\}$ is consistent.
- For a nonstandard \mathcal{M} of PA, $\mathcal{M} \models \neg \varphi$.
- There is an elementarily equivalent \mathcal{M}' such that $(\mathcal{M}', Tr^{\mathcal{M}'}) \models PA_D$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�� 15/29

• $(\mathcal{M}', Tr^{\mathcal{M}'}) \not\models \varphi$, and so $\mathsf{PA}_{\mathsf{D}} \nvDash \varphi$.

Definition

$$UYD = \forall x (Tr(\overline{\ulcorner Y(\dot{x}) \urcorner}) \equiv Y(x))$$

Definition

$$UYD = \forall x (Tr(\overline{\ulcorner Y(\dot{x}) \urcorner}) \equiv Y(x))$$

Theorem

Let S = PAT + UYD. S is inconsistent.

Definition

$$UYD = \forall x (Tr(\overline{\ulcorner Y(\dot{x}) \urcorner}) \equiv Y(x))$$

Theorem Let S = PAT + UYD. S is inconsistent.

Definition

$$UYD = \forall x (Tr(\overline{\ulcorner Y(\dot{x}) \urcorner}) \equiv Y(x))$$

Theorem Let S = PAT + UYD. S is inconsistent.

Work in S.

• $\forall x (Y(x) \equiv \forall w > x \neg Tr(\overline{(Y(\dot{w}))}))$ [Yablo existence]

Definition

$$UYD = \forall x (Tr(\overline{\ulcorner Y(\dot{x}) \urcorner}) \equiv Y(x))$$

Theorem

Let S = PAT + UYD. S is inconsistent.

- $\forall x (Y(x) \equiv \forall w > x \neg Tr(\overline{(Y(w))}))$ [Yablo existence]
- UYD gives $\forall x (Y(x) \equiv \forall w > x \neg Y(w)).$

Definition

$$UYD = \forall x (Tr(\overline{\ulcorner Y(\dot{x}) \urcorner}) \equiv Y(x))$$

Theorem

Let S = PAT + UYD. S is inconsistent.

- $\forall x (Y(x) \equiv \forall w > x \neg Tr(\overline{\ulcorner Y(\dot{w})}))$ [Yablo existence]
- UYD gives $\forall x (Y(x) \equiv \forall w > x \neg Y(w)).$
- So $\forall x (Y(x) \equiv \forall w > x \exists z > w Tr(\overline{\ulcorner Y(z)}))$ [unraveling].

Definition

$$UYD = \forall x (Tr(\overline{\ulcorner Y(\dot{x}) \urcorner}) \equiv Y(x))$$

Theorem

Let S = PAT + UYD. S is inconsistent.

- $\forall x (Y(x) \equiv \forall w > x \neg Tr(\overline{\ulcorner Y(\dot{w})}))$ [Yablo existence]
- UYD gives $\forall x (Y(x) \equiv \forall w > x \neg Y(w)).$
- So $\forall x (Y(x) \equiv \forall w > x \exists z > w Tr(\overline{\ulcorner Y(z)}))$ [unraveling].
- By UYD: $\forall x (Y(x) \equiv \forall w > x \exists z > w Y(z))$

Definition

$$UYD = \forall x (Tr(\overline{\ulcorner Y(\dot{x}) \urcorner}) \equiv Y(x))$$

Theorem

Let S = PAT + UYD. S is inconsistent.

Work in S.

• $\forall x (Y(x) \equiv \forall w > x \neg Tr(\overline{\ulcorner Y(\dot{w})}))$ [Yablo existence]

• UYD gives
$$\forall x (Y(x) \equiv \forall w > x \neg Y(w)).$$

- So $\forall x (Y(x) \equiv \forall w > x \exists z > w Tr(\overline{\ulcorner Y(z)}))$ [unraveling].
- By UYD: $\forall x (Y(x) \equiv \forall w > x \exists z > w Y(z))$

• So
$$\forall x (Y(x) \equiv \exists w > x Y(w))$$

Definition

$$UYD = \forall x (Tr(\overline{\ulcorner Y(\dot{x}) \urcorner}) \equiv Y(x))$$

Theorem

Let S = PAT + UYD. S is inconsistent.

Work in S.

• $\forall x (Y(x) \equiv \forall w > x \neg Tr(\overline{\ulcorner Y(\dot{w})}))$ [Yablo existence]

• UYD gives
$$\forall x (Y(x) \equiv \forall w > x \neg Y(w)).$$

- So $\forall x (Y(x) \equiv \forall w > x \exists z > w Tr(\overline{\ulcorner Y(z)}))$ [unraveling].
- By UYD: $\forall x (Y(x) \equiv \forall w > x \exists z > w Y(z))$

• So
$$\forall x (Y(x) \equiv \exists w > x Y(w))$$

• $\forall x ((\forall w > x \neg Y(w)) \equiv (\exists w > xY(w)))$

Local disquotation with ω -rule is inconsistent

Theorem

Let $PA_D^{\omega^-} = (PAT^- \cup AD \cup YD)^{\omega}$. $PA_D^{\omega^-}$ is inconsistent. (AD is not needed.)

Local disquotation with ω -rule is inconsistent

Theorem

Let $PA_D^{\omega^-} = (PAT^- \cup AD \cup YD)^{\omega}$. $PA_D^{\omega^-}$ is inconsistent. (AD is not needed.)

Proof idea.

• $\forall n \in \omega \; \mathsf{PA}_D^{\omega^-} \vdash \neg Y(\overline{n})$ [internalized standard reasoning]

Local disquotation with ω -rule is inconsistent

Theorem

Let $PA_D^{\omega^-} = (PAT^- \cup AD \cup YD)^{\omega}$. $PA_D^{\omega^-}$ is inconsistent. (AD is not needed.)

Proof idea.

• $\forall n \in \omega \; \mathsf{PA}_D^{\omega^-} \vdash \neg Y(\overline{n})$ [internalized standard reasoning]

• $\forall n \in \omega \ \mathsf{PA}_D^{\omega-} \vdash \neg Tr(\overline{\ulcorner Y(\overline{n})}\urcorner) \ [Y \ disquotation]$
Local disquotation with ω -rule is inconsistent

Theorem

Let $PA_D^{\omega^-} = (PAT^- \cup AD \cup YD)^{\omega}$. $PA_D^{\omega^-}$ is inconsistent. (AD is not needed.)

Proof idea.

• $\forall n \in \omega \; \mathsf{PA}_D^{\omega-} \vdash \neg Y(\overline{n})$ [internalized standard reasoning]

- $\forall n \in \omega \ \mathsf{PA}_D^{\omega-} \vdash \neg Tr(\overline{\ulcorner Y(\overline{n})}\urcorner)$ [Y disquotation]
- $\mathsf{PA}_D^{\omega^-} \vdash \forall x \neg Tr(\overline{\ulcorner Y(\dot{x})}\urcorner) [\omega\text{-rule}]$

Local disquotation with ω -rule is inconsistent

Theorem

Let $PA_D^{\omega^-} = (PAT^- \cup AD \cup YD)^{\omega}$. $PA_D^{\omega^-}$ is inconsistent. (AD is not needed.)

Proof idea.

• $\forall n \in \omega \; \mathsf{PA}_D^{\omega-} \vdash \neg Y(\overline{n})$ [internalized standard reasoning]

• $\forall n \in \omega \ \mathsf{PA}_D^{\omega-} \vdash \neg Tr(\overline{\ulcorner Y(\overline{n})}\urcorner)$ [Y disquotation]

•
$$\mathsf{PA}_D^{\omega-} \vdash \forall x \neg Tr(\overline{\ulcorner Y(\dot{x})}\urcorner) [\omega\text{-rule}]$$

• In particular: $PA_D^{\omega-} \vdash Y(\overline{23})$

Classical set-up vs. Yablo

- Even those theories which prove the existence of Yablo sentences are still consistent.
- They're ω -inconsistent with local Yablo disquotation, though.

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ 三三 - のへで 18/29

- One way to obtain a contradiction: uniform Yablo disquotation.
- Another one: local disquotation and ω *rule*.

Definition (FM-domains)

Take a relational arithmetical language.

$$FM(\mathbb{N}) = \{\mathbb{N}_n : n = 1, 2, ...\}$$
$$\mathbb{N}_n = (\{0, 1, ..., n - 1\}, +^{(n)}, \times^{(n)}, 0^{(n)}, s^{(n)}, <^{(n)}).$$

Definition (FM-domains)

Take a relational arithmetical language.

$$FM(\mathbb{N}) = \{\mathbb{N}_n : n = 1, 2, ...\}$$
$$\mathbb{N}_n = (\{0, 1, ..., n - 1\}, +^{(n)}, \times^{(n)}, 0^{(n)}, s^{(n)}, <^{(n)}).$$

Definition (*sl*-theory of $FM(\mathbb{N})$)

• Satisfaction in finite points in $FM(\mathbb{N})$ is standard.

Definition (FM-domains)

Take a relational arithmetical language.

$$FM(\mathbb{N}) = \{\mathbb{N}_n : n = 1, 2, ...\}$$
$$\mathbb{N}_n = (\{0, 1, ..., n - 1\}, +^{(n)}, \times^{(n)}, 0^{(n)}, s^{(n)}, <^{(n)}).$$

Definition (*sl*-theory of $FM(\mathbb{N})$)

- Satisfaction in finite points in $FM(\mathbb{N})$ is standard.
- $FM(\mathbb{N}) \models_{sl} \varphi$ iff $\exists m \forall k \ (k \ge m \implies \mathbb{N}_k \models \varphi)$

Definition (FM-domains)

Take a relational arithmetical language.

$$FM(\mathbb{N}) = \{\mathbb{N}_n : n = 1, 2, ...\}$$
$$\mathbb{N}_n = (\{0, 1, ..., n - 1\}, +^{(n)}, \times^{(n)}, 0^{(n)}, s^{(n)}, <^{(n)}).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�� 19/29

Definition (*sl*-theory of $FM(\mathbb{N})$)

- Satisfaction in finite points in $FM(\mathbb{N})$ is standard.
- $FM(\mathbb{N}) \models_{sl} \varphi$ iff $\exists m \forall k \ (k \ge m \implies \mathbb{N}_k \models \varphi)$
- $sl(FM(\mathbb{N})) = \{\varphi \in Sent_{\mathcal{L}} : FM(\mathbb{N}) \models_{sl} \varphi\}$

Definition (FM-domains)

Take a relational arithmetical language.

$$FM(\mathbb{N}) = \{\mathbb{N}_n : n = 1, 2, ...\}$$
$$\mathbb{N}_n = (\{0, 1, ..., n - 1\}, +^{(n)}, \times^{(n)}, 0^{(n)}, s^{(n)}, <^{(n)}).$$

Definition (*sl*-theory of $FM(\mathbb{N})$)

- Satisfaction in finite points in $FM(\mathbb{N})$ is standard.
- $FM(\mathbb{N}) \models_{sl} \varphi$ iff $\exists m \forall k \ (k \ge m \Rightarrow \mathbb{N}_k \models \varphi)$
- $sl(FM(\mathbb{N})) = \{\varphi \in Sent_{\mathcal{L}} : FM(\mathbb{N}) \models_{sl} \varphi\}$

Definition $(FM(\mathbb{N})^T)$

An $FM(\mathbb{N})^{T}$ -domain is a set of (\mathbb{N}_{k}, T_{k}) containing a unique member for each $k \in \omega$, where $T_{k} \subseteq \{0, ..., k-1\}$.

<□ ▶ < @ ▶ < ミ ▶ < ミ ▶ ミ ● ○ Q(29)

• Syntax is still representable.

- Syntax is still representable.
- Truth is still undefinable.

- Syntax is still representable.
- Truth is still undefinable.
- Diagonal lemma still *sl*-holds.

- Syntax is still representable.
- Truth is still undefinable.
- Diagonal lemma still *sl*-holds.

Theorem (sl-Yablo existence)

There exists a formula Y(x) s.t. for any $FM(\mathbb{N})^T$ -domain:

$$\forall n \in \omega \ FM(\mathbb{N})^T \models_{sl} Y(n) \equiv \forall x \ (x > n \Rightarrow \neg Tr(\ulcorner Y(\dot{x})\urcorner))$$

Theorem

For any class \mathcal{K} of finite models, if $\mathcal{K} \models_{sl} AD + YD$, then: $\forall n \in \omega \mathcal{K} \models_{sl} \neg Y(n)$. AD is not essential.

<□> < @ > < E > < E > E の Q @ 21/29

Theorem

For any class \mathcal{K} of finite models, if $\mathcal{K} \models_{sl} AD + YD$, then: $\forall n \in \omega \mathcal{K} \models_{sl} \neg Y(n)$. AD is not essential.

Reason.

The standard argument still flies, mutatis mutandis.

Theorem

For any class \mathcal{K} of finite models, if $\mathcal{K} \models_{sl} AD + YD$, then: $\forall n \in \omega \mathcal{K} \models_{sl} \neg Y(n)$. AD is not essential.

Reason.

The standard argument still flies, mutatis mutandis.

Theorem

There is an FM-domain sl-satisfying $AD \cup YD$.

Theorem

For any class \mathcal{K} of finite models, if $\mathcal{K} \models_{sl} AD + YD$, then: $\forall n \in \omega \mathcal{K} \models_{sl} \neg Y(n)$. AD is not essential.

Reason.

The standard argument still flies, mutatis mutandis.

Theorem

There is an FM-domain sl-satisfying $AD \cup YD$.

Reason.

In each point take truth to refer to all existing codes of true arithmetical formula, and the code of the last YS.

Theorem

There is an FM-domain sl-satisfying $AD \cup YD$.

Theorem

There is an FM-domain sl-satisfying $AD \cup YD$.

Theorem (The cost)

The sl-theory of this model is ω -inconsistent.

Theorem

There is an FM-domain sl-satisfying $AD \cup YD$.

Theorem (The cost)

The sl-theory of this model is ω -inconsistent.

▲□▶▲□▶▲■▶▲■▶ ■ のへで 22/29

Reason.

• Each particular YS is *sl*-fails.

Theorem

There is an FM-domain sl-satisfying $AD \cup YD$.

Theorem (The cost)

The sl-theory of this model is ω -inconsistent.

Reason.

- Each particular YS is *sl*-fails.
- In each finite point, the last YS is satisfied.

▲□▶▲□▶▲■▶▲■▶ ■ のへで 22/29

Theorem

There is an FM-domain sl-satisfying $AD \cup YD$.

Theorem (The cost)

The sl-theory of this model is ω -inconsistent.

Reason.

- Each particular YS is *sl*-fails.
- In each finite point, the last YS is satisfied.

▲□▶▲□▶▲■▶▲■▶ ■ のへで 22/29

• Some YS is true sl-holds.

Theorem

There is an FM-domain sl-satisfying $AD \cup YD$.

Theorem (The cost)

The sl-theory of this model is ω -inconsistent.

Reason.

- Each particular YS is *sl*-fails.
- In each finite point, the last YS is satisfied.
- Some YS is true sl-holds.

Fact (Cheap shot)

• n is the greatest number sl-fails, for any n.

Theorem

There is an FM-domain sl-satisfying $AD \cup YD$.

Theorem (The cost)

The sl-theory of this model is ω -inconsistent.

Reason.

- Each particular YS is *sl*-fails.
- In each finite point, the last YS is satisfied.
- Some YS is true sl-holds.

Fact (Cheap shot)

- n is the greatest number sl-fails, for any n.
- The greatest number exists sl-holds.

Definition (Accessibility relation in FM-domains) R(M,N) iff $M \subseteq N$. For \mathbb{N}_m , $\mathbb{N}_n \in FM(\mathbb{N})$ this boils down to $m \leq n$.

◆□▶ < @ ▶ < 图 ▶ < 图 ▶ ■ 9 < 0 23/29</p>

Definition (Accessibility relation in FM-domains) R(M, N) iff $M \subseteq N$. For \mathbb{N}_m , $\mathbb{N}_n \in FM(\mathbb{N})$ this boils down to $m \leq n$.

Definition (*m*-semantics)

- If φ is atomic, then $(\mathcal{K}, M) \models_m \varphi$, iff $M \models \varphi$.
- Clauses for boolean connectives are standard.

Definition (Accessibility relation in FM-domains) R(M, N) iff $M \subseteq N$. For \mathbb{N}_m , $\mathbb{N}_n \in FM(\mathbb{N})$ this boils down to $m \leq n$.

Definition (*m*-semantics)

- If φ is atomic, then $(\mathcal{K}, M) \models_m \varphi$, iff $M \models \varphi$.
- Clauses for boolean connectives are standard.
- $(\mathcal{K}, M) \models_m \exists x \varphi(x)$ iff there are $N \in \mathcal{K}$ and $a \in N$ s.t. R(M, N) and $(\mathcal{K}, N) \models_m \varphi[a]$.

◆□▶ ◆舂▶ ◆吾▶ ◆吾▶ 善吾 のへで 23/29

Definition (Accessibility relation in FM-domains) R(M, N) iff $M \subseteq N$. For \mathbb{N}_m , $\mathbb{N}_n \in FM(\mathbb{N})$ this boils down to $m \leq n$.

Definition (*m*-semantics)

- If φ is atomic, then $(\mathcal{K}, M) \models_m \varphi$, iff $M \models \varphi$.
- Clauses for boolean connectives are standard.
- $(\mathcal{K}, M) \models_m \exists x \varphi(x)$ iff there are $N \in \mathcal{K}$ and $a \in N$ s.t. R(M, N) and $(\mathcal{K}, N) \models_m \varphi[a]$.

Definition (*msl*-theory) $msl(FM(\mathbb{N})) = \{\varphi : \exists n \forall k \ k \ge n \Rightarrow (FM(\mathbb{N}), \mathbb{N}_k) \models_m \varphi\}$

Definition (Accessibility relation in FM-domains) R(M, N) iff $M \subseteq N$. For \mathbb{N}_m , $\mathbb{N}_n \in FM(\mathbb{N})$ this boils down to $m \leq n$.

Definition (*m*-semantics)

- If φ is atomic, then $(\mathcal{K}, M) \models_m \varphi$, iff $M \models \varphi$.
- Clauses for boolean connectives are standard.
- $(\mathcal{K}, M) \models_m \exists x \varphi(x)$ iff there are $N \in \mathcal{K}$ and $a \in N$ s.t. R(M, N) and $(\mathcal{K}, N) \models_m \varphi[a]$.

Definition (*msl*-theory) $msl(FM(\mathbb{N})) = \{\varphi : \exists n \forall k \ k \ge n \Rightarrow (FM(\mathbb{N}), \mathbb{N}_k) \models_m \varphi\}$

Example

 $(\exists x \forall y x \ge y) \in sl(FM(\mathbb{N})), \notin msl(FM(\mathbb{N}))$

Arithmetic regained

Theorem

$msl(FM(\mathbb{N})) = Th(\mathbb{N})$

Reason.

- Finite points are submodels of \mathbb{N} .
- Q-free φ are preserved for parameters in a point.
- $\exists x \varphi$ true in \mathbb{N} has a finite witness, which belongs to some finite point.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ • ○ ○ ○ 24/29

Theorem If $YD \subseteq msl(FM(\mathbb{N})^{Y})$, then: $\forall n \in \omega \ Y(n) \notin msl(FM(\mathbb{N})^{Y})$

Theorem If $YD \subseteq msl(FM(\mathbb{N})^{Y})$, then: $\forall n \in \omega \ Y(n) \notin msl(FM(\mathbb{N})^{Y})$

Proof.

• Suppose $\exists n \ Y(n) \in msl(FM(\mathbb{N}^{Y}))$.

Theorem If $YD \subseteq msl(FM(\mathbb{N})^{Y})$, then: $\forall n \in \omega \ Y(n) \notin msl(FM(\mathbb{N})^{Y})$

Proof.

- Suppose $\exists n \ Y(n) \in msl(FM(\mathbb{N}^Y))$.
- $\exists l \forall k \geq l \mathbb{N}_k \models_m Y(n)$

Theorem If $YD \subseteq msl(FM(\mathbb{N})^{Y})$, then: $\forall n \in \omega \ Y(n) \notin msl(FM(\mathbb{N})^{Y})$

Proof.

- Suppose $\exists n \ Y(n) \in msl(FM(\mathbb{N}^Y))$.
- $\exists l \forall k \geq l \mathbb{N}_k \models_m Y(n)$
- Pick a witness. $\forall k \ge l \mathbb{N}_k \models_m \forall x (x > n \rightarrow \neg Tr(Y(x))).$

Theorem If $YD \subseteq msl(FM(\mathbb{N})^{Y})$, then: $\forall n \in \omega \ Y(n) \notin msl(FM(\mathbb{N})^{Y})$

Proof.

- Suppose $\exists n \ Y(n) \in msl(FM(\mathbb{N}^{Y}))$.
- $\exists l \forall k \geq l \mathbb{N}_k \models_m Y(n)$
- Pick a witness. $\forall k \ge l \mathbb{N}_k \models_m \forall x (x > n \rightarrow \neg Tr(Y(x))).$
- $\forall k \ge l \forall p \ge k \forall a n \to \neg Tr(Y(a)).$ $\forall p \ge l \ \forall a \in (n,p) \ \mathbb{N}_p \models \neg Tr(Y(a))$

Theorem If $YD \subseteq msl(FM(\mathbb{N})^{Y})$, then: $\forall n \in \omega \ Y(n) \notin msl(FM(\mathbb{N})^{Y})$

Proof.

• Suppose $\exists n \ Y(n) \in msl(FM(\mathbb{N}^Y))$.

•
$$\exists l \,\forall k \geq l \,\mathbb{N}_k \models_m Y(n)$$

- Pick a witness. $\forall k \ge l \mathbb{N}_k \models_m \forall x (x > n \rightarrow \neg Tr(Y(x))).$
- $\forall k \ge l \forall p \ge k \forall a n \to \neg Tr(Y(a)).$ $\forall p \ge l \ \forall a \in (n,p) \ \mathbb{N}_p \models \neg Tr(Y(a))$
- YD: $\forall p \ge l \ \forall a \in (n,p) \mathbb{N}_p \models_m \neg Y(a)$
YS & the modal interpretation

Theorem If $YD \subseteq msl(FM(\mathbb{N})^{Y})$, then: $\forall n \in \omega \ Y(n) \notin msl(FM(\mathbb{N})^{Y})$

Proof.

• Suppose $\exists n \ Y(n) \in msl(FM(\mathbb{N}^Y))$.

•
$$\exists l \forall k \geq l \mathbb{N}_k \models_m Y(n)$$

- Pick a witness. $\forall k \ge l \mathbb{N}_k \models_m \forall x (x > n \rightarrow \neg Tr(Y(x))).$
- $\forall k \ge l \forall p \ge k \forall a n \to \neg Tr(Y(a)).$ $\forall p \ge l \ \forall a \in (n,p) \ \mathbb{N}_p \models \neg Tr(Y(a))$
- YD: $\forall p \ge l \ \forall a \in (n,p) \mathbb{N}_p \models_m \neg Y(a)$
- $\mathbb{N}_p \models_m \exists x > a Tr(Y(x))$ (content of $\neg Y(a)$)

YS & the modal interpretation

Theorem If $YD \subseteq msl(FM(\mathbb{N})^{Y})$, then: $\forall n \in \omega \ Y(n) \notin msl(FM(\mathbb{N})^{Y})$

Proof.

• Suppose $\exists n \ Y(n) \in msl(FM(\mathbb{N}^{Y}))$.

•
$$\exists l \,\forall k \geq l \,\mathbb{N}_k \models_m Y(n)$$

- Pick a witness. $\forall k \ge l \mathbb{N}_k \models_m \forall x (x > n \rightarrow \neg Tr(Y(x))).$
- $\forall k \ge l \forall p \ge k \forall a n \to \neg Tr(Y(a)).$ $\forall p \ge l \ \forall a \in (n,p) \ \mathbb{N}_p \models \neg Tr(Y(a))$
- YD: $\forall p \ge l \ \forall a \in (n,p) \mathbb{N}_p \models_m \neg Y(a)$
- $\mathbb{N}_p \models_m \exists x > a Tr(Y(x))$ (content of $\neg Y(a)$)
- $\exists q \ge p \exists b < q \mathbb{N}_q \models_m b > a \land Tr(Y(b))$

YS & the modal interpretation

Theorem If $YD \subseteq msl(FM(\mathbb{N})^{Y})$, then: $\forall n \in \omega \ Y(n) \notin msl(FM(\mathbb{N})^{Y})$

Proof.

• Suppose $\exists n \ Y(n) \in msl(FM(\mathbb{N}^{Y}))$.

•
$$\exists l \,\forall k \geq l \,\mathbb{N}_k \models_m Y(n)$$

- Pick a witness. $\forall k \ge l \mathbb{N}_k \models_m \forall x (x > n \rightarrow \neg Tr(Y(x))).$
- $\forall k \ge l \forall p \ge k \forall a n \to \neg Tr(Y(a)).$ $\forall p \ge l \ \forall a \in (n,p) \ \mathbb{N}_p \models \neg Tr(Y(a))$
- YD: $\forall p \ge l \ \forall a \in (n,p) \mathbb{N}_p \models_m \neg Y(a)$
- $\mathbb{N}_p \models_m \exists x > a Tr(Y(x))$ (content of $\neg Y(a)$)
- $\exists q \ge p \exists b < q \mathbb{N}_q \models_m b > a \land Tr(Y(b))$
- $\exists q \ge p \exists b \in (a,q) \mathbb{N}_q \models_m Tr(Y(b))$ Contradiction.

Theorem

There is no $FM(\mathbb{N})^{Y}$ -domain such that $YD \subseteq msl(FM(\mathbb{N})^{Y})$.

Theorem

There is no $FM(\mathbb{N})^{Y}$ -domain such that $YD \subseteq msl(FM(\mathbb{N})^{Y})$.

Proof.

• Suppose o/w.

Theorem

There is no $FM(\mathbb{N})^{Y}$ -domain such that $YD \subseteq msl(FM(\mathbb{N})^{Y})$.

Proof.

- Suppose o/w.
- Previous theorem: $\forall n \forall l \exists k \ge l \mathbb{N}_k \not\models_m Y(n)$

Theorem

There is no $FM(\mathbb{N})^{Y}$ -domain such that $YD \subseteq msl(FM(\mathbb{N})^{Y})$.

Proof.

- Suppose o/w.
- Previous theorem: $\forall n \forall l \exists k \ge l \mathbb{N}_k \not\models_m Y(n)$
- $\forall n \forall l \exists p \ge l \exists a > n \mathbb{N}_p \models_m Tr(Y(a))$ (content of YS)

▲□▶▲舂▶▲≧▶▲≧▶ ≧ のへで 26/29

Theorem

There is no $FM(\mathbb{N})^{\gamma}$ -domain such that $YD \subseteq msl(FM(\mathbb{N})^{\gamma})$.

Proof.

- Suppose o/w.
- Previous theorem: $\forall n \forall l \exists k \ge l \mathbb{N}_k \not\models_m Y(n)$
- $\forall n \forall l \exists p \ge l \exists a > n \mathbb{N}_p \models_m Tr(Y(a))$ (content of YS)

• YD: $\forall n \forall l \exists p \ge l \exists a > n \mathbb{N}_p \models_m Y(a)$.

Theorem

There is no $FM(\mathbb{N})^{\gamma}$ -domain such that $YD \subseteq msl(FM(\mathbb{N})^{\gamma})$.

Proof.

- Suppose o/w.
- Previous theorem: $\forall n \forall l \exists k \ge l \mathbb{N}_k \not\models_m Y(n)$
- $\forall n \forall l \exists p \ge l \exists a > n \mathbb{N}_p \models_m Tr(Y(a))$ (content of YS)
- YD: $\forall n \forall l \exists p \ge l \exists a > n \mathbb{N}_p \models_m Y(a).$
- Let n = l = 0: $\exists p, a > 0 \forall q \ge p \mathbb{N}_q \models_m \forall x > a \neg Tr(Y(x))$

Theorem

There is no $FM(\mathbb{N})^{Y}$ -domain such that $YD \subseteq msl(FM(\mathbb{N})^{Y})$.

Proof.

- Suppose o/w.
- Previous theorem: $\forall n \forall l \exists k \ge l \mathbb{N}_k \not\models_m Y(n)$
- $\forall n \forall l \exists p \ge l \exists a > n \mathbb{N}_p \models_m Tr(Y(a))$ (content of YS)
- YD: $\forall n \forall l \exists p \ge l \exists a > n \mathbb{N}_p \models_m Y(a).$
- Let n = l = 0: $\exists p, a > 0 \forall q \ge p \mathbb{N}_q \models_m \forall x > a \neg Tr(Y(x))$
- Pick witness a > 0. $Y(a) \in msl(FM(\mathbb{N})^{\gamma})$. Contradiction!

< □ ▶ < **□** ▶ < **三** ▶ < **三** ▶ 三 の < [⊙] 27/29

Standard setting

LAD and LYD are consistent, yet ω -inconsistent. Adding ω -rule or UYD gives inconsistency.

▲□▶▲□▶▲≣▶▲≣▶ ≣ の�♡ 27/29

Standard setting

LAD and LYD are consistent, yet ω -inconsistent. Adding ω -rule or UYD gives inconsistency.

sl-semantics

YS are all false, the *sl*-theory is consistent, but ω -inconsistent. Also, *sl*(*FM*(\mathbb{N})) itself is ω -inconsistent.

Standard setting

LAD and LYD are consistent, yet ω -inconsistent. Adding ω -rule or UYD gives inconsistency.

sl-semantics

YS are all false, the *sl*-theory is consistent, but ω -inconsistent. Also, *sl*(*FM*(\mathbb{N})) itself is ω -inconsistent.

m-semantics

Arithmetic regained, adding LAD and LYD gives inconsistency. UYD or ω -rule are not needed.

Thank you! Questions?

Finite model in concreto

A finite sequence of finite books each saying that all the ones behind it are false. The last one is right. (Or so we like to think.)

Literature

- Ketland, J. (2005). Yablo's paradox and ω -inconsistency. Synthese, 145.
- Mostowski, M. (2001a). On representing concepts in finite models. *Mathematical Logic Quarterly*, 47:513–523.
- Mostowski, M. (2001b). On representing semantics in finite models. In Rojszczak, A., Cachro, J., and Kurczewsk, G., editors, *Philosophical Dimensions of Logic and Science*, pages 15–28. Kluwer Academic Publishers, Dordrecht.
- Mostowski, M. (2016). Truth in the limit. *Reports on Mathematical Logic*, Vol. 51:75–89.
- Priest, G. (1997). Yablo's paradox. Analysis, 57.
- Urbaniak, R. (2016). Potential infinity, abstraction principles and arithmetic (leniewski style). *Axioms*, 5.