Ordinal analysis of Kripke-Platek set theory via Schmerl formula

> Fedor Pakhomov Steklov Mathematical Institute, Moscow pakhf@mi.ras.ru

Workshop on Proof Theory and its Applications Ghent, September 7, 2018

(日)

Schmerl formula

The arithmetical Π_n^0 uniform reflection for theory T $\operatorname{RFN}_{\Pi_n^0}(T) : (\forall \varphi \in \Pi_n^0)(\operatorname{Prv}_T(\varphi) \to \operatorname{Tr}_{\Pi_n^0}(\varphi)).$

For recursive ordinals α we define r.e. theories $\mathsf{RFN}^{\alpha}_{\Pi^0_p}(T)$:

$$\mathsf{RFN}^{\alpha}_{\Pi^0_n}(T) = T + \{\mathsf{RFN}_{\Pi^0_n}(\mathsf{RFN}^{\beta}_{\Pi^0_n}(T)) \mid \beta < \alpha\}.$$

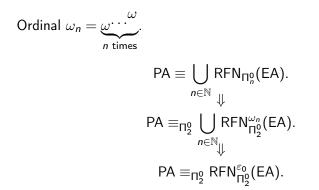
Formally definition is carried out using Fixed Point Lemma.

EA is a weak fragment of PA proving totality of exponentiation. Schmerl formula:

$$\mathsf{RFN}^{\alpha}_{\Pi^{0}_{n+1}}(\mathsf{EA}) \equiv_{\Pi^{0}_{n}} \mathsf{RFN}^{\omega^{\alpha}}_{\Pi^{0}_{n}}(\mathsf{EA}), \text{ for } \alpha > 0.$$

Classifying Π_2^0 consequences of PA in terms of iterated reflection

(日)



From reflection to fast-growing functions

 $f_{\alpha}(x)$ is α 'th function from fast-growing hierarchy For any Δ_0^0 formula $\varphi(x, y)$:

$$\mathsf{RFN}^{\alpha}_{\mathsf{\Pi}^{\mathsf{0}}_{2}}(\mathsf{EA}) \vdash \forall x \exists y \ \varphi(x, y)$$
$$\Downarrow$$

 $\mathsf{RFN}^{\alpha}_{\Pi^{0}_{2}}(\mathsf{EA}) \vdash \forall x (\exists y < f^{n}_{2+\beta}(x))\varphi(x, y), \text{ for some } \beta < \alpha \text{ and } n \in \mathbb{N}$ Hence

$$\mathsf{PA} \vdash orall x \exists y \ arphi(x,y)$$

 \Downarrow
 $\mathsf{PA} \vdash orall x (\exists y < f_{lpha}(x)) arphi(x,y), \text{ for some } lpha < arepsilon_0$

${\rm KP}\omega~{\rm vs}~{\rm PA}$

Axioms of KP are: Extensionality, Pair, Union, Δ_0 -Separation, Δ_0 -Collection, and Foundation. KP ω is KP + Infinity.

Transitive models of KP are known as admissible sets. Analogies between PA and KP ω :

PA	KΡω
\mathbb{N}	admissible sets with ω
r.e. sets	Σ_1 classes
recursive functions	Σ_1 functions
recursive ordinal notations	Δ_0 class well-orderings
ω	On
<i>ε</i> 0	arepsilonOn $+1$
hierarchies of	hierarchies of
recursive functions	Σ_1 functions $\mathbf{On} o \mathbf{On}$
r.e. theories	class-theories with Σ_1 class of axioms

Reflection principles in KP

The axioms of KP₀ are: Extensionality, Pair, Union, Δ_0 -Separation, Δ_0 -Collection, Regularity, Transitive Containment, and Totality of Rank Function.

Definitions inside KP₀:

 ${\sf L}$ is usual set-theoretic language with constants ${\sf c}_s,$ for all sets s Note: ${\sf L}$ forms a proper class

 $\Pi_n, \Sigma_n, \Delta_0$ are $\Pi_n, \Sigma_n, \Delta_0$ with set constants.

Let T be **L** theory given by Σ_1 formula defining its class of axioms.

 $\mathsf{RFN}_{\mathbf{\Pi}_n}(\mathsf{KP}_0\omega):(\forall \varphi\in\mathbf{\Pi}_n)(\mathsf{Prv}_{\mathcal{T}}(\varphi)\to\mathsf{Tr}_{\mathbf{\Pi}_n}(\varphi)).$

a ranges over $\mathbf{\Delta}_0$ class well-orderings. Schmerl formula:

$$\mathsf{RFN}^{\mathbf{a}}_{\mathbf{\Pi}_{n+1}}(\mathsf{KP}_{0}\omega) \equiv_{\mathbf{\Pi}_{n}} \mathsf{RFN}^{\omega^{\mathbf{a}}}_{\mathbf{\Pi}_{n}}(\mathsf{KP}_{0}\omega), \text{ for } \mathbf{a} > 0.$$

Reformulating ${\rm KP}\omega$ in terms of iterated reflection

The class well-ordering
$$\omega_n^{\mathbf{a}} = \underbrace{\omega \cdots}_{n \text{ times}}^{\mathbf{a}}$$

Over $KP_0\omega$ Foundation is equivalent to On + 1-iterated reflection:

$$\begin{split} \mathsf{K}\mathsf{P}\omega &\equiv \bigcup_{n\in\mathbb{N}}\mathsf{R}\mathsf{FN}_{\Pi_n}^{\mathbf{On}+1}(\mathsf{K}\mathsf{P}_0\omega).\\ & \Downarrow\\ \mathsf{K}\mathsf{P}\omega &\equiv_{\Pi_2} \bigcup_{n\in\mathbb{N}}\mathsf{R}\mathsf{FN}_{\Pi_2}^{\omega_n^{\mathbf{On}+1}}(\mathsf{K}\mathsf{P}_0\omega).\\ & \Downarrow\\ \mathsf{K}\mathsf{P}\omega &\equiv \mathsf{R}\mathsf{FN}_{\Pi_2}^{\varepsilon_{\mathbf{On}+1}}(\mathsf{K}\mathsf{P}_0\omega). \end{split}$$

Hierarchies of ordinal function

We have assignment of fundamental sequences $\mathbf{a}[\xi]$, for $\mathbf{a} < \varepsilon_{\mathbf{On}+1}$.

$$\mathbf{a} = \sup_{\xi < \tau_{\mathbf{a}}} \mathbf{a}[\xi]$$
, where $\tau_{\mathbf{a}} \leq \mathbf{On}$

Bachmann defined extension of Veblen hierarchy $\varphi_{\mathbf{a}}$. We use similar hierarchy $\mathbf{F}_{\mathbf{a}}$ that is closely connected to fast-growing hierarchy:

$f_{\alpha} \colon \mathbb{N} \to \mathbb{N}$	$F_{a} \colon On o On$
$f_0(n)=n+1$	$F_0(lpha) = lpha + 1$
$f_{\alpha+1}(n) = f_{\alpha}^n(n)$	$F_{a+1}(lpha) = \sup F_{a}^n(lpha)$
	$n<\omega$
	$F_{a}(lpha) = \sup_{\xi < \tau_{a}} F_{a[\xi]}(lpha) \text{ if } \tau_{a} < On$
	$\xi < \tau_a$
$f_{\lambda}(n) = f_{\lambda[n]}(n)$	$F_{a}(\alpha) = F_{a[\alpha]}(\alpha) \text{ if } \tau_{a} = On$

Ordinal bounds for Π_2 theorems of KP ω

Recall that

$$\mathsf{KP}\omega \equiv_{\mathbf{\Pi}_2} \mathsf{RFN}_{\mathbf{\Pi}_2}^{\varepsilon_{\mathbf{On}+1}}(\mathsf{KP}_0\omega).$$

$$\mathsf{RFN}^{\mathbf{a}}_{\mathbf{\Pi}_2}(\mathsf{KP}_0\omega) \vdash ``\mathbf{F_b} \text{ is total'', for } \mathbf{b} < 1 + \mathbf{a}$$

For any $\mathbf{\Delta}_0$ formula $\varphi(x, y)$

$$\mathsf{RFN}^{\mathsf{a}}_{\mathsf{\Pi}_{2}}(\mathsf{KP}_{0}\omega) \vdash \forall x \exists y \ \varphi(x, y) \\ \Downarrow \\ \mathsf{RFN}^{\mathsf{a}}_{\mathsf{\Pi}_{2}}(\mathsf{KP}_{0}\omega) \vdash \forall x \exists y (\mathsf{rk}(y) \leq \mathsf{F}^{n}_{1+\mathsf{b}}(\mathsf{rk}(x)) \land \varphi(x, y)) \\ \text{and} \\ \mathsf{RFN}^{\mathsf{a}}_{\mathsf{\Pi}_{2}}(\mathsf{KP}_{0}\omega) \vdash \forall x \exists y (y \in L_{\mathsf{F}^{n}_{1+\mathsf{b}}(\mathsf{rk}(x))}(x) \land \varphi(x, y)) \\ \text{for some } \mathsf{b} < \mathsf{a} \text{ and } n \in \mathbb{N} \end{cases}$$

Thank You!

◆□▶◆□▶◆臣▶◆臣▶ 臣 のへぐ