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Review: Arithmetical languages

We assume that 0,+,×,2x are definable, as is quantification
over N

∆0: Formulae where all quantifiers are of the form ∀x<t or
∃x<t

Πn: ∀x1∃x2 . . .Qnxnϕ with ϕ ∈ ∆0

Σn: ∃x1∀x2 . . .Qnxnϕ with ϕ ∈ ∆0



Review: Arithmetical theories

EA: Allows induction for ∆0 formulas

IΓ: Allows induction for formulas in Γ

PA : Induction for all formulas

Standing assumption: Theories are computably enumerable,
sound, extend EA

PrvT (x) is a Σ1 formula that defines provability in T

Theorem (Provable Σ1-completeness:)
If σ(x) ∈ Σ1,

EA ` ∀x
(
σ(x)→ PrvEA(pσ(ẋ)q)

)
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Review: Gödel-Löb logic

Language:

p ¬ϕ ϕ ∧ ψ �ϕ

Axioms:
I �(ϕ→ ψ)→ (�ϕ→ �ψ)

I �(�ϕ→ ϕ)→ �ϕ (Löb’s axiom)

1. sound and complete for the class of finite (and thus well
founded) strict partial orders

2. sound and complete for its arithmetical interpretation:
(�ϕ)f = PrvT (pϕfq) ∈ Σ1



Soundness of Löb’s axiom

Proof 1.

1. Apply the second incompleteness theorem to T + ¬ϕ

�T +¬ϕ♦T +¬ϕ> → �T +¬ϕ⊥

2. By the deduction theorem we can replace �T +¬ϕψ by
�T (¬ϕ→ ψ)

�T (¬ϕ→ ¬�T¬¬ϕ)→ �T¬¬ϕ

3. Simplify
�T (�Tϕ→ ϕ)→ �Tϕ
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Proof by Santa Claus
If this sentence is true, then Santa Claus is real

Assume T ` �Tϕ→ ϕ

Fixed point theorem: T ` S ↔ (�T S → ϕ)

Σ1 completeness: T ` �T θ → �T�T θ

1. T ` �T
(
S → (�T S → ϕ)

)
2. T ` �T S → �T (�T S → ϕ)

3. T ` �T S → (�T�T S → �Tϕ)

4. T ` �T S → �Tϕ

5. T ` �T S → ϕ

6. T ` S

7. T ` �T S

8. T ` ϕ
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Review: Japaridze’s polymodal logic

GLP:

[n](ϕ→ ψ)→ ([n]ϕ→ [n]ψ) (n < ω)

[n]([n]ϕ→ ϕ)→ [n]ϕ (n < ω)

[n]ϕ→ [m]ϕ (n < m < ω)

〈n〉ϕ→ [m]〈n〉ϕ (n < m < ω)

[n]ϕ:

“ϕ is provable in T together with the set of all true Πn
sentences.”



Review: Worms
Worms : Formulas of the form

〈n1〉〈n2〉 . . . 〈nm〉>.

W : The set of all worms.

Recursively:

I > is a worm

I if w, v are worms, wa v is a worm

I if w is a worm and a ∈ N then a ↑ w is a worm

Where

I (〈x1〉 . . . 〈xn〉>) a(〈y1〉 . . . 〈ym〉>)
= 〈x1〉 . . . 〈xn〉〈a〉〈y1〉 . . . 〈ym〉>

I a ↑ 〈x1〉 . . . 〈xn〉> = 〈a + x1〉 . . . 〈a + xn〉>



Review: Equivalences on worms

Lemma

I If a > b and φ, ψ are formulas then

GLP ` 〈a〉(φ ∧ 〈b〉ψ)↔ (〈a〉φ ∧ 〈b〉ψ).

I If w ∈Wa+1 then

GLP ` wav↔ w ∧ av

I If GLP ` w→ v then GLP ` a ↑ w→ a ↑ v
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Measuring worms

‖〈n1〉〈n2〉 . . . 〈nm〉>‖ = m + max
i≤m

ni

If w 6= >, there are h(w), b(w) such that

I w ≡ (1 ↑ h(w))0b(w); I ‖h(w)‖, ‖b(w)‖ < ‖w‖.
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Ordering worms

Lemma
Worms are linearly preordered by

v <0 w⇔ GLP ` w→ ♦v.

<0 recursively:

w <0 v whenever
I w ≤0 b(v), or
I b(w) <0 v and

h(w) <0 h(v).

w ≤0 v whenever
I w ≤0 0b(v), or
I b(w) <0 v and

h(w)≤0h(v).
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Well-orders revisited

Definition
A pair 〈A,≺〉 is a well-order if ≺ is a linear order on A satisfying
any of the following equivalent conditions:

I No bad sequence: There is no infinite sequence such that

a0 � a1 � a2 � . . . .

I Minimal elements: Every non-empty B ⊆ A has a
≺-minimum element.

I Transfinite induction: Let ↓a = {b : b ≺ a}.
If B ⊆ A has the property that, for all a, ↓a ⊆ B → a ∈ B,
then B = A.
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Well-ordered worms

Theorem
The relation <0 is a well-order on W.



Proof that worms are well-ordered

w′0 >0 w′1 >0 w′2 >0 w′3 >0 w′4

Towards a contradiction, assume there is an infinite descending
chain.



Proof that worms are well-ordered

w0 >0 w′1 >0 w′2 >0 w′3 >0 w′4

Fix w0 so that ‖w0‖ is minimal.



Proof that worms are well-ordered

w0 >0 w1 >0 w′2 >0 w′3 >0 w′4

Now, fix w1 to minimize ‖w1‖.



Proof that worms are well-ordered

w0 >0 w1 >0 w2 >0 w′3 >0 w′4

Now, minimize ‖w2‖.



Proof that worms are well-ordered

w0 >0 w1 >0 w2 >0 w3 >0 w4

And so on.



Proof that worms are well-ordered

h(w0) h(w1) h(w2) h(w3) h(w4)

Since ‖h(w)‖ < ‖w‖, h(wi) ≤0 h(wi+1) for some i (say, i = 2)
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Proof that worms are well-ordered

w0 >0 w1 >0 b(w2) ? w4 >0 w5

b(w2) ≤0 w4 <0 w3 by minimality of ‖w2‖.

It follows that w2 ≤0 w3!! �

Corollary
There exists a function o : W→ Ord given by

o(w) = sup
v<0w

o(v)
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Ordinal induction and recursion

Three types of ordinals:

I ξ = 0
I ξ = ζ + 1
I ξ =

⋃
ζ<ξ

ζ

(= lim
ζ<ξ

ζ)

Addition:

I ξ + 0 = ξ

I ξ + (ζ + 1) = (ξ + ζ) + 1
I ξ + lim

η<ζ
η = lim

η<ζ
(ξ + η)

Multiplication:

I ξ · 0 = 0
I ξ · (ζ + 1) = (ξ · ζ) + ξ

I ξ · lim
η<ζ

η =
⋃
η<ζ

(ξ · η)

Exponentiation:

I ξ0 = 1
I ξζ+1 = ξζ · ξ

I ξ
lim
η<ζ

η
= lim

η<ζ
ξη
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The ordinal ε0

Definition
Define ε0 to be the least ordinal such that 0 < ε0 and ξ < ε0
implies that ωξ < ε0.

Theorem
The set ε0 is an ordinal and satisfies the identity ε0 = ωε0 .
Moreover, if 0 < ξ < ε0, there are α, β < ξ such that ξ = α+ ωβ.



The ordinal ε0
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implies that ωξ < ε0.

Theorem
The set ε0 is an ordinal and satisfies the identity ε0 = ωε0 .
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Computing orders below ε0

Lemma
Given ordinals ξ = α + ωβ and ζ = γ + ωδ,

1. ξ < ζ if and only if

1.1 ξ ≤ γ, or

1.2 α < ζ and β < δ

2. ξ ≤ ζ if and only if

2.1 ξ ≤ γ, or

2.2 α < ζ and β ≤ δ.
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Computing order-types of worms

Theorem
The function o is given recursively by

1. o(>) = 0
2. o

(
(1 ↑ w) 0 v

)
= o(v) + ωo(w)

Proof sketch.
The map o as defined above is order-preserving and bijective,
and there can be only one such map between well-orders.
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Arithmetical reflection principles
Statements of the form

“If ϕ is provable in T then ϕ is true.”

Formally,
�Tϕ→ ϕ.

I If ϕ is a sentence, this is an instance of local reflection.

I Uniform reflection generalizes this to formulas ϕ = ϕ(x):

RFNϕ[T ] = ∀x
(
�Tϕ(x̄)→ ϕ(x)

)
.

Reflection schemes: RFNΓ[T ] := {RFNϕ[T ] : ϕ ∈ Γ}.

Remark: By Löb’s rule, T only proves its reflection instances
when we already have that T ` ϕ.



Arithmetic through reflection

Theorem (Kreisel and Levy)
PA ≡ EA + RFN[EA].

Theorem (Leviant, Beklemishev)
For all n ≥ 1, IΣn ≡ EA + RFNΣn+1 [EA].
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Reflection proves induction

Reasoning in EA + RFN[EA]:

I Consider an instance Iϕ of induction:
ϕ(0) ∧ ∀x(ϕ(x)→ ϕ(x + 1))→ ∀xϕ(x).

I If ϕ has unbounded quantifiers then EA cannot prove Iϕ
directly.

I However, for any n, EA can prove that
ϕ(0) ∧ ∀x(ϕ(x)→ ϕ(x + 1))→ ϕ(n̄).

I EA can even prove this fact:
∀n �EA

(
ϕ(0) ∧ ∀x(ϕ(x)→ ϕ(x + 1))→ ϕ(n̄)

)
.

I By reflection we have Iϕ.
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The ‘standard’ proof of reflection

All axioms of EA are true, and all rules preserve truth. Thus by
induction on the length of a derivation, all theorems of EA are
true.

Formally, we are proving by induction on n that

∀ϕ
(
Proof(n, ϕ)→ True(ϕ)

)
.

But in the language of PA, we have only partial truth predictes
Truen. So we need to bound the complexity of formulas
appearing in our derivations.

Solution: Cut elimination!
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The Tait calculus

Sequent-based calculus, where all negations are pushed down
to atomic formulas.

(LEM)
Γ, α,¬α

(∧)
Γ, ϕ Γ, ψ

Γ, ϕ ∧ ψ
(∨)

Γ, ϕ, ψ

Γ, ϕ ∨ ψ

(∀)
Γ, ϕ(v)

Γ,∀xϕ(x)
(∃)

Γ, ϕ(t)
Γ, ∃xϕ(x)

(CUT)
Γ, ϕ Γ,¬ϕ

Γ
,

where α is atomic and v does not appear free in Γ.



Cut elimination

Theorem
It is provable in PA that any sequent derivable in the Tait
calculus can be derived without the cut rule.

In fact, we do not need full PA.

Let EA+ be the theory EA+“the superexponential is total”.

Then, EA+ suffices to prove cut-elimination.
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Induction proves reflection
Reasoning in PA:

I Suppose that EA ` ϕ.

I By the cut-elimination theorem, we have a cut-free proof of

¬α1, . . . ,¬αm, ϕ

where the αi ’s are an axiomatization of EA.

I We can prove by induction that

∀Γ ⊆ Πn
(
` Γ→ Truen(

∨
Γ)
)
,

where n is large enough so that all negated axioms of EA
and ϕ are Πn.

I Since all axioms of EA are provable in PA, we conclude
that ϕ.
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Reflection and n-consistency
We may also consider principles of the form [n]Tϕ→ ϕ, or
simply 〈n〉Tϕ := ¬[n]T¬ϕ:

Theorem
For all n ∈ N,

EA ` 〈n̄〉T> ↔ RFNΣ0
n
[T ].

Corollary

PA ≡ EA + {〈n〉EA> : n < ω}.

Remark: The proof-theoretic ordinal of PA is

sup
n<ω

o(〈n〉>) = ε0
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Topological semantics:

I GL-spaces: scattered topological spaces 〈X , T 〉
Scattered: Every non-empty subset contains an isolated
point.

I Valuations: dA is the set of limit points of A.

J♦ϕK = d JϕK .

GL is also sound and complete for both interpretations.



Some scattered spaces

I A finite partial order 〈W ,≥〉 with the downset topology

I An ordinal ξ with the initial segment topology

I An ordinal ξ with the order topology

Non-scattered:

I The real line

I The rational numbers

I The Cantor set



Some scattered spaces

I A finite partial order 〈W ,≥〉 with the downset topology

I An ordinal ξ with the initial segment topology

I An ordinal ξ with the order topology

Non-scattered:

I The real line

I The rational numbers

I The Cantor set



Review: Kripke semantics for GLP

Frames:
〈W , 〈>n〉n<ω〉

[n]([n]ϕ→ ϕ)→ [n]ϕ:

Valid iff <n is well-founded

[n]ϕ→ [n + 1]ϕ:

Valid iff w <n+1 v ⇒ w <n v

〈n〉ϕ→ [n + 1]〈n〉ϕ:

Valid iff

v <n w and u <n+1 w ⇒ v <n u

Even GLP2 has no non-trivial Kripke models.



Topological semantics

Spaces:
〈X , 〈Tn〉n<ω〉

Write dn for the limit point operator on Tn.

[n]([n]ϕ→ ϕ)→ [n]ϕ: Valid iff Tn is scattered

[n]ϕ→ [n + 1]ϕ: Valid iff Tn ⊆ Tn+1

〈n〉ϕ→ [n + 1]〈n〉ϕ: Valid iff

A ⊆ X ⇒ dnA ∈ Tn+1
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Topological completeness

Beklemishev, Gabelaia: GLP is complete for the class of
GLP-spaces

The proof uses non-constructive methods.

Blass: It is consistent with ZFC that the canonical ordinal
spaces for GLP2 are all trivial

Beklemishev: It is also consistent with ZFC that GLP2 is
complete for its canonical ordinal spaces

Bagaria More generally, for all n it is consistent with ZFC
that GLPn has non-trivial canonical ordinal spaces
but GLPn+1 does not.



The closed fragment

Recall that the closed fragment is written GLP0 and does not
allow propositional variables (only ⊥).

Beklemishev: GLP0
ω may be used to perform ordinal analysis of

PA, its natural subtheories and some extensions.

Theorem (Ignatiev)
There is a Kripke frame I such that GLP0

ω is sound and
complete for I.



Ignatiev’s model of GLP0

Given an ordinal ξ = α + ωβ, define `ξ = β (`0 = 0).

Ignatiev’s model:
I = 〈D, 〈>n〉n<ω〉

I D = {f : ω → ε0 : ∀n f (n + 1) ≤ `f (n)}
I f <n g if f (m) = g(m) for m < n and f (n) < g(n)

Example:

〈ωω+1, ω, 0, . . .〉 <2 〈ωω+1, ω, 1,0, . . .〉



Frame conditions
Ignatiev’s model does not satisfy all frame conditions.

[n]([n]ϕ→ ϕ)→ [n]ϕ:

<n is based on an ordinal and hence well-founded

[n]ϕ→ [n + 1]ϕ:

〈ω,1,0, . . .〉 <1
6<0
〈ω,0,0, . . .〉

〈n〉ϕ→ [n + 1]〈n〉ϕ:

〈ωω,0,0,0, . . .〉 <1 〈ωω, ω, 1,0, . . .〉
〈ωω, ω, 0,0, . . .〉 <2 〈ωω, ω, 1,0, . . .〉
〈ωω,0,0,0, . . .〉 <1 〈ωω, ω, 0,0, . . .〉
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The main axis

Definition
A sequence f : ω → ε0 is exact if for all n,

f (n + 1) = `f (n).

Main axis: Set of exact sequences.

Lemma
Every closed formula which is satisfied on I is satisfied on the
main axis.

Is GLP0 sound for I?



Icard topologies

Icard defined a structure

T = 〈ε0, 〈Tn〉n<ω〉.

Generlized intervals:

(α, β)n = {ϑ : α < `nϑ < β}.

Tn is generated by intervals of the form

I (α, β)m for m < n

I [0, β)m for m ≤ n



Topological conditions

Icard’s model does not satisfy all frame conditions either.

[n]([n]ϕ→ ϕ)→ [n]ϕ:

Tn is scattered since T0 is.

[n]ϕ→ [n + 1]ϕ: Tn+1 is always a refinement of Tn.

〈n〉ϕ→ [n + 1]〈n〉ϕ: The point

ωω = lim
n→ω

ωn

should be isolated in T2.
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Ignatiev vs. Icard

Define ~̀ : ε0 → D by

~̀ξ = 〈ξ, `ξ, `2ξ, . . . , `nξ, . . .〉

Lemma
For every ξ < ε0,

〈T, ξ〉 |= ϕ⇔ 〈I, ~̀ξ〉 |= ϕ

Corollary
I and T satisfy the same set of formulas.
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Soundness and completeness

Theorem
GLP0 is sound for both I and T.

Proof.

[n]([n]ϕ→ ϕ)→ [n]ϕ: Valid on both I and T.
[n]ϕ→ [n + 1]ϕ: Valid on T.
〈n〉ϕ→ [n + 1]〈n〉ϕ: Valid on I.

Theorem (Ignatiev, Icard)
GLP0 is complete for both I and T.
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Concluding remarks

I GL is very nice as a modal logic, but only takes us so far

I GLP is very useful! (Ordinal analysis, ordinal notation
systems, unprovable statements...)

I But GLP is tougher to work with

I No Kripke frames

I Topological completeness is hard

I The closed fragment gives us a good middle ground

I Here we have Kripke models, simple topological models.

I Work in progress: Use modalities beyond ω to extend
applications to stronger theories
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