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What I’m not considering

I don’t consider proof-theoretic semantics.

I only brie�y touch upon reductive proof-theory in the philosophy of
mathematics.
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Abstraction and Truth

‘�ere never were any set-theoretic paradoxes, but the
property theoretic paradoxes are still unresolved’ (Gödel to
Myhill)

Naïve abstraction

∀x(x ∈ {v ∣ φ(v)} ↔ φ(x))

Naïve Truth

Tr ⌜A⌝ ↔ A

Here I assume that for any φ in the language there is a term {v ∣ φ(v)}
with FV({v ∣ φ(v)}) = FV(φ) ∖ {v}. If φ is a sentence, I write ⌜A⌝ for
‘the proposition expressed by A’.
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Liar

Γ, ∆, Θ, Λ, . . . are multisets of formulas.

Truth rules

Γ⇒ A
Γ⇒ Tr ⌜A⌝

A, Γ⇒ D
Tr ⌜A⌝, Γ⇒ D

λ⇔¬Tr ⌜λ⌝ ¬λ⇔ Tr ⌜λ⌝

λ⇒ λ
Tr ⌜λ⌝ ⇒ λ
Tr ⌜λ⌝,¬λ⇒
Tr ⌜λ⌝ ⇒
⇒ ¬Tr ⌜λ⌝
⇒ λ

λ⇒ λ
λ⇒ Tr ⌜λ⌝

λ,¬Tr ⌜λ⌝ ⇒
λ, λ⇒
λ⇒

⇒
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Liar

Truth rules

Γ⇒ A
Γ⇒ Tr ⌜A⌝

A, Γ⇒ D
Tr ⌜A⌝, Γ⇒ D

λ⇔¬Tr ⌜λ⌝ ¬λ⇔ Tr ⌜λ⌝

λ⇒ λ
Tr ⌜λ⌝ ⇒ λTr ⌜λ⌝ ⇒ λTr ⌜λ⌝ ⇒ λ
Tr ⌜λ⌝,¬λ⇒Tr ⌜λ⌝,¬λ⇒Tr ⌜λ⌝,¬λ⇒
Tr ⌜λ⌝ ⇒
⇒ ¬Tr ⌜λ⌝
⇒ λ

λ⇒ λ
λ⇒ Tr ⌜λ⌝λ⇒ Tr ⌜λ⌝λ⇒ Tr ⌜λ⌝

λ,¬Tr ⌜λ⌝ ⇒λ,¬Tr ⌜λ⌝ ⇒λ,¬Tr ⌜λ⌝ ⇒
λ, λ⇒
λ⇒

⇒
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Curry

Truth rules

Γ⇒ A
Γ⇒ Tr ⌜A⌝

A, Γ⇒ D
Tr ⌜A⌝, Γ⇒ D

κ ⇔ Tr ⌜κ⌝ → �

κ ⇒ κ
κ ⇒ Tr ⌜κ⌝ � ⇒ �

κ, Tr ⌜κ⌝ → � ⇒ �
κ, κ ⇒ �
κ ⇒ �

⇒ Tr ⌜κ⌝ → �
⇒ κ

κ ⇒ κ
κ ⇒ Tr ⌜κ⌝ � ⇒ �

κ, Tr ⌜κ⌝ → � ⇒ �
κ ⇒ �

⇒ �
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Curry

Truth rules

Γ⇒ A
Γ⇒ Tr ⌜A⌝

A, Γ⇒ D
Tr ⌜A⌝, Γ⇒ D

κ ⇔ Tr ⌜κ⌝ → �

κ ⇒ κ
κ ⇒ Tr ⌜κ⌝κ ⇒ Tr ⌜κ⌝κ ⇒ Tr ⌜κ⌝ � ⇒ �� ⇒ �� ⇒ �

κ, Tr ⌜κ⌝ → � ⇒ �κ, Tr ⌜κ⌝ → � ⇒ �κ, Tr ⌜κ⌝ → � ⇒ �
κ, κ ⇒ �
κ ⇒ �

⇒ Tr ⌜κ⌝ → �⇒ Tr ⌜κ⌝ → �⇒ Tr ⌜κ⌝ → �
⇒ κ

κ ⇒ κ
κ ⇒ Tr ⌜κ⌝κ ⇒ Tr ⌜κ⌝κ ⇒ Tr ⌜κ⌝ � ⇒ �� ⇒ �� ⇒ �

κ, Tr ⌜κ⌝ → � ⇒ �κ, Tr ⌜κ⌝ → � ⇒ �κ, Tr ⌜κ⌝ → � ⇒ �
κ ⇒ �

⇒ �
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Internal Curry

‘Consequence’ predicate

Γ,A⇒ B Γ,C⇒ D
Γ,A, C(⌜B⌝, ⌜C⌝) ⇒ D

Γ,A⇒ B
Γ⇒ C(⌜A⌝, ⌜B⌝)

ν ⇔ C(⌜ν⌝, ⌜�⌝)

ν ⇒ ν � ⇒ �
ν, C(⌜ν⌝, ⌜�⌝) ⇒ �

ν ⇒ �
⇒ C(⌜ν⌝, ⌜�⌝)

⇒ ν

ν ⇒ ν � ⇒ �
ν, C(⌜ν⌝, ⌜�⌝) ⇒ �

ν ⇒ �
⇒ �
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Internal Curry

‘Consequence’ predicate

Γ,A⇒ B Γ,C⇒ D
Γ,A, C(⌜B⌝, ⌜C⌝) ⇒ D

Γ,A⇒ B
Γ⇒ C(⌜A⌝, ⌜B⌝)

ν ⇔ C(⌜ν⌝, ⌜�⌝)

ν ⇒ νν ⇒ νν ⇒ ν � ⇒ �� ⇒ �� ⇒ �
ν, C(⌜ν⌝, ⌜�⌝) ⇒ �

ν ⇒ �ν ⇒ �ν ⇒ �
⇒ C(⌜ν⌝, ⌜�⌝)

⇒ ν

ν ⇒ ν � ⇒ �
ν, C(⌜ν⌝, ⌜�⌝) ⇒ �

ν ⇒ �ν ⇒ �ν ⇒ �
⇒ �⇒ �⇒ �
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Cut-elimination for truth and abstraction

�emain extension of the standard inductive strategy consists in the
reduction of cuts of the following form:

Tr -rules principal in the last inferences
D0

Γ⇒ ∆,A
Γ⇒ ∆, Tr ⌜A⌝

D1
A, Γ⇒ ∆

Tr ⌜A⌝, Γ⇒ ∆
Γ⇒ ∆

. . .which we would like to reduce to:

D0
Γ⇒ ∆,A

D1
A, Γ⇒ ∆

Γ⇒ ∆

�is creates a problem because Tr ⌜A⌝ is atomic whereas A is of
arbitrary (logical) complexity.
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Tr -measures

▸ I will consider two ways of keeping track of applications of the
truth rules in derivations: the �rst applies to nodes in the
derivation tree, the second applies to single formulas within
derivations.

▸ In the �rst case:

γ0 ⇒ ⊺ α
γ0 ⇒ Tr ⌜⊺⌝ α + 1 γ1 ⇒ Tr ⌜⊺⌝ β

γ0 , γ1 ⇒ Tr ⌜⊺⌝ ∧ Tr ⌜⊺⌝ max(α, β)

▸ In the second case:

γ0 ⇒ 0⊺

γ0 ⇒ 1Tr ⌜⊺⌝ γ1 ⇒ 0Tr ⌜⊺⌝

γ0 , γ1 ⇒ max(1, n)Tr ⌜⊺⌝ ∧ Tr ⌜⊺⌝
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Contraction-Free

Systems of truth and ‘set theories’ can be proved to be consistent via
cut elimination arguments Grišin (1982), Petersen (2000), Cantini
(2003).

Truth à la Gris̆in GT
Γ, Tr s⇒ Tr s, ∆ [0] Γ⇒ ⊺, ∆ [0] Γ, � ⇒ ∆ [0]

A, Γ⇒ ∆ [α]
Tr ⌜A⌝, Γ⇒ ∆ [α + 1]

Γ⇒ ∆,A [α]
Γ⇒ ∆, Tr ⌜A⌝ [α + 1]

Γ⇒ ∆,Ai [α]
Γ⇒ ∆,A0 ⊓ A1 [α]

Γ⇒ ∆,A [α] Γ⇒ ∆,B [β]
Γ⇒ ∆,A ⊓ B [max(α, β)]

A,B, Γ⇒ ∆ [α]
A ⋆ B, Γ⇒ ∆ [α]

Γ⇒ ∆,A [α] Θ⇒ Λ,B [β]
Γ, Θ⇒ ∆, Λ,A ⋆ B [α + β]
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Contraction-free

Systems of truth and ‘set theories’ can be proved to be consistent via
cut elimination arguments Grišin (1982), Petersen (2000), Cantini
(2003).

Lemma
Given cut-free derivationsD0 ⊢GT Γ⇒ ∆,A andD1 ⊢GT A, Θ⇒ Λ,
there is aD ⊢GT Γ, Θ⇒ ∆, Λ with the Tr -rank ρ ofD is
≤ ρ(D0) + ρ(D1).

Proof Idea.
�e induction is on (ρ(D0) + ρ(D1), ∣A∣, ∣D0∣ + ∣D1∣).
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Contraction-free

Systems of truth and ‘set theories’ can be proved to be consistent via
cut elimination arguments Grišin (1982), Petersen (2000), Cantini
(2003).

Two problems of the contraction-free approach:
▸ Viewed as a set theory, GS is inconsistent with extensionality,
e.g de�ned as:

s ⊆ t ⋆ t ⊆ s, t ∈ r⇒ s ∈ r

�is is o�en called Gris̆in’s paradox.

▸ Viewed as a property theory or a truth theory, there is no known,
plausible semantics.

However, it needs to be added that it also features a ‘decent’
conditional (compared, e.g. to Field (2008)).
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Fixed-Point Semantics

Given our language LTr ∶= L∪{Tr}, we start with a (classical) model
M of L such that ⌜φ⌝M = φ, and set, for X ⊂ ∣M∣:

a ∈ Φ(X) ⇔ a = ⌜⊺⌝ , or
a = ⌜Tr ⌜φ⌝⌝ and ⌜φ⌝ ∈ X, or
a = ⌜¬Tr ⌜φ⌝⌝ and ⌜¬φ⌝ ∈ X, or
a = ⌜φ ∧ ψ⌝ and ⌜φ⌝ ∈ X and ⌜ψ⌝ ∈ X, or
a = ⌜¬(φ ∧ ψ)⌝ and ⌜¬φ⌝ ∈ X or ⌜¬ψ⌝ ∈ X, or . . .

Let then Φ0(X) = X, Φα+1(X) = Φ(Φα(X)), Φλ(X) = ⋃β<λ Φβ(X).

Lemma (Kripke (1975),Martin and Woodru� (1975))
If S ⊆ ∣M∣ is a �xed-point of Φ, then for all φ ∈ LTr :

φ ∈ S i� Tr ⌜φ⌝ ∈ S
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Fixed-Point Semantics

∣M∣

⊺

∅

Φ(∅)

Tr (⊺), ⊺ ∧ ⊺ . . . Φ2(∅)

⋮ ⋮

Tr <κ
(⊺)

Tr <κ
(⊺)

Φκ
(∅) = IΦ

Φκ+1
(∅) = Φκ

(∅)

⋮

�e structure (M, IΦ) gives rise to a three-valued model for LTr
with Tr a ‘partial’ predicate. De�ne

M⊧ Γ⇒ ∆ ∶⇔ (∀γ ∈ Γ) ∣γ∣M
IΦ

≠ 0→ (∃δ ∈ ∆) ∣γ∣M
IΦ

= 1
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Restricting initial sequents
Already known in other contexts Kreuger (1994); Jäger and Stärk
(1998); Schroeder-Heister (2016). �is is contained in Nicolai (2018a).
Structural rules are absorbed.

De�nition (LPT)

Γ, � ⇒ ∆ Γ⇒ ⊺, ∆

Γ⇒ ∆,A
Γ⇒ ∆, Tr ⌜A⌝

A, Γ⇒ ∆
Tr ⌜A⌝, Γ⇒ ∆

Γ⇒ ∆, φ
(¬l)

¬φ, Γ⇒ ∆
φ, Γ⇒ ∆

(¬r)
Γ⇒ ∆,¬φ

⋮ ⋮

▸ Now (M, S) ⊧ LPT for S a �xed point of Φ.
▸ �emodel (M, IΦ) satis�es a fully operational, paracomplete
version system of naïve truth based on Strong-Kleene logic
(modulo de�nition of consequence).
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Back to cut elimination

When contraction is around, the notion of Tr -rank is not enough:

D00

Γ⇒ ∆, Tr ⌜ψ⌝, Tr ⌜ψ⌝ [α]
Γ⇒ ∆, Tr ⌜ψ⌝ [α]

D1

Tr ⌜ψ⌝, Θ⇒ Λ [β]
Γ, Θ⇒ ∆, Λ [α + β]

Now the idea here would be that we transform the derivation in

D∗00

Γ⇒ ∆,ψ,ψ [α]
D∗1

ψ, Θ⇒ Λ [β]
Γ, Θ⇒ ∆, Λ,ψ [α + β]

D∗1

ψ, Θ⇒ Λ [β]
Γ, Θ, Θ⇒ ∆, Λ, Λ [2α + β]
Γ, Θ⇒ ∆, Λ [2α + β]
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Tr -complexity κ(⋅) of formulas
�e ordinal Tr -complexity κD(⋅) of a formula φ of LTr in a derivationD is
de�ned inductively as follows:

▸ formulas of L have Tr -complexity 0 in anyD;
▸ IfD is just Γ, φ⇒ φ, ∆ with φ ∈ L, then κD(ψ) = κD(φ) = 0 for all

ψ ∈ Γ, ∆. Similarly for (⊺), (�).
▸ IfD ends with

Γ⇒ ∆,A
Γ⇒ ∆, Tr ⌜A⌝

then the complexity of formulas in Γ, ∆ is unchanged and
κD(Tr ⌜A⌝) = κD(A) + 1 (similarly for (Tr -l)).

▸ IfD ends with
γ11 , . . . , γ1n ⇒ δ11 , . . . , δ1m , φ γ21 , . . . , γ2n ⇒ δ21 , . . . , δ2m ,ψ

γ31 , . . . , γ3n ⇒ δ31 , . . . , δ3m , φ ∧ ψ

then

κD(φ ∧ ψ) = max(κD(φ), κD(ψ))
κD(γ3i ) = max(κD(γ1i), κD(γ2i )) 1 ≤ i ≤ n
κD(δ3j ) = max(κD(δ1j ), κD(δ2j )) 1 ≤ j ≤ m
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Full cut elimination
Crucially, rules of LPT are κ-invertible, e.g.:
IfD ⊢LPT Γ1 , Tr ⌜A⌝ ⇒ ∆1, then there isD′ ⊢LPT A, Γ⇒ ∆ with
κD′(Γ) ≤ κD(Γ1), κD′(∆) ≤ κD(∆1), and

κD′(A) ≤ κD(Tr ⌜A⌝), if κD(Tr ⌜A⌝) = 0;
κD′(A) < κD(Tr ⌜A⌝), if κD(Tr ⌜A⌝) ≠ 0.

Lemma
Contraction is κ-admissible and length-admissible, e.g. : If
D ⊢nLPT Γ

1 , φ1 , φ2 ⇒ ∆1, then there is aD′ ⊢nLPT Γ, φ⇒ ∆ with
κD′(Γ1) ≤ κD′(Γ); κD′(∆1) ≤ κD′(∆)
κD′(φ) ≤ max(κD′(φ1), κD′(φ2)).

Proposition
IfD0 is a cut-free proof of Γ1 ⇒ ∆1 , φ1 in LPT, andD1 is a cut-free
LPT-proof of φ2 , Γ2 ⇒ ∆2, then there is a cut-free proofD of Γ3 ⇒ ∆3
with κD(Γ3) ≤ max(κD0(Γ1), κD1(Γ2)) and
κD(∆3) ≤ max(κD0(∆1), κD1(∆2)).



Basics
Paradox(es)

Consistency via
cut-elimination

Objects of Truth

Systems of Truth
Deflation and Conservation

Classical v Nonclassical
Kripkean truth

Logical Pluralism

Extensions
Reflection

Modal Logic

Modal Predicates

References

▸ �e ideal of semantic closure is at odds with resources that
outstrip the ones available in one’s semantic theory.
Cut-elimination procedures are usually formalizable in weak
arithmetical systems.

▸ When nonlogical initial sequents are around, full cut elimination
is not in general available: however by eliminating cuts on
formulas of the form Tr ⌜A⌝, one can obtain conservativity
proofs.

▸ Another advantage of the approach with restricted initial
sequents is that – unlike the contraction-free approaches – there
are natural in�nitary systems that arise from the logic and that
give succinct presentations of Π11-sets.
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Truth Bearers

▸ �ere are good reasons to require an ontology of bearers of truth
prior to discussing principles of truth. We want to prove in the
object language things like:

∀φ,ψ ∃χ (χ = (φ∧.ψ) ∧ φ ≠ χ)

�is is usually guaranteed by assuming a theory of �nite objects
(as we shall see in a moment).

▸ Notice that this is imposing non-trivial constraints. More
‘philosophical’ theories of truth are o�en formulated in terms of
propositions, and not sentence types (Horwich, 1998; Soames,
1998; Jago, 2018). �is rules out that propositions are
coarse-grained, e.g. sets of possible worlds.
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Arithmetic
▸ Peano arithmetic (PA) is the preferred base theory for systems of
truth. It is usually formulated in LN = {0, S,+,×} and features
equations for its primitives, e.g.

(x + 0) = x x + Sy = S(x + y)
and the �rst-order induction schema

φ(0) ∧ ∀x(φ(x) → φ(Sx)) → ∀x φ(x) for φ ∈ LN

▸ Alternatively, one can employ a theory of strings and
concatenation ⌢ with two atoms a, b based on Tarski’s axiom
a⌢y = u⌢v ↔ ∃w((x = u⌢w ∧ v = w⌢y) ∨ (u = x⌢w ∧ y = w⌢v))
With �rst-order string induction, the two theories are mutually
interpretable. An accessible source is Ganea (2009).

▸ Finite set theories are also a convenient choice. For instance
▸ Kaye and Wong (2006) show that PA and KF ∖ {Inf}+ ‘every set
has a transitive closure’ are bi-interpretable;

▸ similarly, a neat set theory based by Świerczkowski (2003) based
on the adjunction operation x ⊲ y ↦ x ∪ {y} is bi-interpretable
with PA.
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Doing with less

▸ Ultimately, what we require to establish the basic properties of
the truth bearers are a good notion of sequence, and a
minimum of induction to handle suitable forms of recursion.

▸ For the former the notion of a sequential theory is enough – see
Visser (2010) for a comprehensive overview. A theory is
sequential if it interprets – with no relativization of quanti�ers –
the theory AS given by the empyt set axiom and adjunction –
which is as strong as Robinson’s Q.

▸ As to induction, since all the relevant syntactic notions (terms,
formulas, proofs) are p-time decidable, the theory S12 by Buss
(1986) su�ces. However, many of the results that I will treat
below are speci�c to PA (or equivalents), and it is object of
current research to check which results are stable over T ⊇ S12.
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Ordinals

▸ A good base theory will also provide a satisfactory representation
of ordinals. For our purposes it su�ces to require a notation up
to the Feferman-Schütte ordinal Γ0:

▸ α is principal if it cannot be expressed as ζ + η for ζ , η < α. De�ne:

C(0) ∶= ‘the class of principal ordinals’
C(α + 1) ∶= ‘the class of �xed points of the function enumerating C(α)’

C(λ) ∶= ⋂
ζ<λ

C(ζ) for λ a limit ordinal

▸ �e Veblen functions φα are the enumerating functions of C(α).
�e class of strongly critical ordinals SC contains precisely the
ordinals α that are themselves α-critical. Γζ indicates the ζ-th
strongly critical ordinal.

▸ Principal ordinals α that are not themselves strongly critical are
such that α = φζ η for η, ζ < α. �erefore, by this fact and Cantor’s
normal form theorem, ordinals < Γ0 can be uniquely determined
as words of the alphabet (0,+, φ⋅⋅).
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Ordinals

▸ A good base theory will also provide a satisfactory representation
of ordinals. For our purposes it su�ces to require a notation up
to the Feferman-Schütte ordinal Γ0

▸ A notation system for Γ0 is of the form (OT, PT, ∣ ⋅ ∣, ≺), with
▸ OT the set of natural number ‘codes’ for ordinals < Γ0
▸ OT ⊆ OT the set of codes of principal ordinals
▸ ∣ ⋅ ∣∶OT→ ON
▸ n ≺ m ∶↔ n ∈ OT ∧m ∈ OT ∧ ∣n∣ < ∣m∣

▸ Using standard coding techniques one can show that OT, PT, ≺
are primitive recursive. Actually, Beckmann et al. (2003) show
that they can be showed to be p-time and represented in S12 –
notice that I do notmean that Γ0 can be well-founded in S12!
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Schemata

For ordinals α < Γ0, we denote with a the corresponding numeral in
the representation of OT and we do not distinguish between ordinal
functions such as the Veblen functions and their representations.
�e system (OT, PT, ≺) enables us to formulate the following
principles of trans�nite induction:

∀a ≺ b ϕ(a), Γ⇒ ∆, ϕ(b)
Γ⇒ ∆,∀a ≺ ε0 ϕ(a)

(TIε0
LTr
)

∀a ≺ b ϕ(a), Γ⇒ ∆, ϕ(b)
Γ⇒ ∆,∀a ≺ c ϕ(a)

for all γ(= ∣c∣) < ωω(TI<ωω

LTr
)

∀a ≺ b ϕ(a), Γ⇒ ∆, ϕ(b)
Γ⇒ ∆,∀a ≺ c ϕ(a)

for all γ < ε0(TI<ε0
LTr
)
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Truth as primitive

▸ Truth-theoretic de�ationism holds that truth is not a genuine
property and that its function is mainly that of a generalizing
device (Quine, 1970; Field, 1994; Horwich, 1998).

▸ Unlike other notions that have been taken to be primitive for
lack of consensus over a de�nition – e.g. knowledge, see
Williamson (2000) – Tarski’s theorem uncontroversially
establishes this (Halbach, 2014, Ch. 1).

▸ Truth is a fundamental semantic concept. A theory of meaning
for natural language expressions is not much more than a
(Tarskian) theory of truth for it (Davidson, 1984).
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Tarskian Truth

�e theory of truth in LTr that Davidson had in mind extends PA
with the following:

De�nition (CT)

∀s, t(Tr (s = t) ↔ s○ = t○)
∀φ ∈ L(Tr (¬φ) ↔ ¬Trφ)

∀φ,ψ ∈ L(Tr (φ ∧ ψ) ↔ Trφ ∧ Trψ)

∀v,∀φ(v) ∈ L(Tr (∀vφ) ↔ ∀xTrφ(ẋ))
φ(0) ∧ ∀x(φ(x) → φ(x + 1)) → ∀x φ(x) with φ(v) ∈ LTr

Important variations are obtained by tweaking the induction schema:
▸ CT ↾ (a.k.a. CT−) is obtained by restricting induction to L
▸ CTint is obtained by adopting the internal induction schema

∀φ(v)(Trφ(o/v)∧∀y(Trφ(ẏ/v) → Trφ(Ṡy/v)) → ∀xTrφ(ẋ/v))
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Conservativeness
�esis (Shapiro, 1998; Ketland, 1999)
CT proves Con(PA), therefore de�ationism is untenable.

�is contrasts with:

Proposition (Kotlarski et al. (1981); Visser and Enayat
(2015); Leigh (2015))
CTint is a conservative extension of PA.

�e discussion took a strong technical turn, brilliantly summarized in
Cieliski (2017) – with many original contributions. It’s worth
mentioning:

Proposition (Enayat and Pakhomov (2018))
CT ↾ plus ‘disjunctive correctness’, i.e.

∀s(Tr (⋁
i<s

φi) ↔ ∃i < sTrφi)

is the same theory as CT[I∆0], and therefore proves Con(PA).
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Conservativeness
▸ Despite the technical interest, the debate seems to be built on
shaky foundations. Virtually no de�ationist has thoroughly
defended the claim that truth has to be conservative over the
base theory.

▸ By contrast, it has repeatedly been argued that truth has to be
nonconservative, but in a way that is distinctively
metalinguistic, i.e. it does not interfere with the subject matter
of the base theory over which truth is built.

▸ �is has led to the programme of ‘disentangling’ syntactic
quanti�ers from quanti�ers over natural numbers:

Proposition (Nicolai (2015, 2016))
If one formulates CT ↾ as a two-sorted theory, with ‘syntactic’
quanti�ers and ‘number-theoretic’ quanti�ers, and truth applying only
over syntactic objects, then:

▸ �e theory of truth becomes trivially conservative over PA;
▸ �is version of CT ↾ plus ‘all axioms of PA are true’ ismutually
interpretable with PA + Con(PA).
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Feferman’s project

To give a nice presentation of the re�ective closure of PA – and
possibly of further ‘natural’ theories: i.e. the (truth-)theory that makes
explicit all that is implicit in the acceptance of PA.

First attempt: CT<a, α ≤ Γ0

L0 ∶= LTr L<c ∶= L ∪ {Trb ∣ b < c}

With b < c:

∀s, t(Trb(s = t) ↔ s○ = t○)
∀φ ∈ L<b (Trb(¬φ) ↔ Trb(¬φ))

∀φ,ψ ∈ L<b (Trb(φ ∧ ψ) ↔ Trbφ ∧ Trbψ)

∀v,∀φ(v) ∈ L(Trb(∀vφ) ↔ ∀xTrbφ(ẋ))
∀φ ∈ L<a<b(TrbTr aφ↔ Traφ)

∀d ≺ b,∀φ ∈ L<d(TrbTrdφ↔ Trbφ)
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Feferman’s project
▸ �e project of isolating CT<ε0 or CT<Γ0 as natural stopping
points, that was congenial to Feferman’s project, depended
essentially on other results, such as Feferman’s and Schütte’s
independent characterization of Γ0, or the provable
well-orderings of PA.

▸ �e next step was to �nd an independent characterization of
such theories:

De�nition (KF)

∀s, t(Tr (s = t) ↔ s○ = t○)
∀s, t(Tr (s ≠ t) ↔ s○ ≠ t○)
∀t(TrTr t↔ Tr t○)
∀t(TrTr¬t↔ Tr¬t○)
∀φ ∈ LTr (Tr (¬¬φ) ↔ Trφ)
∀φ,ψ ∈ LTr (Tr (φ ∧ ψ) ↔ Tr φ ∧ Trψ)
∀φ,ψ ∈ LTr (Tr¬(φ ∧ ψ) ↔ Tr¬φ ∨ Tr¬ψ)
∀v,∀φ(v) ∈ LTr (Tr (∀vφ) ↔ ∀x Tr φ(ẋ))
∀v,∀φ(v) ∈ LTr (Tr (¬∀vφ) ↔ ∃x Tr¬φ(ẋ))
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Properties of KF
▸ Semantically KF �ts nicely with Kripke’s �xed-point semantics
(Kripke, 1975),

(N, S) ⊧ KF i� S is a �xed point of Kripke’s theory of truth
▸ �e full Tr -schema is available for meaningful predicates
satisfying D(x) ∶↔ Tr x ∨ Tr¬x, i.e. for all A ∈ LTr :

KF ⊢ D(⌜A⌝) → (Tr ⌜A⌝ ↔ A)

Proposition (Feferman (1991); Cantini (1989))
KF is proof-theoretically equivalent to (Π01 −CA)<ε0 .

Proof Idea.
Lower bound: PA in LTr proves TI<ε0

LTr
. Now KF proves:

φ ∈ L<a → D(φ) ⇒ φ ∈ La → D(φ)

An application of TI<ε0
LTr
yields an embedding of CT<ε0 , which

su�ces.
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Properties of KF
▸ Semantically KF �ts nicely with Kripke’s �xed-point semantics
(Kripke, 1975),

(N, S) ⊧ KF i� S is a �xed point of Kripke’s theory of truth
▸ �e full Tr -schema is available for meaningful predicates
satisfying D(x) ∶↔ Tr x ∨ Tr¬x, i.e. for all A ∈ LTr :

KF ⊢ D(⌜A⌝) → (Tr ⌜A⌝ ↔ A)

Proposition (Feferman (1991); Cantini (1989))
KF is proof-theoretically equivalent to (Π01 −CA)<ε0 .

Proof Idea.
Upper bound: One formulates KF in a Tait (one-sided) in�nitary
calculus, and analyzes quai-normal derivations, i.e. derivations with
only cuts on Tr t and ¬Tr t and proves in CT<ε0 that

if KF∞ ⊢α Tr ⌜A⌝, then Tr 2α ⌜A⌝
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Symmetries

▸ One important drawback of KF is that its internal theory
{φ ∈ LTr ∣ KF ⊢ Tr ⌜φ⌝} is di�erent from its theorems: for
instance KF ⊢ λ ∨ ¬λ but KF ⊬ Tr ⌜λ ∨ ¬λ⌝.

▸ To overcome this:

Reinhardt’s thesis
One should adopt an instrumental reading of KF. Its conceptual core
is given by its internal theory.

Lemma (Halbach and Horsten (2006))
�ere are A’s in LTr such that KF ⊢ Tr ⌜A⌝ but the proof essentially
employs B’s such that KF ⊬ Tr ⌜B⌝.
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Kripke-Feferman in four-valued logic
▸ From classical logic, remove both negation introduction rules
are replace them with, e.g.:

Γ⇒ ∆,¬φ,¬ψ
Γ⇒ ∆,¬(φ ∧ ψ)

¬φ, Γ⇒ ∆ ¬ψ, Γ⇒ ∆
¬(φ ∧ ψ), Γ⇒ ∆

One obtains a logic in the vicinity of FDE.
▸ As to truth:

PKF

s○ = t○⇔ Tr (s = t)
¬Trφ⇔ Tr¬φ
Tr (φ ∧ ψ) ⇔ Trφ ∧ Trψ
TrTrφ⇔ Trφ

▸ �e theories are closely related:

ω-categoricity
For S a �xed point of Kripke’s theory of truth,

(N, S) ⊧ KF i� (N, S) ⊧FDE PKF
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Kripke-Feferman in four-valued logic
Unlike KF, PKF ⊢ Tr ⌜A⌝ i� PKF ⊢ A, for all A ∈ LTr .

Proposition (Halbach and Horsten (2006))
PKF proves the same arithmetical sentences as CT<ωω .

Proposition (Feferman (1991))
KF proves the same arithmetical sentences of CT<ε0 .

Recalling Reinhardt’s thesis:

Corollary
�e internal theory of KF and PKF di�er considerably.

Proposition (Nicolai (2018b))
▸ PKF = {A ∈ LTr ∣ KFint ⊢ Tr ⌜A⌝}

▸ {A ∈ LTr ∣ KF ⊢ Tr ⌜A⌝} = PKF + TI<ε0
LTr
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0

LTr

ω
ωω

ωck1

ε0

L LTr

PKF, KFint < φω0 φ0ω (or ωω)

KF < φε00 φ10 (or ε0)



Basics
Paradox(es)

Consistency via
cut-elimination

Objects of Truth

Systems of Truth
Deflation and Conservation

Classical v Nonclassical
Kripkean truth

Logical Pluralism

Extensions
Reflection

Modal Logic

Modal Predicates

References

Basics
Paradox(es)
Consistency via cut-elimination
Objects of Truth

Systems of Truth
De�ation and Conservation
Classical v Nonclassical Kripkean truth
Logical Pluralism

Extensions
Re�ection
Modal Logic
Modal Predicates



Basics
Paradox(es)

Consistency via
cut-elimination

Objects of Truth

Systems of Truth
Deflation and Conservation

Classical v Nonclassical
Kripkean truth

Logical Pluralism

Extensions
Reflection

Modal Logic

Modal Predicates

References

�e costs of nonclassical logic

▸ �is asymmetry between the amount of trans�nite induction
provable in PKF and KF has been taken – see Halbach (2014) and
Halbach and Nicolai (2018) – as substantiating Feferman’s claim
that

‘nothing like sustained ordinary reasoning can be
carried out [in such logic]’ (Feferman, 1984)

▸ �is seems to be supported by:

Halbach and Nicolai (2018)
PKF↾L = {φ ∈ LTr ∣ KF↾L ⊢ Tr ⌜φ⌝}.

▸ A possible rejoinder is that trans�nite induction open to
semantic notions cannot be taken as compromising
mathematical reasoning.
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INDEC is the assertion that:
every countable scattered indecomposable linear ordering is
either indecomposable to the le�, or indecomposable to the
right.

It was proved to be true by Pierre Jullien in 1969.

Lemma (Montalbán, Friedman)
INDEC is implied by Σ11-CA, which is Π12-conservative over ACA<ε0 .

Proposition (Eastaugh, N.)
RCA+INDEC is proof-theoretically equivalent to KF. It follows that
KF can ‘nicely’ interpret RCA+INDEC, but KF cannot.
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▸ We have seen that CT<ε0 , CT<Γ0 , KF, and in part PKF can be seen
as attempt to characterize the re�ective closure of PA.

▸ �ere is a more direct strategy involving re�ection principles,
i.e. claims of the form

RFN(S)

if something is provable in a theory S, then it’s true, or
∀x(ProvS(⌜A(ẋ)⌝) → A(x))

▸ It turns out that if one focuses on classical biconditionals

PTB↾L = {Tr ⌜A⌝ ↔ A ∣ A positive of LTr }

one obtains:

Proposition (Horsten and Leigh (2017))
RFN2(PTB↾L) ⊇ KF.
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▸ �ere seems to be a conceptual problem with this strategy:

If one formulates re�ection – as it seems plausible – as:

∀φ(ProvPTB(φ) → Trφ)

then there is a sentence A such that PTB with this form of re�ection
proves Tr ⌜A ∧ ¬A⌝.

▸ A possible way out is to start with a set of ‘biconditionals’ over
FDE:

TS↾L = {Tr ⌜A⌝ ⇔ A ∣ A ∈ LTr }

and de�ne re�ection as
Pr2S(⌜Γẋ⇒ ∆ẋ⌝, ⌜Θẋ⇒ Λẋ⌝) Γ(x) ⇒ ∆(x)

(RR)
Θ(x) ⇒ Λ(x)

▸ �en we can prove:

Proposition (Fischer et al. (2017))
▸ RR2(TS↾L) ⊇ PKF.

▸ RRω(TS↾L) ⊢ TI<ωω2

LTr
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An analogy

▸ Solovay’s theorem tells us that, for all A ∈ L◻,

GL ⊢ A i� ∀ ⋆ (PA ⊢ A⋆)

▸ By rede�ning a realization ⋆∶L◻ → LTr as:

A⋆ =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0 = 1, if A = �,
commutes with connectives
Tr ⌜B⋆⌝ if A = ◻B

one can ask:

Question

? ⊢ A ⇔ ∀⋆ (KF ⊢ A⋆)
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Nicolai and Stern (2018)
�e logic L◻

◻ ⊺ ¬ ◻ �

◻A↔ ◻¬¬A ◻A ∧ ¬ ◻ ¬A→ A
◻ (A ∧ B) ↔ ◻A ∧ ◻B ◻ ¬(A ∧ B) ↔ ◻¬A ∨ ◻¬B
◻A↔ ◻◻A ◻ ¬A↔ ◻¬◻A

w

z

z

wiw0 wj

z

. . . . . . . . .

Proposition

L◻ ⊢ A i� ∀ ⋆ (KF ⊢ A⋆)
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