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Proof mining

Proof mining program → analysis of mathematical proofs with
the help of proof theoretic techniques, including functional
interpretations, in search of concrete new information:
effective bounds, algorithms, weakening of premisses, ...



Proof mining with the BFI

We use Ferreira and Oliva’s Bounded Functional Interpretation
(BFI) and its characteristic principles plus a new base type for
elements of the space and the (universal) axioms for the Hilbert
space:

I Unlike Gödel’s Dialectica interpretation, the BFI always
disregards precise witnesses, caring only for bounds for them.

I Completely new translation of formulas.

I Independence on bounded parameters is made explicit.
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I Unlike Gödel’s Dialectica interpretation, the BFI always
disregards precise witnesses, caring only for bounds for them.

I Completely new translation of formulas.

I Independence on bounded parameters is made explicit.



Proof mining with the BFI

We use Ferreira and Oliva’s Bounded Functional Interpretation
(BFI) and its characteristic principles plus a new base type for
elements of the space and the (universal) axioms for the Hilbert
space:

I Unlike Gödel’s Dialectica interpretation, the BFI always
disregards precise witnesses, caring only for bounds for them.

I Completely new translation of formulas.

I Independence on bounded parameters is made explicit.



Framework

Let H be a real Hilbert space with inner product 〈·〉 and norm ‖·‖
and let T : H → 2H be an operator in H.
T is monotone if

(x , y), (x ′, y ′) ∈ Γ(T )⇒ 〈x − x ′, y − y ′〉 ≥ 0.

A monotone operator T is maximal monotone if Γ(T ) is not
properly contained in the graph of any other monotone operator on
H.
We denote by S the (nonempty) set of all zeros of T , i.e.,
S = T−1(0).



For c > 0, we use Jc to denote the resolvent of T , i.e. the
single-valued function defined by

Jc = (I + cT )−1.

A mapping f : K → K is called nonexpansive if for all x , y ∈ K

‖f (x)− f (y)‖ ≤ ‖x − y‖ .

The resolvent Jc is nonexpansive, and

Fix(Jc) = S



Why go PPA?

I One of the major problems in the theory of maximal
monotone operators is to find a point in the solution set S ,
assuming that S is nonempty.

I Many problems can be formulated as finding a zero of
maximal monotone operators.

I PPA is a powerful and successful algorithm in finding a
solution of maximal monotone operators.

I Starting from any initial guess z0 ∈ H, the PPA generates a
sequence which approximates the solution.
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I The original form of the PPA does not, in general, have
strong convergence.

Question: How to modify the PPA so that strong convergence is
guaranteed?

I We will focus on a theorem of Yao and Noor for which we
have the strong convergence of the algorithm to the nearest
projection point onto the set of zeros of the operator.
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mPPA

Let H be a Hilbert space. The proximal point algorithm with
multi-parameters is the following algorithm

mPPA : zn+1 = λnu + γnzn + δnJcn(zn) + en, n ≥ 0,

where

I u ∈ H is given,

I cn > 0,

I λn, γn, δn ∈ (0, 1) and

I λn + γn + δn = 1,∀n ≥ 0.



A theorem by Yao-Noor

zn+1 = λnu + γnzn + δnJcn(zn) + en

Theorem
Let (zn) be generated by mPPA. Assume that

(i) limn→∞ λn = 0;

(ii)
∑∞

n=0 λn =∞;

(iii) 0 < lim infn→∞ γn ≤ lim supn→∞ γn < 1;

(iv) cn ≥ c , where c is some positive constant;

(v) cn+1 − cn → 0;

(vi)
∑∞

n=1 ‖en‖ <∞.

Then (zn) converges strongly to a point z ∈ S which is the nearest
point projection of u onto S .



Quantitative version of Yao-Noor’s theorem I

Let (zn) be generated by mPPA. Assume that there exist
a, b, c, d ∈ N and s ∈ S and monotone functions l , L,∆, Γ,E such
that

(i) ∀k ∈ N∀n ≥ l(k)
(
λn ≤ 1

k+1

)
;

(ii) ∀k ∈ N
(∑L(k)

i=1 λi ≥ k
)

;

(iii) ∀n ≥ a
(

1
a+1 ≤ γn ≤ 1− 1

a+1

)
;

(iv) ∀n ∈ N
(
cn ≥ 1

c+1

)
;

(v) ∀n ∈ N
(

1
∆(n)+1 ≤ ηn ≤ 1− 1

∆(n)+1

)
, ηn ∈ {λn, γn, δn};

(vi) ∀k ∈ N∀n ≥ Γ(k)
(
|cn+1 − cn| ≤ 1

k+1

)
;

(vii) ∀k ∈ N∀n ∈ N
(∑E(k)+n

i=E(k)+1 ‖ei‖ ≤
1

k+1

)
.



Quantitative version of Yao-Noor’s theorem II

Theorem
Under the assumptions (i)-(vii) we have that

∀k ∈ N∀f : N→ N∃n ≤ φ(k , f )∀i , j ∈ [n, n+fn]

(
‖zi − zj‖ ≤

1

k + 1

)
,

where φ(k , f ) is a finitely recursive bound explicitly given in the
proof.



I The original proof of the theorem uses explicitly the lim sup of
a certain sequence. From a logical point of view this amounts
to using arithmetical comprehension which requires bar
recursors in order to be interpreted.

I We were able to eliminate this dependency by using the fact
that the sequence in question is bounded and making a
rational approximation.

I We were also able to eliminate an argument of weak
compactness. For such elimination the BFI seems to be more
intuitive and easy to carry out than Kohlenbach’s monotone
interpretation.

I Moreover countable choice (in the projection argument) was
eliminated due to a previous observation by Kohlenbach.
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Thank you!


