Provability Logic Day 2 Connections to proof-theoretic ordinals

David Fernández Duque

Ghent University

3 September, 2018 Proof Society Summer School

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Review: Arithmetical languages

We assume that $0,+,\times,2^x$ are definable, as is quantification over $\mathbb N$

 Δ_0 : Formulae where all quantifiers are of the form $\forall x < t$ or $\exists x < t$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 $\Pi_n: \forall x_1 \exists x_2 \dots Q_n x_n \varphi \text{ with } \varphi \in \Delta_0$

 Σ_n : $\exists x_1 \forall x_2 \dots Q_n x_n \varphi$ with $\varphi \in \Delta_0$

EA: Allows induction for Δ_0 formulas

IF: Allows induction for formulas in Γ

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

PA : Induction for all formulas

EA: Allows induction for Δ_0 formulas

IF: Allows induction for formulas in Γ

PA : Induction for all formulas

Standing assumption: Theories are computably enumerable, sound, extend EA

(ロ) (同) (三) (三) (三) (○) (○)

EA: Allows induction for Δ_0 formulas

IF: Allows induction for formulas in Γ

PA : Induction for all formulas

Standing assumption: Theories are computably enumerable, sound, extend EA

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 $\Pr_{\mathcal{T}}(x)$ is a Σ_1 formula that defines provability in \mathcal{T}

EA: Allows induction for Δ_0 formulas

IΓ: Allows induction for formulas in Γ

PA : Induction for all formulas

Standing assumption: Theories are computably enumerable, sound, extend EA

 $\Pr_T(x)$ is a Σ_1 formula that defines provability in T

Theorem (Provable Σ_1 -completeness:) If $\sigma(x) \in \Sigma_1$,

$$\mathsf{EA} \vdash \forall x \ \left(\sigma(x) \to \Pr_{\mathsf{EA}}(\ulcorner \sigma(\dot{x}) \urcorner) \right)$$

Review: Gödel-Löb logic

Language:

 $p \quad \neg \varphi \quad \varphi \land \psi \quad \Box \varphi$

Axioms:

$$\blacktriangleright \Box(\varphi \to \psi) \to (\Box \varphi \to \Box \psi)$$

•
$$\Box(\Box \varphi \rightarrow \varphi) \rightarrow \Box \varphi$$
 (Löb's axiom)

- 1. sound and complete for the class of finite (and thus well founded) strict partial orders
- 2. sound and complete for its arithmetical interpretation: $(\Box \varphi)^f = \Pr_T(\ulcorner \varphi^f \urcorner) \in \Sigma_1$

Soundness of Löb's axiom

Proof 1.

1. Apply the second incompleteness theorem to $T + \neg \varphi$

$$\Box_{T+\neg\varphi}\Diamond_{T+\neg\varphi}\top \to \Box_{T+\neg\varphi}\bot$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Soundness of Löb's axiom

Proof 1.

1. Apply the second incompleteness theorem to $T + \neg \varphi$

$$\Box_{T+\neg\varphi}\Diamond_{T+\neg\varphi}\top \to \Box_{T+\neg\varphi}\bot$$

2. By the deduction theorem we can replace $\Box_{\mathcal{T}+\neg\varphi}\psi$ by $\Box_{\mathcal{T}}(\neg\varphi \rightarrow \psi)$

$$\Box_{\mathcal{T}}(\neg\varphi \to \neg \Box_{\mathcal{T}} \neg \neg \varphi) \to \Box_{\mathcal{T}} \neg \neg \varphi$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Soundness of Löb's axiom

Proof 1.

1. Apply the second incompleteness theorem to $T + \neg \varphi$

$$\Box_{T+\neg\varphi}\Diamond_{T+\neg\varphi}\top \to \Box_{T+\neg\varphi}\bot$$

2. By the deduction theorem we can replace $\Box_{\mathcal{T}+\neg\varphi}\psi$ by $\Box_{\mathcal{T}}(\neg\varphi \rightarrow \psi)$

$$\Box_{\mathcal{T}}(\neg\varphi \to \neg \Box_{\mathcal{T}} \neg \neg \varphi) \to \Box_{\mathcal{T}} \neg \neg \varphi$$

3. Simplify

$$\Box_T(\Box_T\varphi\to\varphi)\to\Box_T\varphi$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

If this sentence is true, then Santa Claus is real

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

If this sentence is true, then Santa Claus is real

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Assume $T \vdash \Box_T \varphi \rightarrow \varphi$

If this sentence is true, then Santa Claus is real Assume $T \vdash \Box_T \varphi \rightarrow \varphi$ Fixed point theorem: $T \vdash S \leftrightarrow (\Box_T S \rightarrow \varphi)$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

If this sentence is true, then Santa Claus is real

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Assume $T \vdash \Box_T \varphi \rightarrow \varphi$

```
Fixed point theorem: T \vdash S \leftrightarrow (\Box_T S \rightarrow \varphi)
```

```
\Sigma_1 completeness: T \vdash \Box_T \theta \rightarrow \Box_T \Box_T \theta
```

If this sentence is true, then Santa Claus is real

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Assume $T \vdash \Box_T \varphi \rightarrow \varphi$

Fixed point theorem: $T \vdash S \leftrightarrow (\Box_T S \rightarrow \varphi)$

 Σ_1 completeness: $T \vdash \Box_T \theta \rightarrow \Box_T \Box_T \theta$

1.
$$T \vdash \Box_T (S \rightarrow (\Box_T S \rightarrow \varphi))$$

If this sentence is true, then Santa Claus is real Assume $T \vdash \Box_T \varphi \rightarrow \varphi$ Fixed point theorem: $T \vdash S \leftrightarrow (\Box_T S \rightarrow \varphi)$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

 Σ_1 completeness: $T \vdash \Box_T \theta \rightarrow \Box_T \Box_T \theta$

1.
$$T \vdash \Box_T (S \rightarrow (\Box_T S \rightarrow \varphi))$$

2.
$$T \vdash \Box_T S \rightarrow \Box_T (\Box_T S \rightarrow \varphi)$$

If this sentence is true, then Santa Claus is real Assume $T \vdash \Box_T \varphi \rightarrow \varphi$ Fixed point theorem: $T \vdash S \leftrightarrow (\Box_T S \rightarrow \varphi)$ Σ_1 completeness: $T \vdash \Box_T \theta \rightarrow \Box_T \Box_T \theta$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

1.
$$T \vdash \Box_T (S \rightarrow (\Box_T S \rightarrow \varphi))$$

2. $T \vdash \Box_T S \rightarrow \Box_T (\Box_T S \rightarrow \varphi)$
3. $T \vdash \Box_T S \rightarrow (\Box_T \Box_T S \rightarrow \Box_T \varphi)$

If this sentence is true, then Santa Claus is real Assume $T \vdash \Box_T \varphi \rightarrow \varphi$ Fixed point theorem: $T \vdash S \leftrightarrow (\Box_T S \rightarrow \varphi)$ Σ_1 completeness: $T \vdash \Box_T \theta \rightarrow \Box_T \Box_T \theta$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

1.
$$T \vdash \Box_T (S \rightarrow (\Box_T S \rightarrow \varphi))$$

2. $T \vdash \Box_T S \rightarrow \Box_T (\Box_T S \rightarrow \varphi)$
3. $T \vdash \Box_T S \rightarrow (\Box_T \Box_T S \rightarrow \Box_T \varphi)$
4. $T \vdash \Box_T S \rightarrow \Box_T \varphi$

If this sentence is true, then Santa Claus is real Assume $T \vdash \Box_T \varphi \rightarrow \varphi$ Fixed point theorem: $T \vdash S \leftrightarrow (\Box_T S \rightarrow \varphi)$ Σ_1 completeness: $T \vdash \Box_T \theta \rightarrow \Box_T \Box_T \theta$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

1.
$$T \vdash \Box_T (S \rightarrow (\Box_T S \rightarrow \varphi))$$

2. $T \vdash \Box_T S \rightarrow \Box_T (\Box_T S \rightarrow \varphi)$
3. $T \vdash \Box_T S \rightarrow (\Box_T \Box_T S \rightarrow \Box_T \varphi)$
4. $T \vdash \Box_T S \rightarrow \Box_T \varphi$
5. $T \vdash \Box_T S \rightarrow \varphi$

If this sentence is true, then Santa Claus is real Assume $T \vdash \Box_T \varphi \rightarrow \varphi$ Fixed point theorem: $T \vdash S \leftrightarrow (\Box_T S \rightarrow \varphi)$ Σ_1 completeness: $T \vdash \Box_T \theta \rightarrow \Box_T \Box_T \theta$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

1.
$$T \vdash \Box_T (S \rightarrow (\Box_T S \rightarrow \varphi))$$

2. $T \vdash \Box_T S \rightarrow \Box_T (\Box_T S \rightarrow \varphi)$
3. $T \vdash \Box_T S \rightarrow (\Box_T \Box_T S \rightarrow \Box_T \varphi)$
4. $T \vdash \Box_T S \rightarrow \Box_T \varphi$
5. $T \vdash \Box_T S \rightarrow \varphi$
6. $T \vdash S$

If this sentence is true, then Santa Claus is real Assume $T \vdash \Box_T \varphi \rightarrow \varphi$ Fixed point theorem: $T \vdash S \leftrightarrow (\Box_T S \rightarrow \varphi)$ Σ_1 completeness: $T \vdash \Box_T \theta \rightarrow \Box_T \Box_T \theta$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

1.
$$T \vdash \Box_T (S \rightarrow (\Box_T S \rightarrow \varphi))$$

2. $T \vdash \Box_T S \rightarrow \Box_T (\Box_T S \rightarrow \varphi)$
3. $T \vdash \Box_T S \rightarrow (\Box_T \Box_T S \rightarrow \Box_T \varphi)$
4. $T \vdash \Box_T S \rightarrow \Box_T \varphi$
5. $T \vdash \Box_T S \rightarrow \varphi$
6. $T \vdash S$

7. $T \vdash \Box_T S$

8. $T \vdash \varphi$

If this sentence is true, then Santa Claus is real Assume $T \vdash \Box_T \varphi \rightarrow \varphi$ Fixed point theorem: $T \vdash S \leftrightarrow (\Box_T S \rightarrow \varphi)$ Σ_1 completeness: $T \vdash \Box_T \theta \rightarrow \Box_T \Box_T \theta$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

1.
$$T \vdash \Box_T (S \rightarrow (\Box_T S \rightarrow \varphi))$$

2. $T \vdash \Box_T S \rightarrow \Box_T (\Box_T S \rightarrow \varphi)$
3. $T \vdash \Box_T S \rightarrow (\Box_T \Box_T S \rightarrow \Box_T \varphi)$
4. $T \vdash \Box_T S \rightarrow \Box_T \varphi$
5. $T \vdash \Box_T S \rightarrow \varphi$
6. $T \vdash S$
7. $T \vdash \Box_T S$

Review: Japaridze's polymodal logic

GLP:

$$\begin{split} & [n](\varphi \to \psi) \to ([n]\varphi \to [n]\psi) & (n < \omega) \\ & [n]([n]\varphi \to \varphi) \to [n]\varphi & (n < \omega) \\ & [n]\varphi \to [m]\varphi & (n < m < \omega) \\ & \langle n \rangle \varphi \to [m] \langle n \rangle \varphi & (n < m < \omega) \end{split}$$

[**n**]φ:

" φ is provable in T together with the set of all true Π_n sentences."

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Review: Worms

Worms : Formulas of the form

 $\langle n_1 \rangle \langle n_2 \rangle \dots \langle n_m \rangle \top$.

 \mathbb{W} : The set of all worms.

Recursively:

► ⊤ is a worm

- if w, v are worms, w a v is a worm
- if \mathfrak{w} is a worm and $a \in \mathbb{N}$ then $a \uparrow \mathfrak{w}$ is a worm

Where

$$(\langle x_1 \rangle \dots \langle x_n \rangle \top) a(\langle y_1 \rangle \dots \langle y_m \rangle \top) = \langle x_1 \rangle \dots \langle x_n \rangle \langle a \rangle \langle y_1 \rangle \dots \langle y_m \rangle \top a \uparrow \langle x_1 \rangle \dots \langle x_n \rangle \top = \langle a + x_1 \rangle \dots \langle a + x_n \rangle \top$$

Review: Equivalences on worms

Lemma

• If a > b and ϕ, ψ are formulas then

 $\mathsf{GLP} \vdash \langle \boldsymbol{a} \rangle (\phi \land \langle \boldsymbol{b} \rangle \psi) \leftrightarrow (\langle \boldsymbol{a} \rangle \phi \land \langle \boldsymbol{b} \rangle \psi).$

• If $\mathfrak{w} \in \mathbb{W}_{a+1}$ then

 $\mathsf{GLP} \vdash \mathfrak{wav} \leftrightarrow \mathfrak{w} \wedge \mathfrak{av}$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Review: Equivalences on worms

Lemma

• If a > b and ϕ, ψ are formulas then

 $\mathsf{GLP} \vdash \langle \boldsymbol{a} \rangle (\phi \land \langle \boldsymbol{b} \rangle \psi) \leftrightarrow (\langle \boldsymbol{a} \rangle \phi \land \langle \boldsymbol{b} \rangle \psi).$

• If $\mathfrak{w} \in \mathbb{W}_{a+1}$ then

 $\mathsf{GLP} \vdash \mathfrak{wav} \leftrightarrow \mathfrak{w} \wedge \mathfrak{av}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• If $\mathsf{GLP} \vdash \mathfrak{w} \to \mathfrak{v}$ then $\mathsf{GLP} \vdash a \uparrow \mathfrak{w} \to a \uparrow \mathfrak{v}$

Measuring worms

$$\|\langle n_1 \rangle \langle n_2 \rangle \dots \langle n_m \rangle \top\| = m + \max_{i < m} n_i$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Measuring worms

$$\|\langle n_1 \rangle \langle n_2 \rangle \dots \langle n_m \rangle \top\| = m + \max_{i \leq m} n_i$$

If $\mathfrak{w} \neq \top$, there are $h(\mathfrak{w})$, $b(\mathfrak{w})$ such that

•
$$\mathfrak{w} \equiv (1 \uparrow h(\mathfrak{w}))0b(\mathfrak{w});$$

Measuring worms

$$\|\langle n_1 \rangle \langle n_2 \rangle \dots \langle n_m \rangle \top\| = m + \max_{i \le m} n_i$$

If $\mathfrak{w} \neq \top$, there are $h(\mathfrak{w})$, $b(\mathfrak{w})$ such that

$$\blacktriangleright \mathfrak{w} \equiv (1 \uparrow h(\mathfrak{w})) 0 \mathfrak{b}(\mathfrak{w}); \qquad \blacktriangleright \|\mathfrak{h}(\mathfrak{w})\|, \|\mathfrak{b}(\mathfrak{w})\| < \|\mathfrak{w}\|.$$

(ロ)、

Ordering worms

Lemma Worms are linearly preordered by

 $\mathfrak{v} <_0 \mathfrak{w} \Leftrightarrow \mathsf{GLP} \vdash \mathfrak{w} \to \Diamond \mathfrak{v}.$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Ordering worms

Lemma Worms are linearly preordered by

 $\mathfrak{v} <_0 \mathfrak{w} \Leftrightarrow \mathsf{GLP} \vdash \mathfrak{w} \to \Diamond \mathfrak{v}.$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

<₀ recursively:

 $\mathfrak{w} <_0 \mathfrak{v}$ whenever

- $\mathfrak{w} \leq_0 b(\mathfrak{v})$, or
- $b(w) <_0 v$ and $h(w) <_0 h(v)$.

Ordering worms

Lemma Worms are linearly preordered by

$$\mathfrak{v} <_0 \mathfrak{w} \Leftrightarrow \mathsf{GLP} \vdash \mathfrak{w} \to \Diamond \mathfrak{v}.$$

<₀ recursively:

- $\mathfrak{w} <_0 \mathfrak{v}$ whenever
 - $\mathfrak{w} \leq_0 b(\mathfrak{v})$, or
 - $b(w) <_0 v$ and $h(w) <_0 h(v)$.

- $\mathfrak{w} \leq_0 \mathfrak{v}$ whenever
 - ▶ $\mathfrak{w} \leq_0 0b(\mathfrak{v})$, or
 - $b(w) <_0 v$ and $h(w) \le_0 h(v)$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Definition

A pair $\langle A, \prec \rangle$ is a well-order if \prec is a linear order on A satisfying any of the following equivalent conditions:

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Definition

A pair $\langle A, \prec \rangle$ is a well-order if \prec is a linear order on A satisfying any of the following equivalent conditions:

No bad sequence: There is no infinite sequence such that

 $a_0 \succ a_1 \succ a_2 \succ \ldots$

(ロ) (同) (三) (三) (三) (○) (○)

Definition

A pair $\langle A, \prec \rangle$ is a well-order if \prec is a linear order on A satisfying any of the following equivalent conditions:

No bad sequence: There is no infinite sequence such that

 $a_0 \succ a_1 \succ a_2 \succ \ldots$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Minimal elements: Every non-empty B ⊆ A has a ≺-minimum element.

Definition

A pair $\langle A, \prec \rangle$ is a well-order if \prec is a linear order on A satisfying any of the following equivalent conditions:

No bad sequence: There is no infinite sequence such that

$$a_0 \succ a_1 \succ a_2 \succ \ldots$$

- Minimal elements: Every non-empty B ⊆ A has a ≺-minimum element.
- Transfinite induction: Let ↓ a = {b : b ≺ a}.
 If B ⊆ A has the property that, for all a, ↓ a ⊆ B → a ∈ B, then B = A.

(日) (日) (日) (日) (日) (日) (日)
Well-ordered worms

Theorem The relation $<_0$ is a well-order on \mathbb{W} .

$$\mathfrak{w}_0' >_0 \mathfrak{w}_1' >_0 \mathfrak{w}_2' >_0 \mathfrak{w}_3' >_0 \mathfrak{w}_4'$$

Towards a contradiction, assume there is an infinite descending chain.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

$$\mathfrak{w}_0 >_0 \mathfrak{w}'_1 >_0 \mathfrak{w}'_2 >_0 \mathfrak{w}'_3 >_0 \mathfrak{w}'_4$$

Fix w_0 so that $||w_0||$ is minimal.

$\mathfrak{w}_0 >_0 \mathfrak{w}_1 >_0 \mathfrak{w}_2' >_0 \mathfrak{w}_3' >_0 \mathfrak{w}_4'$

Now, fix w_1 to minimize $||w_1||$.

$\mathfrak{w}_0 >_0 \mathfrak{w}_1 >_0 \mathfrak{w}_2 >_0 \mathfrak{w}'_3 >_0 \mathfrak{w}'_4$

Now, minimize $\|w_2\|$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

$\mathfrak{w}_0 >_0 \mathfrak{w}_1 >_0 \mathfrak{w}_2 >_0 \mathfrak{w}_3 >_0 \mathfrak{w}_4$

And so on.

$h(\mathfrak{w}_0)$ $h(\mathfrak{w}_1)$ $h(\mathfrak{w}_2)$ $h(\mathfrak{w}_3)$ $h(\mathfrak{w}_4)$

$h(\mathfrak{w}_0)$ $h(\mathfrak{w}_1)$ $h(\mathfrak{w}_2)$ $h(\mathfrak{w}_3)$ $h(\mathfrak{w}_4)$

Since ||h(w)|| < ||w||, $h(w_i) \le_0 h(w_{i+1})$ for some *i* (say, *i* = 2)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $\mathfrak{w}_0 >_0 \mathfrak{w}_1 >_0 b(\mathfrak{w}_2)$? $\mathfrak{w}_4 >_0 \mathfrak{w}_5$

$$\mathfrak{w}_0 >_0 \mathfrak{w}_1 >_0 b(\mathfrak{w}_2)$$
 ? $\mathfrak{w}_4 >_0 \mathfrak{w}_5$

 $b(\mathfrak{w}_2) \leq_0 \mathfrak{w}_4 <_0 \mathfrak{w}_3$ by minimality of $\|\mathfrak{w}_2\|$.

$$\mathfrak{w}_0 >_0 \mathfrak{w}_1 >_0 b(\mathfrak{w}_2)$$
 ? $\mathfrak{w}_4 >_0 \mathfrak{w}_5$

 $b(\mathfrak{w}_2) \leq_0 \mathfrak{w}_4 <_0 \mathfrak{w}_3$ by minimality of $\|\mathfrak{w}_2\|$.

It follows that $\mathfrak{w}_2 \leq_0 \mathfrak{w}_3!!$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

$$\mathfrak{w}_0 >_0 \mathfrak{w}_1 >_0 b(\mathfrak{w}_2)$$
 ? $\mathfrak{w}_4 >_0 \mathfrak{w}_5$

 $b(\mathfrak{w}_2) \leq_0 \mathfrak{w}_4 <_0 \mathfrak{w}_3$ by minimality of $\|\mathfrak{w}_2\|$.

It follows that $\mathfrak{w}_2 \leq_0 \mathfrak{w}_3!!$

Corollary There exists a function $o: \mathbb{W} \to \text{Ord given by}$

 $O(\mathfrak{w}) = \sup_{\mathfrak{v} <_0 \mathfrak{w}} O(\mathfrak{v})$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Three types of ordinals:

- $\blacktriangleright \ \xi = \bigcup_{\zeta < \xi} \zeta$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Three types of ordinals:

 $\xi = 0$ $\xi = \zeta + 1$ $\xi = \bigcup_{\zeta < \xi} \zeta \quad (= \lim_{\zeta < \xi} \zeta)$

Three types of ordinals:

$$\xi = 0 \xi = \zeta + 1 \xi = \bigcup_{\zeta < \xi} \zeta \ (= \lim_{\zeta < \xi} \zeta)$$

Addition:

$$\xi + 0 = \xi$$

$$\xi + (\zeta + 1) = (\xi + \zeta) + 1$$

$$\xi + \lim_{\eta < \zeta} \eta = \lim_{\eta < \zeta} (\xi + \eta)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Three types of ordinals:

- $\xi = \zeta + 1$ • $\xi = \bigcup_{\zeta < \xi} \zeta$ (= $\lim_{\zeta < \xi} \zeta$)

Addition:

$$\xi + 0 = \xi$$

$$\xi + (\zeta + 1) = (\xi + \zeta) + 1$$

$$\xi + \lim_{\eta < \zeta} \eta = \lim_{\eta < \zeta} (\xi + \eta)$$

Multiplication:

- $\blacktriangleright \xi \cdot \mathbf{0} = \mathbf{0}$
- $\xi \cdot (\zeta + 1) = (\xi \cdot \zeta) + \xi$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

•
$$\xi \cdot \lim_{\eta < \zeta} \eta = \bigcup_{\eta < \zeta} (\xi \cdot \eta)$$

Three types of ordinals:

- ξ = 0
 ξ = ζ + 1
- $\xi = \bigcup_{\zeta < \xi} \zeta$ $(= \lim_{\zeta < \xi} \zeta)$

Addition:

$$\xi + 0 = \xi$$

$$\xi + (\zeta + 1) = (\xi + \zeta) + 1$$

$$\xi + \lim_{\eta < \zeta} \eta = \lim_{\eta < \zeta} (\xi + \eta)$$

Multiplication:

- ξ · 0 = 0
- $\xi \cdot (\zeta + 1) = (\xi \cdot \zeta) + \xi$

•
$$\xi \cdot \lim_{\eta < \zeta} \eta = \bigcup_{\eta < \zeta} (\xi \cdot \eta)$$

Exponentiation:

$$\xi^{0} = 1$$

$$\xi^{\zeta+1} = \xi^{\zeta} \cdot \xi$$

$$\lim_{\eta < \zeta} \eta = \lim_{\eta < \zeta} \xi^{\eta}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The ordinal ε_0

Definition

Define ε_0 to be the least ordinal such that $0 < \varepsilon_0$ and $\xi < \varepsilon_0$ implies that $\omega^{\xi} < \varepsilon_0$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

The ordinal ε_0

Definition

Define ε_0 to be the least ordinal such that $0 < \varepsilon_0$ and $\xi < \varepsilon_0$ implies that $\omega^{\xi} < \varepsilon_0$.

Theorem

The set ε_0 is an ordinal and satisfies the identity $\varepsilon_0 = \omega^{\varepsilon_0}$. Moreover, if $0 < \xi < \varepsilon_0$, there are $\alpha, \beta < \xi$ such that $\xi = \alpha + \omega^{\beta}$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Computing orders below ε_0

Lemma Given ordinals $\xi = \alpha + \omega^{\beta}$ and $\zeta = \gamma + \omega^{\delta}$,

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- 1. $\xi < \zeta$ if and only if
 - 1.1 $\xi \leq \gamma$, or 1.2 $\alpha < \zeta$ and $\beta < \delta$

Computing orders below ε_0

Lemma Given ordinals $\xi = \alpha + \omega^{\beta}$ and $\zeta = \gamma + \omega^{\delta}$,

- 1. $\xi < \zeta$ if and only if
 - 1.1 $\xi \leq \gamma$, or
 - **1.2** $\alpha < \zeta$ and $\beta < \delta$
- **2**. $\xi \leq \zeta$ if and only if
 - 2.1 $\xi \leq \gamma$, or 2.2 $\alpha < \zeta$ and $\beta < \delta$.

Computing order-types of worms

Theorem The function o is given recursively by 1. $o(\top) = 0$

2.
$$o((1 \uparrow \mathfrak{w}) \circ \mathfrak{v}) = o(\mathfrak{v}) + \omega^{o(\mathfrak{w})}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Computing order-types of worms

Theorem The function o is given recursively by

1.
$$o(\top) = 0$$

2. $o((1 \uparrow \mathfrak{w}) \circ \mathfrak{v}) = o(\mathfrak{v}) + \omega^{o(\mathfrak{w})}$

Proof sketch.

The map o as defined above is order-preserving and bijective, and there can be only one such map between well-orders.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Arithmetical reflection principles

Statements of the form

"If φ is provable in T then φ is true."

Formally,

 $\Box_T \varphi \to \varphi.$

• If φ is a sentence, this is an instance of local reflection.

• Uniform reflection generalizes this to formulas $\varphi = \varphi(x)$:

 $RFN_{\varphi}[T] = \forall x (\Box_T \varphi(\bar{x}) \to \varphi(x)).$

Reflection schemes: $RFN_{\Gamma}[T] := \{RFN_{\varphi}[T] : \varphi \in \Gamma\}.$

Remark: By Löb's rule, *T* only proves its reflection instances when we already have that $T \vdash \varphi$.

Arithmetic through reflection

Theorem (Kreisel and Levy) $PA \equiv EA + RFN[EA].$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Arithmetic through reflection

Theorem (Kreisel and Levy) $PA \equiv EA + RFN[EA].$

Theorem (Leviant, Beklemishev) For all $n \ge 1$, $I\Sigma_n \equiv EA + RFN_{\Sigma_{n+1}}[EA]$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Reasoning in EA + *RFN*[EA]:

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

```
Reasoning in EA + RFN[EA]:
```

• Consider an instance $I\varphi$ of induction: $\varphi(0) \land \forall x(\varphi(x) \rightarrow \varphi(x+1)) \rightarrow \forall x\varphi(x).$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

```
Reasoning in EA + RFN[EA]:
```

• Consider an instance $I\varphi$ of induction: $\varphi(0) \land \forall x(\varphi(x) \rightarrow \varphi(x+1)) \rightarrow \forall x\varphi(x).$

 If φ has unbounded quantifiers then EA cannot prove Iφ directly.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

```
Reasoning in EA + RFN[EA]:
```

• Consider an instance $I\varphi$ of induction: $\varphi(0) \land \forall x(\varphi(x) \rightarrow \varphi(x+1)) \rightarrow \forall x\varphi(x).$

 If φ has unbounded quantifiers then EA cannot prove Iφ directly.

A D F A 同 F A E F A E F A Q A

▶ However, for any *n*, EA can prove that $\varphi(0) \land \forall x(\varphi(x) \rightarrow \varphi(x+1)) \rightarrow \varphi(\bar{n}).$

```
Reasoning in EA + RFN[EA]:
```

• Consider an instance $I\varphi$ of induction: $\varphi(0) \land \forall x(\varphi(x) \rightarrow \varphi(x+1)) \rightarrow \forall x\varphi(x).$

 If φ has unbounded quantifiers then EA cannot prove Iφ directly.

- ▶ However, for any *n*, EA can prove that $\varphi(0) \land \forall x(\varphi(x) \rightarrow \varphi(x+1)) \rightarrow \varphi(\bar{n}).$
- ► EA can even prove this fact: $\forall n \square_{\mathsf{EA}} \left(\varphi(0) \land \forall x(\varphi(x) \to \varphi(x+1)) \to \varphi(\overline{n}) \right).$

```
Reasoning in EA + RFN[EA]:
```

► Consider an instance $I\varphi$ of induction: $\varphi(0) \land \forall x(\varphi(x) \to \varphi(x+1)) \to \forall x\varphi(x).$

 If φ has unbounded quantifiers then EA cannot prove Iφ directly.

- ▶ However, for any *n*, EA can prove that $\varphi(0) \land \forall x(\varphi(x) \rightarrow \varphi(x+1)) \rightarrow \varphi(\bar{n}).$
- ► EA can even prove this fact: $\forall n \square_{\mathsf{EA}} (\varphi(0) \land \forall x(\varphi(x) \to \varphi(x+1)) \to \varphi(\bar{n})).$
- By reflection we have $I\varphi$.

All axioms of EA are true, and all rules preserve truth. Thus by induction on the length of a derivation, all theorems of EA are true.

(ロ) (同) (三) (三) (三) (三) (○) (○)

All axioms of EA are true, and all rules preserve truth. Thus by induction on the length of a derivation, all theorems of EA are true.

Formally, we are proving by induction on *n* that

$$\forall \varphi \; (\texttt{Proof}(\textit{\textit{n}}, \varphi) \to \texttt{True}(\varphi)).$$

(ロ) (同) (三) (三) (三) (三) (○) (○)

All axioms of EA are true, and all rules preserve truth. Thus by induction on the length of a derivation, all theorems of EA are true.

Formally, we are proving by induction on *n* that

$$\forall \varphi (\texttt{Proof}(n, \varphi) \rightarrow \texttt{True}(\varphi)).$$

But in the language of PA, we have only partial truth predictes $True_n$. So we need to bound the complexity of formulas appearing in our derivations.

(ロ) (同) (三) (三) (三) (三) (○) (○)

All axioms of EA are true, and all rules preserve truth. Thus by induction on the length of a derivation, all theorems of EA are true.

Formally, we are proving by induction on *n* that

$$\forall \varphi (\texttt{Proof}(\textit{\textit{n}}, \varphi) \rightarrow \texttt{True}(\varphi)).$$

But in the language of PA, we have only partial truth predictes $True_n$. So we need to bound the complexity of formulas appearing in our derivations.

(ロ) (同) (三) (三) (三) (三) (○) (○)

Solution: Cut elimination!
The Tait calculus

Sequent-based calculus, where all negations are pushed down to atomic formulas.

(LEM) $\overline{\Gamma, \alpha, \neg \alpha}$ (\wedge) $\frac{\Gamma, \varphi}{\Gamma, \varphi \land \psi}$ (\vee) $\frac{\Gamma, \varphi, \psi}{\Gamma, \varphi \lor \psi}$ (\forall) $\frac{\Gamma, \varphi(v)}{\Gamma, \forall x \varphi(x)}$ (\exists) $\frac{\Gamma, \varphi(t)}{\Gamma, \exists x \varphi(x)}$ (CUT) $\frac{\Gamma, \varphi}{\Gamma}$, $\neg \varphi$,

where α is atomic and v does not appear free in Γ .

Cut elimination

Theorem

It is provable in PA that any sequent derivable in the Tait calculus can be derived without the cut rule.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Cut elimination

Theorem

It is provable in PA that any sequent derivable in the Tait calculus can be derived without the cut rule.

In fact, we do not need full PA.

Let EA^+ be the theory EA_+ "the superexponential is total".

(日) (日) (日) (日) (日) (日) (日)

Then, EA⁺ suffices to prove cut-elimination.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Suppose that $\mathsf{EA} \vdash \varphi$.

- Suppose that $\mathsf{EA} \vdash \varphi$.
- By the cut-elimination theorem, we have a cut-free proof of

```
\neg \alpha_1, \ldots, \neg \alpha_m, \varphi
```

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

where the α_i 's are an axiomatization of EA.

- Suppose that $\mathsf{EA} \vdash \varphi$.
- By the cut-elimination theorem, we have a cut-free proof of

```
\neg \alpha_1, \ldots, \neg \alpha_m, \varphi
```

where the α_i 's are an axiomatization of EA.

We can prove by induction that

$$\forall \Gamma \subseteq \Pi_n (\vdash \Gamma \rightarrow \operatorname{True}_n(\bigvee \Gamma)),$$

where *n* is large enough so that all negated axioms of EA and φ are Π_n .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- Suppose that $\mathsf{EA} \vdash \varphi$.
- By the cut-elimination theorem, we have a cut-free proof of

```
\neg \alpha_1, \ldots, \neg \alpha_m, \varphi
```

where the α_i 's are an axiomatization of EA.

We can prove by induction that

$$\forall \Gamma \subseteq \Pi_n (\vdash \Gamma \rightarrow \operatorname{True}_n(\bigvee \Gamma)),$$

where *n* is large enough so that all negated axioms of EA and φ are Π_n .

 Since all axioms of EA are provable in PA, we conclude that φ.

We may also consider principles of the form $[n]_T \varphi \rightarrow \varphi$, or simply $\langle n \rangle_T \varphi := \neg [n]_T \neg \varphi$:

We may also consider principles of the form $[n]_T \varphi \rightarrow \varphi$, or simply $\langle n \rangle_T \varphi := \neg [n]_T \neg \varphi$:

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Theorem For all $n \in \mathbb{N}$, $\mathsf{EA} \vdash \langle \bar{n} \rangle_T \top \leftrightarrow RFN_{\Sigma_2^0}[T].$

We may also consider principles of the form $[n]_T \varphi \rightarrow \varphi$, or simply $\langle n \rangle_T \varphi := \neg [n]_T \neg \varphi$:

Theorem For all $n \in \mathbb{N}$, $\mathsf{EA} \vdash \langle \bar{n} \rangle_T \top \leftrightarrow RFN_{\Sigma_n^0}[T].$

Corollary

$$\mathsf{PA} \equiv \mathsf{EA} + \{ \langle n \rangle_{\mathsf{EA}} \top : n < \omega \}.$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

We may also consider principles of the form $[n]_T \varphi \rightarrow \varphi$, or simply $\langle n \rangle_T \varphi := \neg [n]_T \neg \varphi$:

Theorem For all $n \in \mathbb{N}$, $\mathsf{EA} \vdash \langle \bar{n} \rangle_T \top \leftrightarrow RFN_{\Sigma_n^0}[T].$

Corollary

$$\mathsf{PA} \equiv \mathsf{EA} + \{ \langle n \rangle_{\mathsf{EA}} \top : n < \omega \}.$$

Remark: The proof-theoretic ordinal of PA is

$$\sup_{n<\omega}o(\langle n\rangle\top)=\varepsilon_0$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Topological semantics:

- GL-spaces: scattered topological spaces (X, T)
 Scattered: Every non-empty subset contains an isolated point.
- Valuations: dA is the set of limit points of A.

$$\llbracket \Diamond \varphi \rrbracket = d \llbracket \varphi \rrbracket.$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

GL is also sound and complete for both interpretations.

Some scattered spaces

• A finite partial order $\langle W, \geq \rangle$ with the downset topology

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- An ordinal ξ with the initial segment topology
- An ordinal ξ with the order topology

Some scattered spaces

• A finite partial order $\langle W, \geq \rangle$ with the downset topology

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- An ordinal ξ with the initial segment topology
- An ordinal ξ with the order topology

Non-scattered:

- The real line
- The rational numbers
- The Cantor set

Review: Kripke semantics for GLP

Frames:

 $\langle W, \langle >_n \rangle_{n < \omega} \rangle$

 $[n]([n]\varphi \to \varphi) \to [n]\varphi:$

Valid iff $<_n$ is well-founded

 $[n]\varphi \rightarrow [n+1]\varphi$:

Valid iff $w <_{n+1} v \Rightarrow w <_n v$

 $\langle n \rangle \varphi \rightarrow [n+1] \langle n \rangle \varphi$:

Valid iff

 $v <_n w$ and $u <_{n+1} w \Rightarrow v <_n u$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Even GLP₂ has no non-trivial Kripke models.

Topological semantics

Spaces:

 $\langle X, \langle \mathcal{T}_n \rangle_{n < \omega} \rangle$

Write d_n for the limit point operator on T_n .

 $[n]([n]\varphi \rightarrow \varphi) \rightarrow [n]\varphi$: Valid iff \mathcal{T}_n is scattered

Topological semantics

Spaces:

 $\langle X, \langle \mathcal{T}_n \rangle_{n < \omega} \rangle$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Write d_n for the limit point operator on T_n .

 $[n]([n]\varphi \to \varphi) \to [n]\varphi$: Valid iff \mathcal{T}_n is scattered $[n]\varphi \to [n+1]\varphi$: Valid iff $\mathcal{T}_n \subseteq \mathcal{T}_{n+1}$

Topological semantics

Spaces:

 $\langle X, \langle \mathcal{T}_n \rangle_{n < \omega} \rangle$

Write d_n for the limit point operator on T_n .

 $[n]([n]\varphi \rightarrow \varphi) \rightarrow [n]\varphi$: Valid iff \mathcal{T}_n is scattered $[n]\varphi \rightarrow [n+1]\varphi$: Valid iff $\mathcal{T}_n \subseteq \mathcal{T}_{n+1}$ $\langle n \rangle \varphi \rightarrow [n+1]\langle n \rangle \varphi$: Valid iff

$$A \subseteq X \Rightarrow d_n A \in \mathcal{T}_{n+1}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Topological completeness

Beklemishev, Gabelaia: GLP is complete for the class of GLP-spaces

The proof uses non-constructive methods.

Blass: It is consistent with ZFC that the canonical ordinal spaces for GLP₂ are all trivial

Beklemishev: It is also consistent with ZFC that GLP₂ is complete for its canonical ordinal spaces

Bagaria More generally, for all *n* it is consistent with ZFC that GLP_n has non-trivial canonical ordinal spaces but GLP_{n+1} does not.

The closed fragment

Recall that the closed fragment is written GLP^0 and does not allow propositional variables (only \perp).

Beklemishev: GLP^0_{ω} may be used to perform ordinal analysis of PA, its natural subtheories and some extensions.

(日) (日) (日) (日) (日) (日) (日)

Theorem (Ignatiev)

There is a Kripke frame \Im such that GLP^0_{ω} is sound and complete for \Im .

Ignatiev's model of GLP⁰

Given an ordinal $\xi = \alpha + \omega^{\beta}$, define $\ell \xi = \beta$ ($\ell 0 = 0$).

Ignatiev's model:

$$\mathfrak{I} = \langle D, \langle >_n \rangle_{n < \omega} \rangle$$

D = {f:
$$\omega \to \varepsilon_0$$
: ∀n f(n + 1) ≤ ℓf(n)}
f <_n g if f(m) = g(m) for m < n and f(n) < g(n)

Example:

$$\langle \omega^{\omega+1}, \omega, \mathbf{0}, \ldots \rangle <_{\mathbf{2}} \langle \omega^{\omega+1}, \omega, \mathbf{1}, \mathbf{0}, \ldots \rangle$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Ignatiev's model does not satisfy all frame conditions.

Ignatiev's model does not satisfy all frame conditions.

 $[n]([n]\varphi \rightarrow \varphi) \rightarrow [n]\varphi$:

 $<_n$ is based on an ordinal and hence well-founded

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Ignatiev's model does not satisfy all frame conditions.

 $[n]([n]\varphi \to \varphi) \to [n]\varphi:$

 $<_n$ is based on an ordinal and hence well-founded

 $[n]\varphi \rightarrow [n+1]\varphi$:

$$\langle \omega, \mathbf{1}, \mathbf{0}, \ldots \rangle \stackrel{\leq_{\mathbf{1}}}{\not\prec_{\mathbf{0}}} \langle \omega, \mathbf{0}, \mathbf{0}, \ldots \rangle$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Ignatiev's model does not satisfy all frame conditions.

 $[n]([n]\varphi \to \varphi) \to [n]\varphi:$

<_n is based on an ordinal and hence well-founded

 $[n]\varphi \to [n+1]\varphi:$ $\langle \omega, 1, 0, \ldots \rangle \stackrel{<_1}{\not<_0} \langle \omega, 0, 0, \ldots \rangle$

 $\langle n \rangle \varphi \rightarrow [n+1] \langle n \rangle \varphi$:

$$\begin{array}{lll} \langle \omega^{\omega}, 0, 0, 0, 0, \ldots \rangle & <_{1} & \langle \omega^{\omega}, \omega, 1, 0, \ldots \rangle \\ \langle \omega^{\omega}, \omega, 0, 0, \ldots \rangle & <_{2} & \langle \omega^{\omega}, \omega, 1, 0, \ldots \rangle \\ \langle \omega^{\omega}, 0, 0, 0, 0, \ldots \rangle & <_{1} & \langle \omega^{\omega}, \omega, 0, 0, \ldots \rangle \end{array}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

The main axis

Definition A sequence $f: \omega \to \varepsilon_0$ is exact if for all n,

 $f(n+1) = \ell f(n).$

Main axis: Set of exact sequences.

Lemma

Every closed formula which is satisfied on \Im is satisfied on the main axis.

Is GLP^0 sound for \Im ?

lcard topologies

Icard defined a structure

$$\mathfrak{T} = \langle \varepsilon_0, \langle \mathcal{T}_n \rangle_{n < \omega} \rangle.$$

Generlized intervals:

$$(\alpha,\beta)_{n} = \{\vartheta : \alpha < \ell^{n}\vartheta < \beta\}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

 \mathcal{T}_n is generated by intervals of the form

•
$$[0,\beta)_m$$
 for $m \leq n$

Icard's model does not satisfy all frame conditions either.

Icard's model does not satisfy all frame conditions either.

```
[n]([n]\varphi \rightarrow \varphi) \rightarrow [n]\varphi:
```

 \mathcal{T}_n is scattered since \mathcal{T}_0 is.

lcard's model does not satisfy all frame conditions either.

 $[n]([n]\varphi \rightarrow \varphi) \rightarrow [n]\varphi$:

 \mathcal{T}_n is scattered since \mathcal{T}_0 is.

 $[n]\varphi \rightarrow [n+1]\varphi$: \mathcal{T}_{n+1} is always a refinement of \mathcal{T}_n .

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

lcard's model does not satisfy all frame conditions either.

 $[n]([n]\varphi \rightarrow \varphi) \rightarrow [n]\varphi$:

 \mathcal{T}_n is scattered since \mathcal{T}_0 is.

 $[n]\varphi \rightarrow [n+1]\varphi$: \mathcal{T}_{n+1} is always a refinement of \mathcal{T}_n .

 $\langle n \rangle \varphi \rightarrow [n+1] \langle n \rangle \varphi$: The point

$$\omega^{\omega} = \lim_{n \to \omega} \omega^n$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

should be isolated in T_2 .

Ignatiev vs. Icard

Define $\vec{\ell} : \varepsilon_0 \to D$ by

$$\vec{\ell\xi} = \langle \xi, \ell\xi, \ell^2\xi, \dots, \ell^n\xi, \dots \rangle$$

Ignatiev vs. Icard

Define
$$\vec{\ell}: \varepsilon_0 \to D$$
 by
 $\vec{\ell}\xi = \langle \xi, \ell\xi, \ell^2\xi, \dots, \ell^n\xi, \dots \rangle$

Lemma For every $\xi < \varepsilon_0$,

$$\langle \mathfrak{T}, \xi \rangle \models \varphi \Leftrightarrow \langle \mathfrak{I}, \vec{\ell} \xi \rangle \models \varphi$$

Ignatiev vs. Icard

Define
$$\vec{\ell}: \varepsilon_0 \to D$$
 by
 $\vec{\ell}\xi = \langle \xi, \ell\xi, \ell^2\xi, \dots, \ell^n\xi, \dots \rangle$

Lemma For every $\xi < \varepsilon_0$,

$$\langle\mathfrak{T},\xi\rangle\models\varphi\Leftrightarrow\langle\mathfrak{I},\vec{\ell}\xi\rangle\models\varphi$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Corollary

 $\mathfrak I$ and $\mathfrak T$ satisfy the same set of formulas.

Soundness and completeness

Theorem GLP^0 is sound for both \mathfrak{I} and \mathfrak{T} .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ
Theorem GLP^0 is sound for both \Im and \mathfrak{T} .

Proof.

 $[n]([n]\varphi \rightarrow \varphi) \rightarrow [n]\varphi$: Valid on both \mathfrak{I} and \mathfrak{T} .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Theorem GLP^0 is sound for both \Im and \mathfrak{T} .

Proof.

 $[n]([n]\varphi \to \varphi) \to [n]\varphi$: Valid on both \mathfrak{I} and \mathfrak{T} . $[n]\varphi \to [n+1]\varphi$: Valid on \mathfrak{T} .

Theorem GLP^0 is sound for both \Im and \mathfrak{T} .

Proof.

 $[n]([n]\varphi \to \varphi) \to [n]\varphi$: Valid on both \mathfrak{I} and \mathfrak{T} . $[n]\varphi \to [n+1]\varphi$: Valid on \mathfrak{T} . $\langle n \rangle \varphi \to [n+1]\langle n \rangle \varphi$: Valid on \mathfrak{I} .

Theorem GLP^0 is sound for both \Im and \mathfrak{T} .

Proof.

 $[n]([n]\varphi \rightarrow \varphi) \rightarrow [n]\varphi$: Valid on both \mathfrak{I} and \mathfrak{T} . $[n]\varphi \rightarrow [n+1]\varphi$: Valid on \mathfrak{T} . $\langle n \rangle \varphi \rightarrow [n+1]\langle n \rangle \varphi$: Valid on \mathfrak{I} .

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Theorem (Ignatiev, Icard) GLP^0 is complete for both \mathfrak{I} and \mathfrak{T} .

GL is very nice as a modal logic, but only takes us so far

GL is very nice as a modal logic, but only takes us so far

(ロ) (同) (三) (三) (三) (○) (○)

 GLP is very useful! (Ordinal analysis, ordinal notation systems, unprovable statements...)

GL is very nice as a modal logic, but only takes us so far

(ロ) (同) (三) (三) (三) (○) (○)

- GLP is very useful! (Ordinal analysis, ordinal notation systems, unprovable statements...)
- But GLP is tougher to work with

GL is very nice as a modal logic, but only takes us so far

- GLP is very useful! (Ordinal analysis, ordinal notation systems, unprovable statements...)
- But GLP is tougher to work with
 - No Kripke frames

GL is very nice as a modal logic, but only takes us so far

- GLP is very useful! (Ordinal analysis, ordinal notation systems, unprovable statements...)
- But GLP is tougher to work with
 - No Kripke frames
 - Topological completeness is hard

- GL is very nice as a modal logic, but only takes us so far
- GLP is very useful! (Ordinal analysis, ordinal notation systems, unprovable statements...)
- But GLP is tougher to work with
 - No Kripke frames
 - Topological completeness is hard
- The closed fragment gives us a good middle ground

- GL is very nice as a modal logic, but only takes us so far
- GLP is very useful! (Ordinal analysis, ordinal notation systems, unprovable statements...)
- But GLP is tougher to work with
 - No Kripke frames
 - Topological completeness is hard
- The closed fragment gives us a good middle ground
- ► Here we have Kripke models, simple topological models.

(ロ) (同) (三) (三) (三) (○) (○)

- GL is very nice as a modal logic, but only takes us so far
- GLP is very useful! (Ordinal analysis, ordinal notation systems, unprovable statements...)
- But GLP is tougher to work with
 - No Kripke frames
 - Topological completeness is hard
- The closed fragment gives us a good middle ground
- Here we have Kripke models, simple topological models.
- Work in progress: Use modalities beyond ω to extend applications to stronger theories

FIN

FIN

Thank you!

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●