
Focused proof systems and their automatic generation
Aleksandra Samonek

UCLouvain
aleksandra.samonek@uclouvain.be

Focusing
Focusing is a strategy in proof searching in which the
searching procedure alternates between two phases:
1. an inversion phase (when the invertible inference
rules are applied exhaustively) and

2. a chaining phase (when a selected formula is
decomposed as much as possible using non-invertible
rules).

For a variety of logics focusing is complete and
provides a foundation for developing logics into pro-
gramming languages.

Focusing in linear logic (LL)
Logic programming
LL is particularly good for providing abstract models of com-
putational processes. The completeness of focusing proofs
was first shown for LL by [Andreoli, 1992] and with the fol-
lowing basic principle:

computation = proof search.
Proofs in a Gentzen-style sequent calculus for LL (and other
logics as well) can be redundant, i. e. two proofs can dif-
fer syntactically although they are identical up to some ir-
relevant ordering or simplification of application of inference
rules (IRs). Consequently, the search procedure makes (com-
putationally) costly choices which turn out to be irrelevant.

Solution for linear logic [Andreoli, 1992]
Define a subclass of proofs (called focusing proofs FP)
that is:
1. complete (any formula derivable in LL has a FP) and
2. tractable (many irrelevant choices are eliminated when
the search procedure is aimed at a FP).

Why Gentzen-style sequents for
focused proofs?

Sequents can be used to easily formalize the history of
execution of a computational process during a certain
time interval. A sequent system describes the correct
inferences in proofs. This description corresponds to
allowed process state transitions.
A state is represented not by an atom (as would be
default in classical logic), but as a sequent (a multiset of
formulae). Unordered multisets allow concurrent access
to formulae of the sequent.

A tree-like representation of
computation

Consider the following tree:

s1

s2 s3

s5 s4

* s1 represents the state of the computational process at
the beginning of the time interval.
It corresponds to the root of the tree, or the conclusion of
a sequent.

* s2 and s3 are the nodes of the tree representing the
intermediate states of the process.

* s4 and s5 are the leaves of the tree and represent the
resulting states at the end of the time interval or the
hypotheses.

Asynchronous vs synchronous
connectives in LL

In linear logic, synchronous connectives are such that
the right-introduction IRs for those connectives are (gener-
ally) not invertible, the opposite for asynchronous con-
nectives.
Synchronous connectives for LL: ⊥, >, ?, &, ∀, `.
Asynchronous connectives for LL (de Morgan duals of syn-
chronous connectives):
1, 0, !, ⊕, ∃, ⊗.

Assigning bias to atoms
In FP the synchronous/asynchronous classification is ex-
tended to atoms. This assignment of positive (synchronous)
bias or negative (asynchronous) bias is arbitrary and influ-
ences the shape and the number of FPs, but not the fact of
whether a FP for a given formula exists in general.

Assigning bias to atoms
Example [Liang and Miller, 2009]
Consider the following Horn clause characterization of the
Fibonacci series:

fib(0, 0) ∧ fib(1, 1) ∧ ∀n∀f∀f ′(fib(n, f ) ⊃
fib(n + 1, f ′) ⊃ fib(n + 2, f + f ′))

We want to search for a FP of fib(n, fn).
* If we assign a negative bias to all atomic formulae, there
exists only one FP of fib(n, fn). Moreover, the proof is
"backwards chaining" and of exponential size.

* If we assign a positive bias to all atoms, there exists an
infinite number of FPs of fib(n, fn), all of which are
"forward chaining". The smallest of them is of size linear
in n.

In backward chaining calculi all atoms have a negative
bias, while in forward chaining calculi, all atoms have a
positive bias.

Negative and positive phases
in proof search

The following examples of invertible IR are due to [Miller
2014]:

A,Γ ` B
Γ ` A ⊃ B

Γ ` A Γ ` B
Γ ` A ∧B

Γ ` B[y/x]
Γ ` ∀x.B

Invertible IR in FP-search are applied exhaustively and in
any order. This constitutes the negative phase of proof
search, where formulae are interpreted as processes in a given
environment. During a negative phase of proof search such
formulae evolve without any communication with the envi-
ronment (asynchronously, hence the naming of rules and
connectives).

However, some IR are not generally invertible, like the fol-
lowing:

Γ ` B[t/x]
Γ ` ∃x.B

Γ1 ` A Γ2 ` B
Γ1,Γ2 ` A ∧B

Non-invertible IR are applied in a chain-like manner
[Miller et al., 1987, Miller et al., 1989]. The process of ap-
plying them constitutes a positive phase of the proof search
and some backtracking and synchronization with the
environment are generally required.

Results obtained so far
– [Andreoli, 1992] showed a first focused proof system
for a full logic (LLF ), which was complete wrt its
logic and tractable.

– [Andreoli and Pareschi, 1991, Miller, 1996] used
Andreoli’s completeness result to design and
formalize certain logic programming languages.

– [Danos et al., 1993] developed focusing proof
systems for classical logic (LKT/LKQ/LK Îů).

– [Herbelin, 1995] developed LJQ which permits
forward-chaining in proofs.

– [Dyckhoff and Lengrand, 2007]: developed LJQ
extension (LJQ′).

– [Jagadeesan et al., 2005]: used both forward
chaining and backward chaining in a subset of INT .
λRCC allows for two polarities of atoms (agents
and constraints are positive and goals are negative)
and for mixing both forward chaining and backward
chaining in a fragment of INT : forward chaining is
used to model constraint propagation and backward
chaining is used to model goal-directed search. Note:
λRCC is not characterized as a FP system.

– [Liang and Miller, 2009] used both both forward
chaining and backward chaining in proofs for full
INT (LKF ).

–LKF [Miller] provided focusing proofs for full
classical logic.

– [Miller and Saurin, 2007] showed a modal proof of
focalization via focalization graphs.

– [Nigam et al., 2015]: proposed a method for
automatic generation of certain focused proof
systems via permutation graphs based on
[Miller and Saurin, 2007].

Can proof system focalization be
automated?

Automating focalization means formulating and proving
the completeness of focused-like proof systems in an au-
tomated fashion.
[Nigam et al., 2015] develop the permutation lemmas from
[Miller and Saurin, 2007] in order to generalize the complete-
ness proof based on those lemmas for the focused linear logic
proof system.

Permutation Graphs
Let S be a commutative sequent calculus proof system in
which non-atomic initial and cut rules are admissible and
which allows contraction iff weakening is allowed.

Definition (Permutability). Let α and β be two IRs in
S. We say that α permutes up β (α ↑ β) if for every S-
derivation of a sequent S in which α operates on S and β
operates on one or more of premises (but not on auxiliary for-
mulae) of α, there exists another S-derivation of S in which
β operates on S and α operates on zero or more premises
(but not on auxiliary formulae) of β. In this situation, we
say conversely that β permutes down α (α ↓ β).

Definition 2 (Permutation graph). Let R be the set of
IR of S.
We construct the (directed) permutation graph PS = (V,E)
for S by taking V = R and E = {(α, β) : α ↑ β}.

Definition 3 (Permutation cliques). Let PS be a permu-
tation graph of S. Consider PS∗ = (V ∗, E∗), an undirected
permutation graph obtained from PS = (V,E) by taking
V ∗ = V and E∗ = {(α, β) : (α, β) ∈ E and (β, α) ∈ E}.
Then the permutation cliques of S are the maximal cliques
(sets of vertices where all vertices are pairwise connected by
one edge) of PS∗.

(!) Note that permutation cliques for graphs have a role
similar to that of equivalence classes for IR.

Definition 4 (Permutation partition). Let PS be a per-
mutation graph of S. A permutation partition P is a par-
tition of PS such that each component is a complete graph.
We will call each component of such partitions a permuta-
tion component (inferences in the same component permute
over each other).

Definition 5 (Permutation partition hierarchy). Let
PS be a permutation graph of S and P = C1, . . . , Cn –
a permutation partition. We say that Ci ↓ Cj iff for every
inference αi ∈ Ci and αj ∈ Cj we have that αi ↓ αj, that
is, αj ↑ αi or, equivalently (αj, αi ∈ PS.

Generating a focused
proof system SF

Following [Nigam et al., 2015] we will now demonstrate a
derivation of a focused proof system SF from the permu-
tation partitions of a given proof system S and enlist the
conditions necessary for this derivation.

Definition 6 (Focusable permutation partition). Let
S be a sequent calculus proof system and let C1, . . . , Cn
be a permutation partition of the IR in S. We say that
permutation partition is focusable if the following conditions
are satisfied:
* n = 2 and C1 ↓ C2;
* every rule in component C2 has at most one auxiliary
formula in each premise;

* every non-unary rule in component C2 splits the context
among the premises, meaning that no implicit copying of
context formulae is allowed on branching rules.

We call C1 the negative component and C2 – the positive
component and classify formula occurrences in a proof as
negative and positive according to their introduction rules.

Definition 7 (Focused proof system). Let S be a se-
quent calculus proof system and C1 ↓ C2 a focusable per-
mutation partition of the rules in S. Then we can define the
focused system SF in the following way:
Sequents. Sequents. sequents are of the shape Γ,Γ′ `p
∆,∆′, where p ∈ {+,−, 0} indicates a positive, negative
and neutral polarity sequents respectively. We will call Γ′
and ∆′ the active contexts.

Inference Rules. For each rule α in S belonging to the
negative (positive) component, SF will have a rule α with
conclusion and premises being negative (positive) sequents
and main and auxiliary formulae occurring in the active con-
texts.

Structural rules. The connection between the phases is
done via the following structural rules:
* Selection rules move a formula F into the active context.
If F is negative, then p = −.
If F is positive, then there is no negative F ′ ∈ Γ ∪∆ and
p = +.

* Store rules remove a formula F from the active context if
F is negative and p = + or if F is positive and p = −.

* The end rule removes the label p = {+,−} of a sequent
by setting it to 0 if the active contexts are empty.

An SF -proof is characterized by sequences of inferences la-
beled with + or −, called phases. We say that selection
rules are responsible for starting a phase and the end rule
finishes a phase. Between any two phases there is always a
neutral state, denoted by a sequent labeled with 0.

Completeness conjecture
Conjecture 1. All proof systems derived from a focusable
permutation partition are sound and complete. That is a
sequent Γ ` ∆ is provable in S iff the sequent Γ; � `0 ∆; �
is provable in SF .

Literature

[Andreoli, 1992] Andreoli, J.-M. (1992).
Logic programming with focusing proofs in linear logic.
Journal of Logic and Computation, 2(3):297–347.

[Andreoli and Pareschi, 1991] Andreoli, J.-M. and Pareschi,
R. (1991).
Linear objects:logical processes with built-in inheritance.
New Generation Computing, 9(3-4):445–473.

[Danos et al., 1993] Danos, V., Joinet, J.-B., and Schellinx,
H. (1993).
The structure of exponentials: Uncovering the dynamics
of linear logic proofs.
In Kurt Gödel Colloquium on Computational Logic and
Proof Theory, pages 159–171. Springer.

[Dyckhoff and Lengrand, 2007] Dyckhoff, R. and Lengrand,
S. (2007).
Call-by-value λ-calculus and ljq.
Journal of Logic and Computation, 17(6):1109–1134.

[Herbelin, 1995] Herbelin, H. (1995).
Séquents qu’on calcule: de l’interprétation du calcul des
séquents comme calcul de lambda-termes et comme
calcul de stratégies gagnantes.
PhD thesis, Université Paris-Diderot-Paris VII.

[Jagadeesan et al., 2005] Jagadeesan, R., Nadathur, G., and
Saraswat, V. (2005).
Testing concurrent systems: An interpretation of
intuitionistic logic.
In International Conference on Foundations of Software
Technology and Theoretical Computer Science, pages
517–528. Springer.

[Liang and Miller, 2009] Liang, C. and Miller, D. (2009).
Focusing and polarization in linear, intuitionistic, and
classical logics.
Theoretical Computer Science, 410(46):4747–4768.

[Miller, 1996] Miller, D. (1996).
A multiple-conclusion specification logic.
Theoretical Computer Science, 165(1):201–232.

[Miller et al., 1989] Miller, D., Nadathur, G., Pfenning, F.,
and Scedrov, A. (1989).
Uniform proofs as a foundation for logic programming.

[Miller and Saurin, 2007] Miller, D. and Saurin, A. (2007).
From proofs to focused proofs: a modular proof of
focalization in linear logic.
In International Workshop on Computer Science Logic,
pages 405–419. Springer.

[Miller et al., 1987] Miller, D. A., Nadathur, G., and
Ščedrov, A. (1987).
Hereditary Harrop formulas and uniform proof systems.
University of Pennsylvania, School of Engineering and
Applied Science, Department of Computer and
Information Science.

[Nigam et al., 2015] Nigam, V., Reis, G., and Lima, L.
(2015).
Towards the automated generation of focused proof
systems.
arXiv preprint arXiv:1511.04177.


